Abstract

We report on two-photon excited fluorescence in the oriented Eu3+-doped LYB monoclinic crystal under femtosecond laser tight focusing. Due to spatial walk-off, the two polarization modes of the incident femtosecond beam simultaneously provide the independent excitation of two distinct focuses, leading to a single-beam dual-voxel nonlinear excitation of fluorescence below material modification threshold. These observations emphasize on the anisotropy of both two-photon absorption as well as fluorescence emission. They demonstrate the localized control of the nonlinear energy deposit, thanks to the adjustment of both the input power and polarization, by properly balancing the injected energy in each voxel. Such approach should be considered for future direct laser writing of waveguides in propagation directions out of the dielectric axes, so as to optimally cope with the highly probable anisotropy of laser-induced material modification thresholds in these crystals. These results open new ways for further potential developments in direct laser writing as the simultaneous inscription of double-line structures for original waveguides processes.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics2(4), 219–225 (2008).
    [CrossRef]
  2. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21(21), 1729–1731 (1996).
    [CrossRef] [PubMed]
  3. J. Qiu, K. Miura, T. Suzuki, T. Mitsuyu, and K. Hirao, “Permanent photoreduction of Sm3+ to Sm2+ inside a sodium aluminoborate glass by an infrared femtosecond pulsed laser,” Appl. Phys. Lett.74(1), 10–12 (1999).
    [CrossRef]
  4. A. Royon, K. Bourhis, M. Bellec, G. Papon, B. Bousquet, Y. Deshayes, T. Cardinal, and L. Canioni, “Silver clusters embedded in glass as a perennial high capacity optical recording medium,” Adv. Mater. (Deerfield Beach Fla.)22(46), 5282–5286 (2010).
    [CrossRef] [PubMed]
  5. M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, and K. Hirao, “Vortex Dynamics in hcp Solid 4He,” J. Appl. Phys.108, 073533 (2010).
    [CrossRef]
  6. E. Brasselet, A. Royon, and L. Canioni, “Dense arrays of microscopic optical vortex generators from femtosecond direct laser writing of radial birefringence in glass,” Appl. Phys. Lett.100(18), 181901 (2012).
    [CrossRef]
  7. A. Podlipensky, A. Abdolvand, G. Seifert, and H. Graener, “Femtosecond laser assisted production of dichroitic 3D structures in composite glass containing Ag nanoparticles,” Appl. Phys., A Mater. Sci. Process.80(8), 1647–1652 (2005).
    [CrossRef]
  8. Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-Organized Nanogratings in Glass Irradiated by Ultrashort Light Pulses,” Phys. Rev. Lett.91(24), 247405 (2003).
    [CrossRef] [PubMed]
  9. C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Polarization-selective etching in femtosecond laser-assisted microfluidic channel fabrication in fused silica,” Opt. Lett.30(14), 1867–1869 (2005).
    [CrossRef] [PubMed]
  10. J. Choi, M. Bellec, A. Royon, K. Bourhis, G. Papon, T. Cardinal, L. Canioni, and M. Richardson, “Three-dimensional direct femtosecond laser writing of second-order nonlinearities in glass,” Opt. Lett.37(6), 1029–1031 (2012).
    [CrossRef] [PubMed]
  11. Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu, and B. Yu, “Space-selective precipitation of functional crystals in glass by using a high repetition rate femtosecond laser,” Chem. Phys. Lett.443(4-6), 253–257 (2007).
    [CrossRef]
  12. Y. Liu, B. Zhu, Y. Dai, X. Qiao, S. Ye, Y. Teng, Q. Guo, H. Ma, X. Fan, and J. Qiu, “Femtosecond laser writing of Er3+-doped CaF2 crystalline patterns in glass,” Opt. Lett.34(21), 3433–3435 (2009).
    [CrossRef] [PubMed]
  13. A. Royon, Y. Petit, G. Papon, M. Richardson, and L. Canioni, “Femtosecond laser induced photochemistry in materials tailored with photosensitive agents,” Opt. Mater. Express1(5), 866–882 (2011).
    [CrossRef]
  14. J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B97(2), 251–255 (2009).
    [CrossRef]
  15. K. Kawamura, M. Hirano, T. Kurobori, D. Takamizu, T. Kamiya, and H. Hosono, “Femtosecond-laser-encoded distributed-feedback color center laser in lithium fluoride single crystals,” Appl. Phys. Lett.84(3), 311 (2004).
    [CrossRef]
  16. V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R. P. Salathé, M. Pollnau, R. Osellame, G. Cerullo, and P. Laporta, “Femtosecond-irradiation-induced refractive-index changes and channel waveguiding in bulk Ti3+:Sapphire,” Appl. Phys. Lett.85(7), 1122 (2004).
    [CrossRef]
  17. F. M. Bain, A. A. Lagatsky, R. R. Thomson, N. D. Psaila, N. V. Kuleshov, A. K. Kar, W. Sibbett, and C. T. A. Brown, “Ultrafast laser inscribed Yb:KGd(WO4)2 and Yb:KY(WO4)2 channel waveguide lasers,” Opt. Express17(25), 22417–22422 (2009).
    [CrossRef] [PubMed]
  18. S. M. Eaton, C. A. Merchant, R. Iyer, A. J. Zilkie, A. S. Helmy, J. S. Aitchison, P. R. Herman, D. Kraemer, R. J. D. Miller, C. Hnatovsky, and R. S. Taylor, “Raman gain from waveguides inscribed in KGd(WO4)2 by high repetition rate femtosecond laser,” Appl. Phys. Lett.92(8), 081105 (2008).
    [CrossRef]
  19. J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate,” Appl. Phys. Lett.89(8), 081108 (2006).
    [CrossRef]
  20. S. J. Beecher, R. R. Thomson, D. T. Reid, N. D. Psaila, M. Ebrahim-Zadeh, and A. K. Kar, “Strain field manipulation in ultrafast laser inscribed BiB3O6 optical waveguides for nonlinear applications,” Opt. Lett.36(23), 4548–4550 (2011).
    [CrossRef] [PubMed]
  21. T. Gorelik, M. Will, S. Nolte, A. Tuennermann, and U. Glatzel, “Transmission electron microscopy studies of femtosecond laser induced modifications in quartz,” Appl. Phys., A Mater. Sci. Process.76(3), 309–311 (2003).
    [CrossRef]
  22. R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett.88(11), 111109 (2006).
    [CrossRef]
  23. W. Yang, P. G. Kazansky, and Y. P. Svirko, “Non-reciprocal ultrafast laser writing,” Nature2, 99–104 (2008).
  24. L. Yang, C. Wang, Y. Dong, N. Da, X. Hu, D. Chen, and J. Qiu, “Three-photon-excited upconversion luminescence of YVO4 single crystal by infrared femtosecond laser irradiation,” Opt. Express13(25), 10157–10162 (2005).
    [CrossRef] [PubMed]
  25. A. Ródenas, A. H. Nejadmalayeri, D. Jaque, and P. Herman, “Confocal Raman imaging of optical waveguides in LiNbO3 fabricated by ultrafast high-repetition rate laser-writing,” Opt. Express16(18), 13979–13989 (2008).
    [CrossRef] [PubMed]
  26. Y. Petit, B. Boulanger, P. Segonds, C. Félix, B. Ménaert, J. Zaccaro, and G. Aka, “Absorption and fluorescence anisotropies of monoclinic crystals: the case of Nd:YCOB,” Opt. Express16(11), 7997–8002 (2008).
    [CrossRef] [PubMed]
  27. S. Joly, Y. Petit, B. Boulanger, P. Segonds, C. Félix, B. Ménaert, and G. Aka, “Singular topology of optical absorption in biaxial crystals,” Opt. Express17(22), 19868–19873 (2009).
    [CrossRef] [PubMed]
  28. S. Joly, P. Segonds, B. Boulanger, Y. Petit, A. P. Revellez, C. Félix, and B. Ménaert, “Rotation of the absorption frame as a function of the electronic transition in the Nd3+:YCa₄O(BO₃)₃ monoclinic crystal,” Opt. Express18(18), 19169–19174 (2010).
    [CrossRef] [PubMed]
  29. J. Hölsa and M. Leskelä, “Optical study of Eu3+ luminescence in lithium rare earth borates, Li6RE(BO3)3; RE = Gd, Y,” J. Lumin.48-49, 497–500 (1991).
    [CrossRef]
  30. V. Jubera, J.-P. Chaminade, A. Garcia, F. Guillen, and C. Fouassier, “Luminescent properties of Eu3+-activated lithium rare earth borates and oxyborates,” J. Lumin.101(1-2), 1–10 (2003).
    [CrossRef]
  31. G. K. Abdullaev and K. S. Mamedov, Sov. Phys. Crystallogr.22(2), 220–222 (1997).
  32. M. Born and E. Wolf, Principles of Optics (Oxford, 1965).
  33. H. Hellwig, J. Liebertz, and L. Bohaty, “Linear optical properties of the monoclinic bismuth BiB3O6,” J. Appl. Phys.88(1), 240 (2000).
    [CrossRef]
  34. P. Segonds, V. Jubera, J. Debray, and B. Ménaert, private communication.
  35. B. Boulanger and J. Zyss, International Tables for Crystallography Vol. D: A. Authier Ed., International Union of Crystallography, (Kluwer, Academic Publisher, 2006), chapt. 1.7: nonlinear optical properties.
  36. P. Segonds, B. Boulanger, J. P. Fève, B. Ménaert, J. Zaccaro, G. Aka, and D. Pelenc, “Linear and nonlinear optical properties of the monoclinic Ca4YO(BO3)3 crystal,” J. Opt. Soc. Am. B21(4), 765–769 (2004).
    [CrossRef]
  37. M. Chavoutier, V. Jubera, P. Veber, M. Velazquez, O. Viraphong, J. Hejtmanek, R. Decourt, J. Debray, B. Menaert, P. Segonds, F. Adamietz, V. Rodriguez, I. Manek-Hönninger, A. Fargues, D. Descamps, and A. Garcia, “Thermal, optical and spectroscopic characterizations of borate laser crystals,” J. Solid State Chem.184(2), 441–446 (2011).
    [CrossRef]
  38. P. Segonds, B. Boulanger, L. Ferrier, B. Ménaert, and J. Zaccaro, “Refractive indices determination of a small-size nonlinear biaxial crystal by use of double-refraction measurements with a laser beam,” J. Opt. Soc. Amer. B.23(5), 852–856 (2006).
    [CrossRef]
  39. R. W. Boyd, Nonlinear Optics (Academic Press ELSEVIER, San Diego, 2008).
  40. S. Brasselet, V. Le Floc’h, F. Treussart, J.-F. Roch, J. Zyss, E. Botzung-Appert, and A. Ibanez, “In situ diagnostics of the crystalline nature of single organic nanocrystals by nonlinear microscopy,” Phys. Rev. Lett.92(20), 207401 (2004).
    [CrossRef] [PubMed]
  41. Y. Petit, S. Joly, P. Segonds, and B. Boulanger, “Recent advances in monoclinic crystal optics,” Laser Phys. Rev.: Invited Review Article (to appear in press).
  42. R. Cattoor, I. Manek-Hönninger, J.-Ch. Delagnes, Y. Petit, B. Bousquet, V. Jubera, A. Fargues, Ph. Veber, M. Velazquez, A. Garcia, and L. Canioni, “Potential of the Eu:LYB crystal as a laser material for DPSS lasers emitting at 613 nm,” Proc. SPIE8235, 82351A, 82351A–7 (2012).
    [CrossRef]
  43. J.-P. Fève, B. Boulanger, B. Ménaert, and O. Pacaud, “Continuous tuning of a microlaser-pumped optical parametric generator by use of a cylindrical periodically poled lithium niobate crystal,” Opt. Lett.28(12), 1028–1030 (2003).
    [CrossRef] [PubMed]
  44. Y. Petit, P. Segonds, B. Boulanger, and T. Taira, “Angular Quasi-Phase Matching,” Phys. Rev. A76(6), 063817 (2007).
    [CrossRef]

