Abstract

A new detection method for Faraday rotation spectra of paramagnetic molecular species is presented. Near shot-noise limited performance in the mid-infrared is demonstrated using a heterodyne enhanced Faraday rotation spectroscopy (H-FRS) system without any cryogenic cooling. Theoretical analysis is performed to estimate the ultimate sensitivity to polarization rotation for both heterodyne and conventional FRS. Sensing of nitric oxide (NO) has been performed with an H-FRS system based on thermoelectrically cooled 5.24 μm quantum cascade laser (QCL) and a mercury-cadmium-telluride photodetector. The QCL relative intensity noise that dominates at low frequencies is largely avoided by performing the heterodyne detection in radio frequency range. H-FRS exhibits a total noise level of only 3.7 times the fundamental shot noise. The achieved sensitivity to polarization rotation of 1.8 × 10−8 rad/Hz1/2 is only 5.6 times higher than the ultimate theoretical sensitivity limit estimated for this system. The path- and bandwidth-normalized NO detection limit of 3.1 ppbv-m/Hz1/2 was achieved using the R(17/2) transition of NO at 1906.73 cm−1.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Litfin, C. R. Pollock, R. F. Curl, and F. K. Tittel, “Sensitivity Enhancement of Laser-Absorption Spectroscopy by Magnetic Rotation Effect,” J. Chem. Phys.72(12), 6602–6605 (1980).
    [CrossRef]
  2. H. Adams, D. Reinert, P. Kalkert, and W. Urban, “A differential detection scheme for Faraday rotation spectroscopy with a color center laser,” Appl. Phys. B34(4), 179–185 (1984).
    [CrossRef]
  3. M. Koch, X. Luo, P. Murtz, W. Urban, and K. Morike, “Detection of small traces of 15N2 and 15N2 by Faraday LMR spectroscopy of the corresponding isotopomers of nitric oxide,” Appl. Phys. B64(6), 683–688 (1997).
    [CrossRef]
  4. H. Ganser, W. Urban, and A. M. Brown, “The sensitive detection of NO by Faraday modulation spectroscopy with a quantum cascade laser,” Mol. Phys.101(4-5), 545–550 (2003).
    [CrossRef]
  5. T. Fritsch, M. Horstjann, D. Halmer, P. Sabana, P. Hering, and M. Mürtz, “Magnetic Faraday modulation spectroscopy of the 1-0 band of 14NO and 15NO,” Appl. Phys. B93(2-3), 713–723 (2008).
    [CrossRef]
  6. R. Lewicki, J. H. Doty, R. F. Curl, F. K. Tittel, and G. Wysocki, “Ultrasensitive detection of nitric oxide at 5.33 microm by using external cavity quantum cascade laser-based Faraday rotation spectroscopy,” Proc. Natl. Acad. Sci. U.S.A.106(31), 12587–12592 (2009).
    [CrossRef] [PubMed]
  7. P. Kluczynski, S. Lundqvist, J. Westberg, and O. Axner, “Faraday rotation spectrometer with sub-second response time for detection of nitric oxide using a cw DFB quantum cascade laser at 5.33 μm,” Appl. Phys. B103(2), 451–459 (2011).
    [CrossRef]
  8. J. M. Smith, J. C. Bloch, R. W. Field, and J. L. Steinfeld, “Trace Detection of NO2 by Frequency-Modulation-Enhanced Magnetic Rotation Spectroscopy,” J. Opt. Soc. Am. B12(6), 964–969 (1995).
    [CrossRef]
  9. W. Dillenschneider and R. F. Curl., “Color center laser spectroscopy of ν1 + ν2 + ν3 of NO2 using magnetic rotation,” J. Mol. Spectrosc.99(1), 87–97 (1983).
    [CrossRef]
  10. R. J. Brecha, L. M. Pedrotti, and D. Krause, “Magnetic rotation spectroscopy of molecular oxygen with a diode laser,” J. Opt. Soc. Am. B14(8), 1921–1930 (1997).
    [CrossRef]
  11. S. G. So, E. Jeng, and G. Wysocki, “VCSEL based Faraday rotation spectroscopy with a modulated and static magnetic field for trace molecular oxygen detection,” Appl. Phys. B102(2), 279–291 (2011).
    [CrossRef]
  12. J. Pfeiffer, D. Kirsten, P. Kalkert, and W. Urban, “Sensitive Magnetic Rotation Spectroscopy of the Oh Free-Radical Fundamental-Band with a Color Center Laser,” Appl. Phys. B26(3), 173–177 (1981).
    [CrossRef]
  13. W. Zhao, G. Wysocki, W. Chen, E. Fertein, D. Le Coq, D. Petitprez, and W. Zhang, “Sensitive and selective detection of OH radicals using Faraday rotation spectroscopy at 2.8 µm,” Opt. Express19(3), 2493–2501 (2011).
    [CrossRef] [PubMed]
  14. M. Nikodem and G. Wysocki, “Molecular dispersion spectroscopy--new capabilities in laser chemical sensing,” Ann. N. Y. Acad. Sci.1260(1), 101–111 (2012).
    [CrossRef] [PubMed]
  15. A. Hinz, D. Zeitz, W. Bohle, and W. Urban, “A Faraday Laser Magnetic-Resonance Spectrometer for Spectroscopy of Molecular Radical Ions,” Appl. Phys. B36(1), 1–4 (1985).
    [CrossRef]