2012 (3)

E. Brasselet, A. Royon, and L. Canioni, “Dense arrays of microscopic optical vortex generators from femtosecond direct laser writing of radial birefringence in glass,” Appl. Phys. Lett.100(18), 181901 (2012).
[CrossRef]

R. Cattoor, I. Manek-Hönninger, J.-Ch. Delagnes, Y. Petit, B. Bousquet, V. Jubera, A. Fargues, Ph. Veber, M. Velazquez, A. Garcia, and L. Canioni, “Potential of the Eu:LYB crystal as a laser material for DPSS lasers emitting at 613 nm,” Proc. SPIE8235, 82351A, 82351A–7 (2012).
[CrossRef]

J. Choi, M. Bellec, A. Royon, K. Bourhis, G. Papon, T. Cardinal, L. Canioni, and M. Richardson, “Three-dimensional direct femtosecond laser writing of second-order nonlinearities in glass,” Opt. Lett.37(6), 1029–1031 (2012).
[CrossRef] [PubMed]

2011 (3)

A. Royon, Y. Petit, G. Papon, M. Richardson, and L. Canioni, “Femtosecond laser induced photochemistry in materials tailored with photosensitive agents,” Opt. Mater. Express1(5), 866–882 (2011).
[CrossRef]

S. J. Beecher, R. R. Thomson, D. T. Reid, N. D. Psaila, M. Ebrahim-Zadeh, and A. K. Kar, “Strain field manipulation in ultrafast laser inscribed BiB3O6 optical waveguides for nonlinear applications,” Opt. Lett.36(23), 4548–4550 (2011).
[CrossRef] [PubMed]

M. Chavoutier, V. Jubera, P. Veber, M. Velazquez, O. Viraphong, J. Hejtmanek, R. Decourt, J. Debray, B. Menaert, P. Segonds, F. Adamietz, V. Rodriguez, I. Manek-Hönninger, A. Fargues, D. Descamps, and A. Garcia, “Thermal, optical and spectroscopic characterizations of borate laser crystals,” J. Solid State Chem.184(2), 441–446 (2011).
[CrossRef]

2010 (3)

S. Joly, P. Segonds, B. Boulanger, Y. Petit, A. P. Revellez, C. Félix, and B. Ménaert, “Rotation of the absorption frame as a function of the electronic transition in the Nd3+:YCa₄O(BO₃)₃ monoclinic crystal,” Opt. Express18(18), 19169–19174 (2010).
[CrossRef] [PubMed]

A. Royon, K. Bourhis, M. Bellec, G. Papon, B. Bousquet, Y. Deshayes, T. Cardinal, and L. Canioni, “Silver clusters embedded in glass as a perennial high capacity optical recording medium,” Adv. Mater. (Deerfield Beach Fla.)22(46), 5282–5286 (2010).
[CrossRef] [PubMed]

M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, and K. Hirao, “Vortex Dynamics in hcp Solid 4He,” J. Appl. Phys.108, 073533 (2010).
[CrossRef]

2009 (4)

2008 (5)

Y. Petit, B. Boulanger, P. Segonds, C. Félix, B. Ménaert, J. Zaccaro, and G. Aka, “Absorption and fluorescence anisotropies of monoclinic crystals: the case of Nd:YCOB,” Opt. Express16(11), 7997–8002 (2008).
[CrossRef] [PubMed]

A. Ródenas, A. H. Nejadmalayeri, D. Jaque, and P. Herman, “Confocal Raman imaging of optical waveguides in LiNbO3 fabricated by ultrafast high-repetition rate laser-writing,” Opt. Express16(18), 13979–13989 (2008).
[CrossRef] [PubMed]

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics2(4), 219–225 (2008).
[CrossRef]

W. Yang, P. G. Kazansky, and Y. P. Svirko, “Non-reciprocal ultrafast laser writing,” Nature2, 99–104 (2008).

S. M. Eaton, C. A. Merchant, R. Iyer, A. J. Zilkie, A. S. Helmy, J. S. Aitchison, P. R. Herman, D. Kraemer, R. J. D. Miller, C. Hnatovsky, and R. S. Taylor, “Raman gain from waveguides inscribed in KGd(WO4)2 by high repetition rate femtosecond laser,” Appl. Phys. Lett.92(8), 081105 (2008).
[CrossRef]

2007 (2)

Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu, and B. Yu, “Space-selective precipitation of functional crystals in glass by using a high repetition rate femtosecond laser,” Chem. Phys. Lett.443(4-6), 253–257 (2007).
[CrossRef]

Y. Petit, P. Segonds, B. Boulanger, and T. Taira, “Angular Quasi-Phase Matching,” Phys. Rev. A76(6), 063817 (2007).
[CrossRef]

2006 (3)

P. Segonds, B. Boulanger, L. Ferrier, B. Ménaert, and J. Zaccaro, “Refractive indices determination of a small-size nonlinear biaxial crystal by use of double-refraction measurements with a laser beam,” J. Opt. Soc. Amer. B.23(5), 852–856 (2006).
[CrossRef]

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett.88(11), 111109 (2006).
[CrossRef]

J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate,” Appl. Phys. Lett.89(8), 081108 (2006).
[CrossRef]

2005 (3)

2004 (4)

P. Segonds, B. Boulanger, J. P. Fève, B. Ménaert, J. Zaccaro, G. Aka, and D. Pelenc, “Linear and nonlinear optical properties of the monoclinic Ca4YO(BO3)3 crystal,” J. Opt. Soc. Am. B21(4), 765–769 (2004).
[CrossRef]

S. Brasselet, V. Le Floc’h, F. Treussart, J.-F. Roch, J. Zyss, E. Botzung-Appert, and A. Ibanez, “In situ diagnostics of the crystalline nature of single organic nanocrystals by nonlinear microscopy,” Phys. Rev. Lett.92(20), 207401 (2004).
[CrossRef] [PubMed]

K. Kawamura, M. Hirano, T. Kurobori, D. Takamizu, T. Kamiya, and H. Hosono, “Femtosecond-laser-encoded distributed-feedback color center laser in lithium fluoride single crystals,” Appl. Phys. Lett.84(3), 311 (2004).
[CrossRef]

V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R. P. Salathé, M. Pollnau, R. Osellame, G. Cerullo, and P. Laporta, “Femtosecond-irradiation-induced refractive-index changes and channel waveguiding in bulk Ti3+:Sapphire,” Appl. Phys. Lett.85(7), 1122 (2004).
[CrossRef]

2003 (4)

T. Gorelik, M. Will, S. Nolte, A. Tuennermann, and U. Glatzel, “Transmission electron microscopy studies of femtosecond laser induced modifications in quartz,” Appl. Phys., A Mater. Sci. Process.76(3), 309–311 (2003).
[CrossRef]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-Organized Nanogratings in Glass Irradiated by Ultrashort Light Pulses,” Phys. Rev. Lett.91(24), 247405 (2003).
[CrossRef] [PubMed]

V. Jubera, J.-P. Chaminade, A. Garcia, F. Guillen, and C. Fouassier, “Luminescent properties of Eu3+-activated lithium rare earth borates and oxyborates,” J. Lumin.101(1-2), 1–10 (2003).
[CrossRef]

J.-P. Fève, B. Boulanger, B. Ménaert, and O. Pacaud, “Continuous tuning of a microlaser-pumped optical parametric generator by use of a cylindrical periodically poled lithium niobate crystal,” Opt. Lett.28(12), 1028–1030 (2003).
[CrossRef] [PubMed]

2000 (1)

H. Hellwig, J. Liebertz, and L. Bohaty, “Linear optical properties of the monoclinic bismuth BiB3O6,” J. Appl. Phys.88(1), 240 (2000).
[CrossRef]

1999 (1)

J. Qiu, K. Miura, T. Suzuki, T. Mitsuyu, and K. Hirao, “Permanent photoreduction of Sm3+ to Sm2+ inside a sodium aluminoborate glass by an infrared femtosecond pulsed laser,” Appl. Phys. Lett.74(1), 10–12 (1999).
[CrossRef]

1997 (1)

G. K. Abdullaev and K. S. Mamedov, Sov. Phys. Crystallogr.22(2), 220–222 (1997).

1996 (1)

1991 (1)

J. Hölsa and M. Leskelä, “Optical study of Eu3+ luminescence in lithium rare earth borates, Li6RE(BO3)3; RE = Gd, Y,” J. Lumin.48-49, 497–500 (1991).
[CrossRef]

Abdolvand, A.

A. Podlipensky, A. Abdolvand, G. Seifert, and H. Graener, “Femtosecond laser assisted production of dichroitic 3D structures in composite glass containing Ag nanoparticles,” Appl. Phys., A Mater. Sci. Process.80(8), 1647–1652 (2005).
[CrossRef]

Abdullaev, G. K.

G. K. Abdullaev and K. S. Mamedov, Sov. Phys. Crystallogr.22(2), 220–222 (1997).

Adamietz, F.

M. Chavoutier, V. Jubera, P. Veber, M. Velazquez, O. Viraphong, J. Hejtmanek, R. Decourt, J. Debray, B. Menaert, P. Segonds, F. Adamietz, V. Rodriguez, I. Manek-Hönninger, A. Fargues, D. Descamps, and A. Garcia, “Thermal, optical and spectroscopic characterizations of borate laser crystals,” J. Solid State Chem.184(2), 441–446 (2011).
[CrossRef]

Aitchison, J. S.

S. M. Eaton, C. A. Merchant, R. Iyer, A. J. Zilkie, A. S. Helmy, J. S. Aitchison, P. R. Herman, D. Kraemer, R. J. D. Miller, C. Hnatovsky, and R. S. Taylor, “Raman gain from waveguides inscribed in KGd(WO4)2 by high repetition rate femtosecond laser,” Appl. Phys. Lett.92(8), 081105 (2008).
[CrossRef]

Aka, G.

Apostolopoulos, V.

V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R. P. Salathé, M. Pollnau, R. Osellame, G. Cerullo, and P. Laporta, “Femtosecond-irradiation-induced refractive-index changes and channel waveguiding in bulk Ti3+:Sapphire,” Appl. Phys. Lett.85(7), 1122 (2004).
[CrossRef]

Bain, F. M.

Beecher, S. J.

Bellec, M.

J. Choi, M. Bellec, A. Royon, K. Bourhis, G. Papon, T. Cardinal, L. Canioni, and M. Richardson, “Three-dimensional direct femtosecond laser writing of second-order nonlinearities in glass,” Opt. Lett.37(6), 1029–1031 (2012).
[CrossRef] [PubMed]

A. Royon, K. Bourhis, M. Bellec, G. Papon, B. Bousquet, Y. Deshayes, T. Cardinal, and L. Canioni, “Silver clusters embedded in glass as a perennial high capacity optical recording medium,” Adv. Mater. (Deerfield Beach Fla.)22(46), 5282–5286 (2010).
[CrossRef] [PubMed]

Bhardwaj, V. R.

Blewett, I. J.

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett.88(11), 111109 (2006).
[CrossRef]

Bohaty, L.

H. Hellwig, J. Liebertz, and L. Bohaty, “Linear optical properties of the monoclinic bismuth BiB3O6,” J. Appl. Phys.88(1), 240 (2000).
[CrossRef]

Botzung-Appert, E.

S. Brasselet, V. Le Floc’h, F. Treussart, J.-F. Roch, J. Zyss, E. Botzung-Appert, and A. Ibanez, “In situ diagnostics of the crystalline nature of single organic nanocrystals by nonlinear microscopy,” Phys. Rev. Lett.92(20), 207401 (2004).
[CrossRef] [PubMed]

Boulanger, B.

S. Joly, P. Segonds, B. Boulanger, Y. Petit, A. P. Revellez, C. Félix, and B. Ménaert, “Rotation of the absorption frame as a function of the electronic transition in the Nd3+:YCa₄O(BO₃)₃ monoclinic crystal,” Opt. Express18(18), 19169–19174 (2010).
[CrossRef] [PubMed]

S. Joly, Y. Petit, B. Boulanger, P. Segonds, C. Félix, B. Ménaert, and G. Aka, “Singular topology of optical absorption in biaxial crystals,” Opt. Express17(22), 19868–19873 (2009).
[CrossRef] [PubMed]

Y. Petit, B. Boulanger, P. Segonds, C. Félix, B. Ménaert, J. Zaccaro, and G. Aka, “Absorption and fluorescence anisotropies of monoclinic crystals: the case of Nd:YCOB,” Opt. Express16(11), 7997–8002 (2008).
[CrossRef] [PubMed]

Y. Petit, P. Segonds, B. Boulanger, and T. Taira, “Angular Quasi-Phase Matching,” Phys. Rev. A76(6), 063817 (2007).
[CrossRef]

P. Segonds, B. Boulanger, L. Ferrier, B. Ménaert, and J. Zaccaro, “Refractive indices determination of a small-size nonlinear biaxial crystal by use of double-refraction measurements with a laser beam,” J. Opt. Soc. Amer. B.23(5), 852–856 (2006).
[CrossRef]

P. Segonds, B. Boulanger, J. P. Fève, B. Ménaert, J. Zaccaro, G. Aka, and D. Pelenc, “Linear and nonlinear optical properties of the monoclinic Ca4YO(BO3)3 crystal,” J. Opt. Soc. Am. B21(4), 765–769 (2004).
[CrossRef]

J.-P. Fève, B. Boulanger, B. Ménaert, and O. Pacaud, “Continuous tuning of a microlaser-pumped optical parametric generator by use of a cylindrical periodically poled lithium niobate crystal,” Opt. Lett.28(12), 1028–1030 (2003).
[CrossRef] [PubMed]

Bourhis, K.

J. Choi, M. Bellec, A. Royon, K. Bourhis, G. Papon, T. Cardinal, L. Canioni, and M. Richardson, “Three-dimensional direct femtosecond laser writing of second-order nonlinearities in glass,” Opt. Lett.37(6), 1029–1031 (2012).
[CrossRef] [PubMed]

A. Royon, K. Bourhis, M. Bellec, G. Papon, B. Bousquet, Y. Deshayes, T. Cardinal, and L. Canioni, “Silver clusters embedded in glass as a perennial high capacity optical recording medium,” Adv. Mater. (Deerfield Beach Fla.)22(46), 5282–5286 (2010).
[CrossRef] [PubMed]

Bousquet, B.

R. Cattoor, I. Manek-Hönninger, J.-Ch. Delagnes, Y. Petit, B. Bousquet, V. Jubera, A. Fargues, Ph. Veber, M. Velazquez, A. Garcia, and L. Canioni, “Potential of the Eu:LYB crystal as a laser material for DPSS lasers emitting at 613 nm,” Proc. SPIE8235, 82351A, 82351A–7 (2012).
[CrossRef]

A. Royon, K. Bourhis, M. Bellec, G. Papon, B. Bousquet, Y. Deshayes, T. Cardinal, and L. Canioni, “Silver clusters embedded in glass as a perennial high capacity optical recording medium,” Adv. Mater. (Deerfield Beach Fla.)22(46), 5282–5286 (2010).
[CrossRef] [PubMed]

Brasselet, E.

E. Brasselet, A. Royon, and L. Canioni, “Dense arrays of microscopic optical vortex generators from femtosecond direct laser writing of radial birefringence in glass,” Appl. Phys. Lett.100(18), 181901 (2012).
[CrossRef]

Brasselet, S.

S. Brasselet, V. Le Floc’h, F. Treussart, J.-F. Roch, J. Zyss, E. Botzung-Appert, and A. Ibanez, “In situ diagnostics of the crystalline nature of single organic nanocrystals by nonlinear microscopy,” Phys. Rev. Lett.92(20), 207401 (2004).
[CrossRef] [PubMed]

Brown, C. T. A.

Burghoff, J.

J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate,” Appl. Phys. Lett.89(8), 081108 (2006).
[CrossRef]

Campbell, S.

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett.88(11), 111109 (2006).
[CrossRef]

Canioni, L.

E. Brasselet, A. Royon, and L. Canioni, “Dense arrays of microscopic optical vortex generators from femtosecond direct laser writing of radial birefringence in glass,” Appl. Phys. Lett.100(18), 181901 (2012).
[CrossRef]

J. Choi, M. Bellec, A. Royon, K. Bourhis, G. Papon, T. Cardinal, L. Canioni, and M. Richardson, “Three-dimensional direct femtosecond laser writing of second-order nonlinearities in glass,” Opt. Lett.37(6), 1029–1031 (2012).
[CrossRef] [PubMed]

R. Cattoor, I. Manek-Hönninger, J.-Ch. Delagnes, Y. Petit, B. Bousquet, V. Jubera, A. Fargues, Ph. Veber, M. Velazquez, A. Garcia, and L. Canioni, “Potential of the Eu:LYB crystal as a laser material for DPSS lasers emitting at 613 nm,” Proc. SPIE8235, 82351A, 82351A–7 (2012).
[CrossRef]

A. Royon, Y. Petit, G. Papon, M. Richardson, and L. Canioni, “Femtosecond laser induced photochemistry in materials tailored with photosensitive agents,” Opt. Mater. Express1(5), 866–882 (2011).
[CrossRef]

A. Royon, K. Bourhis, M. Bellec, G. Papon, B. Bousquet, Y. Deshayes, T. Cardinal, and L. Canioni, “Silver clusters embedded in glass as a perennial high capacity optical recording medium,” Adv. Mater. (Deerfield Beach Fla.)22(46), 5282–5286 (2010).
[CrossRef] [PubMed]

Cardinal, T.

J. Choi, M. Bellec, A. Royon, K. Bourhis, G. Papon, T. Cardinal, L. Canioni, and M. Richardson, “Three-dimensional direct femtosecond laser writing of second-order nonlinearities in glass,” Opt. Lett.37(6), 1029–1031 (2012).
[CrossRef] [PubMed]

A. Royon, K. Bourhis, M. Bellec, G. Papon, B. Bousquet, Y. Deshayes, T. Cardinal, and L. Canioni, “Silver clusters embedded in glass as a perennial high capacity optical recording medium,” Adv. Mater. (Deerfield Beach Fla.)22(46), 5282–5286 (2010).
[CrossRef] [PubMed]

Cattoor, R.

R. Cattoor, I. Manek-Hönninger, J.-Ch. Delagnes, Y. Petit, B. Bousquet, V. Jubera, A. Fargues, Ph. Veber, M. Velazquez, A. Garcia, and L. Canioni, “Potential of the Eu:LYB crystal as a laser material for DPSS lasers emitting at 613 nm,” Proc. SPIE8235, 82351A, 82351A–7 (2012).
[CrossRef]

Cerullo, G.

V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R. P. Salathé, M. Pollnau, R. Osellame, G. Cerullo, and P. Laporta, “Femtosecond-irradiation-induced refractive-index changes and channel waveguiding in bulk Ti3+:Sapphire,” Appl. Phys. Lett.85(7), 1122 (2004).
[CrossRef]

Chaminade, J.-P.

V. Jubera, J.-P. Chaminade, A. Garcia, F. Guillen, and C. Fouassier, “Luminescent properties of Eu3+-activated lithium rare earth borates and oxyborates,” J. Lumin.101(1-2), 1–10 (2003).
[CrossRef]

Chavoutier, M.

M. Chavoutier, V. Jubera, P. Veber, M. Velazquez, O. Viraphong, J. Hejtmanek, R. Decourt, J. Debray, B. Menaert, P. Segonds, F. Adamietz, V. Rodriguez, I. Manek-Hönninger, A. Fargues, D. Descamps, and A. Garcia, “Thermal, optical and spectroscopic characterizations of borate laser crystals,” J. Solid State Chem.184(2), 441–446 (2011).
[CrossRef]

Chen, D.

Choi, J.

Colomb, T.

V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R. P. Salathé, M. Pollnau, R. Osellame, G. Cerullo, and P. Laporta, “Femtosecond-irradiation-induced refractive-index changes and channel waveguiding in bulk Ti3+:Sapphire,” Appl. Phys. Lett.85(7), 1122 (2004).
[CrossRef]

Corkum, P. B.

Da, N.

Dai, Y.

Y. Liu, B. Zhu, Y. Dai, X. Qiao, S. Ye, Y. Teng, Q. Guo, H. Ma, X. Fan, and J. Qiu, “Femtosecond laser writing of Er3+-doped CaF2 crystalline patterns in glass,” Opt. Lett.34(21), 3433–3435 (2009).
[CrossRef] [PubMed]

Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu, and B. Yu, “Space-selective precipitation of functional crystals in glass by using a high repetition rate femtosecond laser,” Chem. Phys. Lett.443(4-6), 253–257 (2007).
[CrossRef]

Davis, K. M.

Debray, J.

M. Chavoutier, V. Jubera, P. Veber, M. Velazquez, O. Viraphong, J. Hejtmanek, R. Decourt, J. Debray, B. Menaert, P. Segonds, F. Adamietz, V. Rodriguez, I. Manek-Hönninger, A. Fargues, D. Descamps, and A. Garcia, “Thermal, optical and spectroscopic characterizations of borate laser crystals,” J. Solid State Chem.184(2), 441–446 (2011).
[CrossRef]

Decourt, R.

M. Chavoutier, V. Jubera, P. Veber, M. Velazquez, O. Viraphong, J. Hejtmanek, R. Decourt, J. Debray, B. Menaert, P. Segonds, F. Adamietz, V. Rodriguez, I. Manek-Hönninger, A. Fargues, D. Descamps, and A. Garcia, “Thermal, optical and spectroscopic characterizations of borate laser crystals,” J. Solid State Chem.184(2), 441–446 (2011).
[CrossRef]

Delagnes, J.-Ch.

R. Cattoor, I. Manek-Hönninger, J.-Ch. Delagnes, Y. Petit, B. Bousquet, V. Jubera, A. Fargues, Ph. Veber, M. Velazquez, A. Garcia, and L. Canioni, “Potential of the Eu:LYB crystal as a laser material for DPSS lasers emitting at 613 nm,” Proc. SPIE8235, 82351A, 82351A–7 (2012).
[CrossRef]

Depeursinge, C.

V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R. P. Salathé, M. Pollnau, R. Osellame, G. Cerullo, and P. Laporta, “Femtosecond-irradiation-induced refractive-index changes and channel waveguiding in bulk Ti3+:Sapphire,” Appl. Phys. Lett.85(7), 1122 (2004).
[CrossRef]

Descamps, D.

M. Chavoutier, V. Jubera, P. Veber, M. Velazquez, O. Viraphong, J. Hejtmanek, R. Decourt, J. Debray, B. Menaert, P. Segonds, F. Adamietz, V. Rodriguez, I. Manek-Hönninger, A. Fargues, D. Descamps, and A. Garcia, “Thermal, optical and spectroscopic characterizations of borate laser crystals,” J. Solid State Chem.184(2), 441–446 (2011).
[CrossRef]

Deshayes, Y.

A. Royon, K. Bourhis, M. Bellec, G. Papon, B. Bousquet, Y. Deshayes, T. Cardinal, and L. Canioni, “Silver clusters embedded in glass as a perennial high capacity optical recording medium,” Adv. Mater. (Deerfield Beach Fla.)22(46), 5282–5286 (2010).
[CrossRef] [PubMed]

Dong, Y.

Eaton, S. M.

S. M. Eaton, C. A. Merchant, R. Iyer, A. J. Zilkie, A. S. Helmy, J. S. Aitchison, P. R. Herman, D. Kraemer, R. J. D. Miller, C. Hnatovsky, and R. S. Taylor, “Raman gain from waveguides inscribed in KGd(WO4)2 by high repetition rate femtosecond laser,” Appl. Phys. Lett.92(8), 081105 (2008).
[CrossRef]

Ebrahim-Zadeh, M.

Fan, X.

Fargues, A.

R. Cattoor, I. Manek-Hönninger, J.-Ch. Delagnes, Y. Petit, B. Bousquet, V. Jubera, A. Fargues, Ph. Veber, M. Velazquez, A. Garcia, and L. Canioni, “Potential of the Eu:LYB crystal as a laser material for DPSS lasers emitting at 613 nm,” Proc. SPIE8235, 82351A, 82351A–7 (2012).
[CrossRef]

M. Chavoutier, V. Jubera, P. Veber, M. Velazquez, O. Viraphong, J. Hejtmanek, R. Decourt, J. Debray, B. Menaert, P. Segonds, F. Adamietz, V. Rodriguez, I. Manek-Hönninger, A. Fargues, D. Descamps, and A. Garcia, “Thermal, optical and spectroscopic characterizations of borate laser crystals,” J. Solid State Chem.184(2), 441–446 (2011).
[CrossRef]

Félix, C.

Ferrier, L.

P. Segonds, B. Boulanger, L. Ferrier, B. Ménaert, and J. Zaccaro, “Refractive indices determination of a small-size nonlinear biaxial crystal by use of double-refraction measurements with a laser beam,” J. Opt. Soc. Amer. B.23(5), 852–856 (2006).
[CrossRef]

Fève, J. P.

Fève, J.-P.

Fouassier, C.

V. Jubera, J.-P. Chaminade, A. Garcia, F. Guillen, and C. Fouassier, “Luminescent properties of Eu3+-activated lithium rare earth borates and oxyborates,” J. Lumin.101(1-2), 1–10 (2003).
[CrossRef]

Garcia, A.

R. Cattoor, I. Manek-Hönninger, J.-Ch. Delagnes, Y. Petit, B. Bousquet, V. Jubera, A. Fargues, Ph. Veber, M. Velazquez, A. Garcia, and L. Canioni, “Potential of the Eu:LYB crystal as a laser material for DPSS lasers emitting at 613 nm,” Proc. SPIE8235, 82351A, 82351A–7 (2012).
[CrossRef]

M. Chavoutier, V. Jubera, P. Veber, M. Velazquez, O. Viraphong, J. Hejtmanek, R. Decourt, J. Debray, B. Menaert, P. Segonds, F. Adamietz, V. Rodriguez, I. Manek-Hönninger, A. Fargues, D. Descamps, and A. Garcia, “Thermal, optical and spectroscopic characterizations of borate laser crystals,” J. Solid State Chem.184(2), 441–446 (2011).
[CrossRef]

V. Jubera, J.-P. Chaminade, A. Garcia, F. Guillen, and C. Fouassier, “Luminescent properties of Eu3+-activated lithium rare earth borates and oxyborates,” J. Lumin.101(1-2), 1–10 (2003).
[CrossRef]

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics2(4), 219–225 (2008).
[CrossRef]

Glatzel, U.

T. Gorelik, M. Will, S. Nolte, A. Tuennermann, and U. Glatzel, “Transmission electron microscopy studies of femtosecond laser induced modifications in quartz,” Appl. Phys., A Mater. Sci. Process.76(3), 309–311 (2003).
[CrossRef]

Gorelik, T.

T. Gorelik, M. Will, S. Nolte, A. Tuennermann, and U. Glatzel, “Transmission electron microscopy studies of femtosecond laser induced modifications in quartz,” Appl. Phys., A Mater. Sci. Process.76(3), 309–311 (2003).
[CrossRef]

Graener, H.

A. Podlipensky, A. Abdolvand, G. Seifert, and H. Graener, “Femtosecond laser assisted production of dichroitic 3D structures in composite glass containing Ag nanoparticles,” Appl. Phys., A Mater. Sci. Process.80(8), 1647–1652 (2005).
[CrossRef]

Grebing, C.

J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate,” Appl. Phys. Lett.89(8), 081108 (2006).
[CrossRef]

Guillen, F.

V. Jubera, J.-P. Chaminade, A. Garcia, F. Guillen, and C. Fouassier, “Luminescent properties of Eu3+-activated lithium rare earth borates and oxyborates,” J. Lumin.101(1-2), 1–10 (2003).
[CrossRef]

Guo, Q.

Hejtmanek, J.

M. Chavoutier, V. Jubera, P. Veber, M. Velazquez, O. Viraphong, J. Hejtmanek, R. Decourt, J. Debray, B. Menaert, P. Segonds, F. Adamietz, V. Rodriguez, I. Manek-Hönninger, A. Fargues, D. Descamps, and A. Garcia, “Thermal, optical and spectroscopic characterizations of borate laser crystals,” J. Solid State Chem.184(2), 441–446 (2011).
[CrossRef]

Hellwig, H.

H. Hellwig, J. Liebertz, and L. Bohaty, “Linear optical properties of the monoclinic bismuth BiB3O6,” J. Appl. Phys.88(1), 240 (2000).
[CrossRef]

Helmy, A. S.

S. M. Eaton, C. A. Merchant, R. Iyer, A. J. Zilkie, A. S. Helmy, J. S. Aitchison, P. R. Herman, D. Kraemer, R. J. D. Miller, C. Hnatovsky, and R. S. Taylor, “Raman gain from waveguides inscribed in KGd(WO4)2 by high repetition rate femtosecond laser,” Appl. Phys. Lett.92(8), 081105 (2008).
[CrossRef]

Herman, P.

Herman, P. R.

S. M. Eaton, C. A. Merchant, R. Iyer, A. J. Zilkie, A. S. Helmy, J. S. Aitchison, P. R. Herman, D. Kraemer, R. J. D. Miller, C. Hnatovsky, and R. S. Taylor, “Raman gain from waveguides inscribed in KGd(WO4)2 by high repetition rate femtosecond laser,” Appl. Phys. Lett.92(8), 081105 (2008).
[CrossRef]

Hirano, M.

K. Kawamura, M. Hirano, T. Kurobori, D. Takamizu, T. Kamiya, and H. Hosono, “Femtosecond-laser-encoded distributed-feedback color center laser in lithium fluoride single crystals,” Appl. Phys. Lett.84(3), 311 (2004).
[CrossRef]

Hirao, K.

M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, and K. Hirao, “Vortex Dynamics in hcp Solid 4He,” J. Appl. Phys.108, 073533 (2010).
[CrossRef]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-Organized Nanogratings in Glass Irradiated by Ultrashort Light Pulses,” Phys. Rev. Lett.91(24), 247405 (2003).
[CrossRef] [PubMed]

J. Qiu, K. Miura, T. Suzuki, T. Mitsuyu, and K. Hirao, “Permanent photoreduction of Sm3+ to Sm2+ inside a sodium aluminoborate glass by an infrared femtosecond pulsed laser,” Appl. Phys. Lett.74(1), 10–12 (1999).
[CrossRef]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21(21), 1729–1731 (1996).
[CrossRef] [PubMed]

Hnatovsky, C.

S. M. Eaton, C. A. Merchant, R. Iyer, A. J. Zilkie, A. S. Helmy, J. S. Aitchison, P. R. Herman, D. Kraemer, R. J. D. Miller, C. Hnatovsky, and R. S. Taylor, “Raman gain from waveguides inscribed in KGd(WO4)2 by high repetition rate femtosecond laser,” Appl. Phys. Lett.92(8), 081105 (2008).
[CrossRef]

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Polarization-selective etching in femtosecond laser-assisted microfluidic channel fabrication in fused silica,” Opt. Lett.30(14), 1867–1869 (2005).
[CrossRef] [PubMed]

Hölsa, J.

J. Hölsa and M. Leskelä, “Optical study of Eu3+ luminescence in lithium rare earth borates, Li6RE(BO3)3; RE = Gd, Y,” J. Lumin.48-49, 497–500 (1991).
[CrossRef]

Hosono, H.

K. Kawamura, M. Hirano, T. Kurobori, D. Takamizu, T. Kamiya, and H. Hosono, “Femtosecond-laser-encoded distributed-feedback color center laser in lithium fluoride single crystals,” Appl. Phys. Lett.84(3), 311 (2004).
[CrossRef]

Hu, X.

Huber, G.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B97(2), 251–255 (2009).
[CrossRef]

Ibanez, A.

S. Brasselet, V. Le Floc’h, F. Treussart, J.-F. Roch, J. Zyss, E. Botzung-Appert, and A. Ibanez, “In situ diagnostics of the crystalline nature of single organic nanocrystals by nonlinear microscopy,” Phys. Rev. Lett.92(20), 207401 (2004).
[CrossRef] [PubMed]

Iyer, R.

S. M. Eaton, C. A. Merchant, R. Iyer, A. J. Zilkie, A. S. Helmy, J. S. Aitchison, P. R. Herman, D. Kraemer, R. J. D. Miller, C. Hnatovsky, and R. S. Taylor, “Raman gain from waveguides inscribed in KGd(WO4)2 by high repetition rate femtosecond laser,” Appl. Phys. Lett.92(8), 081105 (2008).
[CrossRef]

Jaque, D.

Joly, S.

Jubera, V.

R. Cattoor, I. Manek-Hönninger, J.-Ch. Delagnes, Y. Petit, B. Bousquet, V. Jubera, A. Fargues, Ph. Veber, M. Velazquez, A. Garcia, and L. Canioni, “Potential of the Eu:LYB crystal as a laser material for DPSS lasers emitting at 613 nm,” Proc. SPIE8235, 82351A, 82351A–7 (2012).
[CrossRef]

M. Chavoutier, V. Jubera, P. Veber, M. Velazquez, O. Viraphong, J. Hejtmanek, R. Decourt, J. Debray, B. Menaert, P. Segonds, F. Adamietz, V. Rodriguez, I. Manek-Hönninger, A. Fargues, D. Descamps, and A. Garcia, “Thermal, optical and spectroscopic characterizations of borate laser crystals,” J. Solid State Chem.184(2), 441–446 (2011).
[CrossRef]

V. Jubera, J.-P. Chaminade, A. Garcia, F. Guillen, and C. Fouassier, “Luminescent properties of Eu3+-activated lithium rare earth borates and oxyborates,” J. Lumin.101(1-2), 1–10 (2003).
[CrossRef]

Kamiya, T.

K. Kawamura, M. Hirano, T. Kurobori, D. Takamizu, T. Kamiya, and H. Hosono, “Femtosecond-laser-encoded distributed-feedback color center laser in lithium fluoride single crystals,” Appl. Phys. Lett.84(3), 311 (2004).
[CrossRef]

Kar, A. K.

Kawamura, K.

K. Kawamura, M. Hirano, T. Kurobori, D. Takamizu, T. Kamiya, and H. Hosono, “Femtosecond-laser-encoded distributed-feedback color center laser in lithium fluoride single crystals,” Appl. Phys. Lett.84(3), 311 (2004).
[CrossRef]

Kazansky, P. G.

W. Yang, P. G. Kazansky, and Y. P. Svirko, “Non-reciprocal ultrafast laser writing,” Nature2, 99–104 (2008).

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-Organized Nanogratings in Glass Irradiated by Ultrashort Light Pulses,” Phys. Rev. Lett.91(24), 247405 (2003).
[CrossRef] [PubMed]

Kraemer, D.

S. M. Eaton, C. A. Merchant, R. Iyer, A. J. Zilkie, A. S. Helmy, J. S. Aitchison, P. R. Herman, D. Kraemer, R. J. D. Miller, C. Hnatovsky, and R. S. Taylor, “Raman gain from waveguides inscribed in KGd(WO4)2 by high repetition rate femtosecond laser,” Appl. Phys. Lett.92(8), 081105 (2008).
[CrossRef]

Kuleshov, N. V.

Kurobori, T.

K. Kawamura, M. Hirano, T. Kurobori, D. Takamizu, T. Kamiya, and H. Hosono, “Femtosecond-laser-encoded distributed-feedback color center laser in lithium fluoride single crystals,” Appl. Phys. Lett.84(3), 311 (2004).
[CrossRef]

Lagatsky, A. A.

Laporta, P.

V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R. P. Salathé, M. Pollnau, R. Osellame, G. Cerullo, and P. Laporta, “Femtosecond-irradiation-induced refractive-index changes and channel waveguiding in bulk Ti3+:Sapphire,” Appl. Phys. Lett.85(7), 1122 (2004).
[CrossRef]

Laversenne, L.

V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R. P. Salathé, M. Pollnau, R. Osellame, G. Cerullo, and P. Laporta, “Femtosecond-irradiation-induced refractive-index changes and channel waveguiding in bulk Ti3+:Sapphire,” Appl. Phys. Lett.85(7), 1122 (2004).
[CrossRef]

Le Floc’h, V.

S. Brasselet, V. Le Floc’h, F. Treussart, J.-F. Roch, J. Zyss, E. Botzung-Appert, and A. Ibanez, “In situ diagnostics of the crystalline nature of single organic nanocrystals by nonlinear microscopy,” Phys. Rev. Lett.92(20), 207401 (2004).
[CrossRef] [PubMed]

Leskelä, M.

J. Hölsa and M. Leskelä, “Optical study of Eu3+ luminescence in lithium rare earth borates, Li6RE(BO3)3; RE = Gd, Y,” J. Lumin.48-49, 497–500 (1991).
[CrossRef]

Liebertz, J.

H. Hellwig, J. Liebertz, and L. Bohaty, “Linear optical properties of the monoclinic bismuth BiB3O6,” J. Appl. Phys.88(1), 240 (2000).
[CrossRef]

Liu, Y.

Lu, B.

Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu, and B. Yu, “Space-selective precipitation of functional crystals in glass by using a high repetition rate femtosecond laser,” Chem. Phys. Lett.443(4-6), 253–257 (2007).
[CrossRef]

Ma, H.

Y. Liu, B. Zhu, Y. Dai, X. Qiao, S. Ye, Y. Teng, Q. Guo, H. Ma, X. Fan, and J. Qiu, “Femtosecond laser writing of Er3+-doped CaF2 crystalline patterns in glass,” Opt. Lett.34(21), 3433–3435 (2009).
[CrossRef] [PubMed]

Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu, and B. Yu, “Space-selective precipitation of functional crystals in glass by using a high repetition rate femtosecond laser,” Chem. Phys. Lett.443(4-6), 253–257 (2007).
[CrossRef]

Mamedov, K. S.

G. K. Abdullaev and K. S. Mamedov, Sov. Phys. Crystallogr.22(2), 220–222 (1997).

Manek-Hönninger, I.

R. Cattoor, I. Manek-Hönninger, J.-Ch. Delagnes, Y. Petit, B. Bousquet, V. Jubera, A. Fargues, Ph. Veber, M. Velazquez, A. Garcia, and L. Canioni, “Potential of the Eu:LYB crystal as a laser material for DPSS lasers emitting at 613 nm,” Proc. SPIE8235, 82351A, 82351A–7 (2012).
[CrossRef]

M. Chavoutier, V. Jubera, P. Veber, M. Velazquez, O. Viraphong, J. Hejtmanek, R. Decourt, J. Debray, B. Menaert, P. Segonds, F. Adamietz, V. Rodriguez, I. Manek-Hönninger, A. Fargues, D. Descamps, and A. Garcia, “Thermal, optical and spectroscopic characterizations of borate laser crystals,” J. Solid State Chem.184(2), 441–446 (2011).
[CrossRef]

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics2(4), 219–225 (2008).
[CrossRef]

Menaert, B.

M. Chavoutier, V. Jubera, P. Veber, M. Velazquez, O. Viraphong, J. Hejtmanek, R. Decourt, J. Debray, B. Menaert, P. Segonds, F. Adamietz, V. Rodriguez, I. Manek-Hönninger, A. Fargues, D. Descamps, and A. Garcia, “Thermal, optical and spectroscopic characterizations of borate laser crystals,” J. Solid State Chem.184(2), 441–446 (2011).
[CrossRef]

Ménaert, B.

Merchant, C. A.

S. M. Eaton, C. A. Merchant, R. Iyer, A. J. Zilkie, A. S. Helmy, J. S. Aitchison, P. R. Herman, D. Kraemer, R. J. D. Miller, C. Hnatovsky, and R. S. Taylor, “Raman gain from waveguides inscribed in KGd(WO4)2 by high repetition rate femtosecond laser,” Appl. Phys. Lett.92(8), 081105 (2008).
[CrossRef]

Miller, R. J. D.

S. M. Eaton, C. A. Merchant, R. Iyer, A. J. Zilkie, A. S. Helmy, J. S. Aitchison, P. R. Herman, D. Kraemer, R. J. D. Miller, C. Hnatovsky, and R. S. Taylor, “Raman gain from waveguides inscribed in KGd(WO4)2 by high repetition rate femtosecond laser,” Appl. Phys. Lett.92(8), 081105 (2008).
[CrossRef]

Mitsuyu, T.

J. Qiu, K. Miura, T. Suzuki, T. Mitsuyu, and K. Hirao, “Permanent photoreduction of Sm3+ to Sm2+ inside a sodium aluminoborate glass by an infrared femtosecond pulsed laser,” Appl. Phys. Lett.74(1), 10–12 (1999).
[CrossRef]

Miura, K.

M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, and K. Hirao, “Vortex Dynamics in hcp Solid 4He,” J. Appl. Phys.108, 073533 (2010).
[CrossRef]

J. Qiu, K. Miura, T. Suzuki, T. Mitsuyu, and K. Hirao, “Permanent photoreduction of Sm3+ to Sm2+ inside a sodium aluminoborate glass by an infrared femtosecond pulsed laser,” Appl. Phys. Lett.74(1), 10–12 (1999).
[CrossRef]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21(21), 1729–1731 (1996).
[CrossRef] [PubMed]

Nakaya, T.

M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, and K. Hirao, “Vortex Dynamics in hcp Solid 4He,” J. Appl. Phys.108, 073533 (2010).
[CrossRef]

Nejadmalayeri, A. H.

Nolte, S.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B97(2), 251–255 (2009).
[CrossRef]

J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate,” Appl. Phys. Lett.89(8), 081108 (2006).
[CrossRef]

T. Gorelik, M. Will, S. Nolte, A. Tuennermann, and U. Glatzel, “Transmission electron microscopy studies of femtosecond laser induced modifications in quartz,” Appl. Phys., A Mater. Sci. Process.76(3), 309–311 (2003).
[CrossRef]

Ohnishi, M.

M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, and K. Hirao, “Vortex Dynamics in hcp Solid 4He,” J. Appl. Phys.108, 073533 (2010).
[CrossRef]

Osellame, R.

V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R. P. Salathé, M. Pollnau, R. Osellame, G. Cerullo, and P. Laporta, “Femtosecond-irradiation-induced refractive-index changes and channel waveguiding in bulk Ti3+:Sapphire,” Appl. Phys. Lett.85(7), 1122 (2004).
[CrossRef]

Pacaud, O.

Papon, G.

Pelenc, D.

Petermann, K.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B97(2), 251–255 (2009).
[CrossRef]

Petit, Y.

Podlipensky, A.

A. Podlipensky, A. Abdolvand, G. Seifert, and H. Graener, “Femtosecond laser assisted production of dichroitic 3D structures in composite glass containing Ag nanoparticles,” Appl. Phys., A Mater. Sci. Process.80(8), 1647–1652 (2005).
[CrossRef]

Pollnau, M.

V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R. P. Salathé, M. Pollnau, R. Osellame, G. Cerullo, and P. Laporta, “Femtosecond-irradiation-induced refractive-index changes and channel waveguiding in bulk Ti3+:Sapphire,” Appl. Phys. Lett.85(7), 1122 (2004).
[CrossRef]

Psaila, N. D.

Qiao, X.

Qiu, J.

Y. Liu, B. Zhu, Y. Dai, X. Qiao, S. Ye, Y. Teng, Q. Guo, H. Ma, X. Fan, and J. Qiu, “Femtosecond laser writing of Er3+-doped CaF2 crystalline patterns in glass,” Opt. Lett.34(21), 3433–3435 (2009).
[CrossRef] [PubMed]

Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu, and B. Yu, “Space-selective precipitation of functional crystals in glass by using a high repetition rate femtosecond laser,” Chem. Phys. Lett.443(4-6), 253–257 (2007).
[CrossRef]

L. Yang, C. Wang, Y. Dong, N. Da, X. Hu, D. Chen, and J. Qiu, “Three-photon-excited upconversion luminescence of YVO4 single crystal by infrared femtosecond laser irradiation,” Opt. Express13(25), 10157–10162 (2005).
[CrossRef] [PubMed]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-Organized Nanogratings in Glass Irradiated by Ultrashort Light Pulses,” Phys. Rev. Lett.91(24), 247405 (2003).
[CrossRef] [PubMed]

J. Qiu, K. Miura, T. Suzuki, T. Mitsuyu, and K. Hirao, “Permanent photoreduction of Sm3+ to Sm2+ inside a sodium aluminoborate glass by an infrared femtosecond pulsed laser,” Appl. Phys. Lett.74(1), 10–12 (1999).
[CrossRef]

Rademaker, K.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B97(2), 251–255 (2009).
[CrossRef]

Rayner, D. M.

Reid, D. T.

S. J. Beecher, R. R. Thomson, D. T. Reid, N. D. Psaila, M. Ebrahim-Zadeh, and A. K. Kar, “Strain field manipulation in ultrafast laser inscribed BiB3O6 optical waveguides for nonlinear applications,” Opt. Lett.36(23), 4548–4550 (2011).
[CrossRef] [PubMed]

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett.88(11), 111109 (2006).
[CrossRef]

Revellez, A. P.

Richardson, M.

Roch, J.-F.

S. Brasselet, V. Le Floc’h, F. Treussart, J.-F. Roch, J. Zyss, E. Botzung-Appert, and A. Ibanez, “In situ diagnostics of the crystalline nature of single organic nanocrystals by nonlinear microscopy,” Phys. Rev. Lett.92(20), 207401 (2004).
[CrossRef] [PubMed]

Ródenas, A.

Rodriguez, V.

M. Chavoutier, V. Jubera, P. Veber, M. Velazquez, O. Viraphong, J. Hejtmanek, R. Decourt, J. Debray, B. Menaert, P. Segonds, F. Adamietz, V. Rodriguez, I. Manek-Hönninger, A. Fargues, D. Descamps, and A. Garcia, “Thermal, optical and spectroscopic characterizations of borate laser crystals,” J. Solid State Chem.184(2), 441–446 (2011).
[CrossRef]

Royon, A.

E. Brasselet, A. Royon, and L. Canioni, “Dense arrays of microscopic optical vortex generators from femtosecond direct laser writing of radial birefringence in glass,” Appl. Phys. Lett.100(18), 181901 (2012).
[CrossRef]

J. Choi, M. Bellec, A. Royon, K. Bourhis, G. Papon, T. Cardinal, L. Canioni, and M. Richardson, “Three-dimensional direct femtosecond laser writing of second-order nonlinearities in glass,” Opt. Lett.37(6), 1029–1031 (2012).
[CrossRef] [PubMed]

A. Royon, Y. Petit, G. Papon, M. Richardson, and L. Canioni, “Femtosecond laser induced photochemistry in materials tailored with photosensitive agents,” Opt. Mater. Express1(5), 866–882 (2011).
[CrossRef]

A. Royon, K. Bourhis, M. Bellec, G. Papon, B. Bousquet, Y. Deshayes, T. Cardinal, and L. Canioni, “Silver clusters embedded in glass as a perennial high capacity optical recording medium,” Adv. Mater. (Deerfield Beach Fla.)22(46), 5282–5286 (2010).
[CrossRef] [PubMed]

Sakakura, M.

M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, and K. Hirao, “Vortex Dynamics in hcp Solid 4He,” J. Appl. Phys.108, 073533 (2010).
[CrossRef]

Salathé, R. P.

V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R. P. Salathé, M. Pollnau, R. Osellame, G. Cerullo, and P. Laporta, “Femtosecond-irradiation-induced refractive-index changes and channel waveguiding in bulk Ti3+:Sapphire,” Appl. Phys. Lett.85(7), 1122 (2004).
[CrossRef]

Segonds, P.

M. Chavoutier, V. Jubera, P. Veber, M. Velazquez, O. Viraphong, J. Hejtmanek, R. Decourt, J. Debray, B. Menaert, P. Segonds, F. Adamietz, V. Rodriguez, I. Manek-Hönninger, A. Fargues, D. Descamps, and A. Garcia, “Thermal, optical and spectroscopic characterizations of borate laser crystals,” J. Solid State Chem.184(2), 441–446 (2011).
[CrossRef]

S. Joly, P. Segonds, B. Boulanger, Y. Petit, A. P. Revellez, C. Félix, and B. Ménaert, “Rotation of the absorption frame as a function of the electronic transition in the Nd3+:YCa₄O(BO₃)₃ monoclinic crystal,” Opt. Express18(18), 19169–19174 (2010).
[CrossRef] [PubMed]

S. Joly, Y. Petit, B. Boulanger, P. Segonds, C. Félix, B. Ménaert, and G. Aka, “Singular topology of optical absorption in biaxial crystals,” Opt. Express17(22), 19868–19873 (2009).
[CrossRef] [PubMed]

Y. Petit, B. Boulanger, P. Segonds, C. Félix, B. Ménaert, J. Zaccaro, and G. Aka, “Absorption and fluorescence anisotropies of monoclinic crystals: the case of Nd:YCOB,” Opt. Express16(11), 7997–8002 (2008).
[CrossRef] [PubMed]

Y. Petit, P. Segonds, B. Boulanger, and T. Taira, “Angular Quasi-Phase Matching,” Phys. Rev. A76(6), 063817 (2007).
[CrossRef]

P. Segonds, B. Boulanger, L. Ferrier, B. Ménaert, and J. Zaccaro, “Refractive indices determination of a small-size nonlinear biaxial crystal by use of double-refraction measurements with a laser beam,” J. Opt. Soc. Amer. B.23(5), 852–856 (2006).
[CrossRef]

P. Segonds, B. Boulanger, J. P. Fève, B. Ménaert, J. Zaccaro, G. Aka, and D. Pelenc, “Linear and nonlinear optical properties of the monoclinic Ca4YO(BO3)3 crystal,” J. Opt. Soc. Am. B21(4), 765–769 (2004).
[CrossRef]

Seifert, G.

A. Podlipensky, A. Abdolvand, G. Seifert, and H. Graener, “Femtosecond laser assisted production of dichroitic 3D structures in composite glass containing Ag nanoparticles,” Appl. Phys., A Mater. Sci. Process.80(8), 1647–1652 (2005).
[CrossRef]

Shimizu, M.

M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, and K. Hirao, “Vortex Dynamics in hcp Solid 4He,” J. Appl. Phys.108, 073533 (2010).
[CrossRef]

Shimotsuma, Y.

M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, and K. Hirao, “Vortex Dynamics in hcp Solid 4He,” J. Appl. Phys.108, 073533 (2010).
[CrossRef]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-Organized Nanogratings in Glass Irradiated by Ultrashort Light Pulses,” Phys. Rev. Lett.91(24), 247405 (2003).
[CrossRef] [PubMed]

Sibbett, W.

Siebenmorgen, J.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B97(2), 251–255 (2009).
[CrossRef]

Simova, E.

Sugimoto, N.

Suzuki, T.

J. Qiu, K. Miura, T. Suzuki, T. Mitsuyu, and K. Hirao, “Permanent photoreduction of Sm3+ to Sm2+ inside a sodium aluminoborate glass by an infrared femtosecond pulsed laser,” Appl. Phys. Lett.74(1), 10–12 (1999).
[CrossRef]

Svirko, Y. P.

W. Yang, P. G. Kazansky, and Y. P. Svirko, “Non-reciprocal ultrafast laser writing,” Nature2, 99–104 (2008).

Taira, T.

Y. Petit, P. Segonds, B. Boulanger, and T. Taira, “Angular Quasi-Phase Matching,” Phys. Rev. A76(6), 063817 (2007).
[CrossRef]

Takamizu, D.

K. Kawamura, M. Hirano, T. Kurobori, D. Takamizu, T. Kamiya, and H. Hosono, “Femtosecond-laser-encoded distributed-feedback color center laser in lithium fluoride single crystals,” Appl. Phys. Lett.84(3), 311 (2004).
[CrossRef]

Taylor, R. S.

S. M. Eaton, C. A. Merchant, R. Iyer, A. J. Zilkie, A. S. Helmy, J. S. Aitchison, P. R. Herman, D. Kraemer, R. J. D. Miller, C. Hnatovsky, and R. S. Taylor, “Raman gain from waveguides inscribed in KGd(WO4)2 by high repetition rate femtosecond laser,” Appl. Phys. Lett.92(8), 081105 (2008).
[CrossRef]

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Polarization-selective etching in femtosecond laser-assisted microfluidic channel fabrication in fused silica,” Opt. Lett.30(14), 1867–1869 (2005).
[CrossRef] [PubMed]

Teng, Y.

Thomson, R. R.

Treussart, F.

S. Brasselet, V. Le Floc’h, F. Treussart, J.-F. Roch, J. Zyss, E. Botzung-Appert, and A. Ibanez, “In situ diagnostics of the crystalline nature of single organic nanocrystals by nonlinear microscopy,” Phys. Rev. Lett.92(20), 207401 (2004).
[CrossRef] [PubMed]

Tuennermann, A.

T. Gorelik, M. Will, S. Nolte, A. Tuennermann, and U. Glatzel, “Transmission electron microscopy studies of femtosecond laser induced modifications in quartz,” Appl. Phys., A Mater. Sci. Process.76(3), 309–311 (2003).
[CrossRef]

Tünnermann, A.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B97(2), 251–255 (2009).
[CrossRef]

J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate,” Appl. Phys. Lett.89(8), 081108 (2006).
[CrossRef]

Veber, P.

M. Chavoutier, V. Jubera, P. Veber, M. Velazquez, O. Viraphong, J. Hejtmanek, R. Decourt, J. Debray, B. Menaert, P. Segonds, F. Adamietz, V. Rodriguez, I. Manek-Hönninger, A. Fargues, D. Descamps, and A. Garcia, “Thermal, optical and spectroscopic characterizations of borate laser crystals,” J. Solid State Chem.184(2), 441–446 (2011).
[CrossRef]

Veber, Ph.

R. Cattoor, I. Manek-Hönninger, J.-Ch. Delagnes, Y. Petit, B. Bousquet, V. Jubera, A. Fargues, Ph. Veber, M. Velazquez, A. Garcia, and L. Canioni, “Potential of the Eu:LYB crystal as a laser material for DPSS lasers emitting at 613 nm,” Proc. SPIE8235, 82351A, 82351A–7 (2012).
[CrossRef]

Velazquez, M.

R. Cattoor, I. Manek-Hönninger, J.-Ch. Delagnes, Y. Petit, B. Bousquet, V. Jubera, A. Fargues, Ph. Veber, M. Velazquez, A. Garcia, and L. Canioni, “Potential of the Eu:LYB crystal as a laser material for DPSS lasers emitting at 613 nm,” Proc. SPIE8235, 82351A, 82351A–7 (2012).
[CrossRef]

M. Chavoutier, V. Jubera, P. Veber, M. Velazquez, O. Viraphong, J. Hejtmanek, R. Decourt, J. Debray, B. Menaert, P. Segonds, F. Adamietz, V. Rodriguez, I. Manek-Hönninger, A. Fargues, D. Descamps, and A. Garcia, “Thermal, optical and spectroscopic characterizations of borate laser crystals,” J. Solid State Chem.184(2), 441–446 (2011).
[CrossRef]

Viraphong, O.

M. Chavoutier, V. Jubera, P. Veber, M. Velazquez, O. Viraphong, J. Hejtmanek, R. Decourt, J. Debray, B. Menaert, P. Segonds, F. Adamietz, V. Rodriguez, I. Manek-Hönninger, A. Fargues, D. Descamps, and A. Garcia, “Thermal, optical and spectroscopic characterizations of borate laser crystals,” J. Solid State Chem.184(2), 441–446 (2011).
[CrossRef]

Wang, C.

Will, M.

T. Gorelik, M. Will, S. Nolte, A. Tuennermann, and U. Glatzel, “Transmission electron microscopy studies of femtosecond laser induced modifications in quartz,” Appl. Phys., A Mater. Sci. Process.76(3), 309–311 (2003).
[CrossRef]

Yang, L.

Yang, W.

W. Yang, P. G. Kazansky, and Y. P. Svirko, “Non-reciprocal ultrafast laser writing,” Nature2, 99–104 (2008).

Ye, S.

Yu, B.

Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu, and B. Yu, “Space-selective precipitation of functional crystals in glass by using a high repetition rate femtosecond laser,” Chem. Phys. Lett.443(4-6), 253–257 (2007).
[CrossRef]

Zaccaro, J.

Zhu, B.

Y. Liu, B. Zhu, Y. Dai, X. Qiao, S. Ye, Y. Teng, Q. Guo, H. Ma, X. Fan, and J. Qiu, “Femtosecond laser writing of Er3+-doped CaF2 crystalline patterns in glass,” Opt. Lett.34(21), 3433–3435 (2009).
[CrossRef] [PubMed]

Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu, and B. Yu, “Space-selective precipitation of functional crystals in glass by using a high repetition rate femtosecond laser,” Chem. Phys. Lett.443(4-6), 253–257 (2007).
[CrossRef]

Zilkie, A. J.

S. M. Eaton, C. A. Merchant, R. Iyer, A. J. Zilkie, A. S. Helmy, J. S. Aitchison, P. R. Herman, D. Kraemer, R. J. D. Miller, C. Hnatovsky, and R. S. Taylor, “Raman gain from waveguides inscribed in KGd(WO4)2 by high repetition rate femtosecond laser,” Appl. Phys. Lett.92(8), 081105 (2008).
[CrossRef]

Zyss, J.

S. Brasselet, V. Le Floc’h, F. Treussart, J.-F. Roch, J. Zyss, E. Botzung-Appert, and A. Ibanez, “In situ diagnostics of the crystalline nature of single organic nanocrystals by nonlinear microscopy,” Phys. Rev. Lett.92(20), 207401 (2004).
[CrossRef] [PubMed]

Adv. Mater. (Deerfield Beach Fla.) (1)

A. Royon, K. Bourhis, M. Bellec, G. Papon, B. Bousquet, Y. Deshayes, T. Cardinal, and L. Canioni, “Silver clusters embedded in glass as a perennial high capacity optical recording medium,” Adv. Mater. (Deerfield Beach Fla.)22(46), 5282–5286 (2010).
[CrossRef] [PubMed]

Appl. Phys. B (1)

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B97(2), 251–255 (2009).
[CrossRef]

Appl. Phys. Lett. (7)

K. Kawamura, M. Hirano, T. Kurobori, D. Takamizu, T. Kamiya, and H. Hosono, “Femtosecond-laser-encoded distributed-feedback color center laser in lithium fluoride single crystals,” Appl. Phys. Lett.84(3), 311 (2004).
[CrossRef]

V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R. P. Salathé, M. Pollnau, R. Osellame, G. Cerullo, and P. Laporta, “Femtosecond-irradiation-induced refractive-index changes and channel waveguiding in bulk Ti3+:Sapphire,” Appl. Phys. Lett.85(7), 1122 (2004).
[CrossRef]

E. Brasselet, A. Royon, and L. Canioni, “Dense arrays of microscopic optical vortex generators from femtosecond direct laser writing of radial birefringence in glass,” Appl. Phys. Lett.100(18), 181901 (2012).
[CrossRef]

J. Qiu, K. Miura, T. Suzuki, T. Mitsuyu, and K. Hirao, “Permanent photoreduction of Sm3+ to Sm2+ inside a sodium aluminoborate glass by an infrared femtosecond pulsed laser,” Appl. Phys. Lett.74(1), 10–12 (1999).
[CrossRef]

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett.88(11), 111109 (2006).
[CrossRef]

S. M. Eaton, C. A. Merchant, R. Iyer, A. J. Zilkie, A. S. Helmy, J. S. Aitchison, P. R. Herman, D. Kraemer, R. J. D. Miller, C. Hnatovsky, and R. S. Taylor, “Raman gain from waveguides inscribed in KGd(WO4)2 by high repetition rate femtosecond laser,” Appl. Phys. Lett.92(8), 081105 (2008).
[CrossRef]

J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate,” Appl. Phys. Lett.89(8), 081108 (2006).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (2)

A. Podlipensky, A. Abdolvand, G. Seifert, and H. Graener, “Femtosecond laser assisted production of dichroitic 3D structures in composite glass containing Ag nanoparticles,” Appl. Phys., A Mater. Sci. Process.80(8), 1647–1652 (2005).
[CrossRef]

T. Gorelik, M. Will, S. Nolte, A. Tuennermann, and U. Glatzel, “Transmission electron microscopy studies of femtosecond laser induced modifications in quartz,” Appl. Phys., A Mater. Sci. Process.76(3), 309–311 (2003).
[CrossRef]

Chem. Phys. Lett. (1)

Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu, and B. Yu, “Space-selective precipitation of functional crystals in glass by using a high repetition rate femtosecond laser,” Chem. Phys. Lett.443(4-6), 253–257 (2007).
[CrossRef]

J. Appl. Phys. (2)

H. Hellwig, J. Liebertz, and L. Bohaty, “Linear optical properties of the monoclinic bismuth BiB3O6,” J. Appl. Phys.88(1), 240 (2000).
[CrossRef]

M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, and K. Hirao, “Vortex Dynamics in hcp Solid 4He,” J. Appl. Phys.108, 073533 (2010).
[CrossRef]

J. Lumin. (2)

J. Hölsa and M. Leskelä, “Optical study of Eu3+ luminescence in lithium rare earth borates, Li6RE(BO3)3; RE = Gd, Y,” J. Lumin.48-49, 497–500 (1991).
[CrossRef]

V. Jubera, J.-P. Chaminade, A. Garcia, F. Guillen, and C. Fouassier, “Luminescent properties of Eu3+-activated lithium rare earth borates and oxyborates,” J. Lumin.101(1-2), 1–10 (2003).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Opt. Soc. Amer. B. (1)

P. Segonds, B. Boulanger, L. Ferrier, B. Ménaert, and J. Zaccaro, “Refractive indices determination of a small-size nonlinear biaxial crystal by use of double-refraction measurements with a laser beam,” J. Opt. Soc. Amer. B.23(5), 852–856 (2006).
[CrossRef]

J. Solid State Chem. (1)

M. Chavoutier, V. Jubera, P. Veber, M. Velazquez, O. Viraphong, J. Hejtmanek, R. Decourt, J. Debray, B. Menaert, P. Segonds, F. Adamietz, V. Rodriguez, I. Manek-Hönninger, A. Fargues, D. Descamps, and A. Garcia, “Thermal, optical and spectroscopic characterizations of borate laser crystals,” J. Solid State Chem.184(2), 441–446 (2011).
[CrossRef]

Nat. Photonics (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics2(4), 219–225 (2008).
[CrossRef]

Nature (1)

W. Yang, P. G. Kazansky, and Y. P. Svirko, “Non-reciprocal ultrafast laser writing,” Nature2, 99–104 (2008).

Opt. Express (6)

Opt. Lett. (6)

Opt. Mater. Express (1)

Phys. Rev. A (1)

Y. Petit, P. Segonds, B. Boulanger, and T. Taira, “Angular Quasi-Phase Matching,” Phys. Rev. A76(6), 063817 (2007).
[CrossRef]

Phys. Rev. Lett. (2)

S. Brasselet, V. Le Floc’h, F. Treussart, J.-F. Roch, J. Zyss, E. Botzung-Appert, and A. Ibanez, “In situ diagnostics of the crystalline nature of single organic nanocrystals by nonlinear microscopy,” Phys. Rev. Lett.92(20), 207401 (2004).
[CrossRef] [PubMed]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-Organized Nanogratings in Glass Irradiated by Ultrashort Light Pulses,” Phys. Rev. Lett.91(24), 247405 (2003).
[CrossRef] [PubMed]

Proc. SPIE (1)

R. Cattoor, I. Manek-Hönninger, J.-Ch. Delagnes, Y. Petit, B. Bousquet, V. Jubera, A. Fargues, Ph. Veber, M. Velazquez, A. Garcia, and L. Canioni, “Potential of the Eu:LYB crystal as a laser material for DPSS lasers emitting at 613 nm,” Proc. SPIE8235, 82351A, 82351A–7 (2012).
[CrossRef]

Sov. Phys. Crystallogr. (1)

G. K. Abdullaev and K. S. Mamedov, Sov. Phys. Crystallogr.22(2), 220–222 (1997).

Other (5)

M. Born and E. Wolf, Principles of Optics (Oxford, 1965).

Y. Petit, S. Joly, P. Segonds, and B. Boulanger, “Recent advances in monoclinic crystal optics,” Laser Phys. Rev.: Invited Review Article (to appear in press).

R. W. Boyd, Nonlinear Optics (Academic Press ELSEVIER, San Diego, 2008).

P. Segonds, V. Jubera, J. Debray, and B. Ménaert, private communication.

B. Boulanger and J. Zyss, International Tables for Crystallography Vol. D: A. Authier Ed., International Union of Crystallography, (Kluwer, Academic Publisher, 2006), chapt. 1.7: nonlinear optical properties.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Relative orientation of the crystallographic frame (a, b, c) and the partially attached dielectric frame (X, Y, Z) in the LYB:Eu monoclinic crystal. (b) LYB:Eu crystal sample orientation under microscope experiments with light propagation direction along the c-axis, associated to two polarization eigenmodes respectively parallel or perpendicular to the b-axis, thus respectively parallel to the Y-axis or to the u-direction; blue arrows indicate the polarization directions of the experimental setup described in Fig. 2, ensuring the relevant correspondence of both the crystal polarization eigenmodes and the experimental detection directions in polarized light.

Fig. 2
Fig. 2

Experimental setup of the homemade femtosecond nonlinear microscope, providing independent control of the irradiating beam polarization with the half wave plate (HWP) orientation and of the selected polarization of the fluorescence emission with the Glan polarizer.

Fig. 3
Fig. 3

(a) Illustration of the two nonlinear voxels resulting from the pump focusing of each polarization mode, where the extraordinary mode undergoes spatial walk-off leading spatial separation of the Poynting vectors; (b) Schematic field of hypothetical stress-induced refractive index increase from single-beam dual-voxel irradiation above permanent modification irradiance threshold, potentially leading to the simultaneous writing of two structured areas at the root of type II waveguiding in their inner region, as developed in Ref [19]; (c) & (d) Illustrations of the fluorescence propagation emitted from each of the nonlinear voxels below permanent modification thresholds, for both ordinary and extraordinary polarization modes and epi-collection propagation.

Fig. 4
Fig. 4

Pictures of the two-photon excited epi-fluorescence in polarized light for both the pump laser beam and the collected beam. Polarizations o and e stand for the ordinary and extraordinary modes, respectively, for both the pump and the epi-fluorescence beams. (a), (b), (c) and (d): Polarization schemes with oo, oe, ee and eo polarization modes for the pump and the epi-fluorescence beams, respectively. The cross is at the same place in each picture, and is present for visual help.

Fig. 5
Fig. 5

(a) Distinct fluorescence spots for each pump polarization mode, for different optical focusing depths under the crystal surface. (b) Walk-off spatial separation corresponding to the distance between the centres of the ordinary and extraordinary polarized fluorescence spots for a given two-photon excited voxel, versus the focusing depth for each of the four propagation schemes.

Fig. 6
Fig. 6

Fluorescence emission irradiances in polarized light, depending on the incident pump irradiance along the c-axis propagation direction, for the four ordinary/extraordinary polarization schemes of the pump and fluorescence beams. Fitted model A + B.I2 (full lines) for each polarization scheme. The optical focusing depth was 320 μm below the crystal surface.

Metrics