  16. H. Adams, D. Reinert, P. Kalkert, and W. Urban, “A Differential Detection Scheme for Faraday-Rotation Spectroscopy with a Color Center Laser,” Appl. Phys. B.34(4), 179–185 (1984).
    [CrossRef]
  17. R. Engeln, G. Berden, R. Peeters, and G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum.69(11), 3763–3769 (1998).
    [CrossRef]
  18. P. C. D. Hobbs, “Shot noise limited optical measurement at baseband with noisy lasers,” in Laser Noise, R. Roy, ed. (Proc. SPIE, 1991), pp. 216–221.
  19. K. L. Haller and P. C. D. Hobbs, “Double-beam laser absorption spectroscopy: shot noise-limited performance at baseband with a novel electronic noise canceler,” in Optical Methods for Ultrasensitive Detection and Analysis: Techniques and Applications,(1991), pp. 298–309.
  20. G. Durry, I. Pouchet, N. Amarouche, T. Danguy, and G. Megie, “Shot-noise-limited dual-beam detector for atmospheric trace-gas monitoring with near-infrared diode lasers,” Appl. Opt.39(30), 5609–5619 (2000).
    [CrossRef] [PubMed]
  21. X. Wang, M. Jefferson, P. C. D. Hobbs, W. P. Risk, B. E. Feller, R. D. Miller, and A. Knoesen, “Shot-noise limited detection for surface plasmon sensing,” Opt. Express19(1), 107–117 (2011).
    [CrossRef] [PubMed]
  22. P. Vogel and V. Ebert, “Near shot noise detection of oxygen in the A-band with vertical-cavity surface-emitting lasers,” Appl. Phys. B72(1), 127–135 (2001).
    [CrossRef]
  23. N. C. Wong and J. L. Hall, “Servo control of amplitude-modulation in frequency-modulation spectroscopy - demonstration of shot-noise-limited detection,” J. Opt. Soc. Am. B2(9), 1527–1533 (1985).
    [CrossRef]
  24. B. Willke, N. Uehara, E. K. Gustafson, R. L. Byer, P. J. King, S. U. Seel, and R. L. Savage., “Spatial and temporal filtering of a 10-W Nd:YAG laser with a Fabry--Perot ring-cavity premode cleaner,” Opt. Lett.23(21), 1704–1706 (1998).
    [CrossRef] [PubMed]
  25. P. Kwee, B. Willke, and K. Danzmann, “Shot-noise-limited laser power stabilization with a high-power photodiode array,” Opt. Lett.34(19), 2912–2914 (2009).
    [CrossRef] [PubMed]
  26. M. Jurna, J. P. Korterik, C. Otto, and H. L. Offerhaus, “Shot noise limited heterodyne detection of CARS signals,” Opt. Express15(23), 15207–15213 (2007).
    [CrossRef] [PubMed]
  27. M. C. Teich, “Infrared heterodyne detection,” Proc. IEEE56(1), 37–46 (1968).
    [CrossRef]
  28. S. F. Jacobs, “Optical heterodyne (coherent) detection,” Am. J. Phys.56(3), 235–245 (1988).
    [CrossRef]
  29. E. N. Gilbert and H. O. Pollak, “Amplitude Distribution of Shot Noise,” AT&T Tech J 39, 333–350 (1960).
  30. M. Xiao, L. A. Wu, and H. J. Kimble, “Precision measurement beyond the shot-noise limit,” Phys. Rev. Lett.59(3), 278–281 (1987).
    [CrossRef] [PubMed]
  31. T. Gensty, W. Elsäßer, and C. Mann, “Intensity noise properties of quantum cascade lasers,” Opt. Express13(6), 2032–2039 (2005).
    [CrossRef] [PubMed]
  32. F. Rana and R. J. Ram, “Current noise and photon noise in quantum cascade lasers,” Phys. Rev. B65(12), 125313 (2002).
    [CrossRef]
  33. Y. Wang, M. Nikodem, J. Hoyne, and G. Wysocki, “Heterodyne-enhanced Faraday rotation spectrometer,” Proc. SPIE 8268, 2F1–8 (2012).
  34. A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO - the Laser-Interferometer-Gravitational-Wave-Observatory,” Science256(5055), 325–333 (1992).
    [CrossRef] [PubMed]
  35. Y. Wang, M. Nikodem, B. Brumfield, and G. Wysocki, “Compact multi-pass cell based Faraday rotation spectrometer for nitric oxide detection,” in Conference on Lasers and Electro-Optics (CLEO)(2012), p. CW3B.
  36. E. J. Galvez and P. M. Koch, “Use of four mirrors to rotate linear polarization but preserve input-output collinearity. II,” J. Opt. Soc. Am. A14(12), 3410–3414 (1997).
    [CrossRef] [PubMed]
  37. C. D. Boone, F. W. Dalby, and I. Ozier, “Magnetic rotation molecular spectroscopy using an oscillating field,” J. Chem. Phys.113(19), 8594–8607 (2000).
    [CrossRef]

2012 (1)

M. Nikodem and G. Wysocki, “Molecular dispersion spectroscopy--new capabilities in laser chemical sensing,” Ann. N. Y. Acad. Sci.1260(1), 101–111 (2012).
[CrossRef] [PubMed]

2011 (4)

S. G. So, E. Jeng, and G. Wysocki, “VCSEL based Faraday rotation spectroscopy with a modulated and static magnetic field for trace molecular oxygen detection,” Appl. Phys. B102(2), 279–291 (2011).
[CrossRef]

P. Kluczynski, S. Lundqvist, J. Westberg, and O. Axner, “Faraday rotation spectrometer with sub-second response time for detection of nitric oxide using a cw DFB quantum cascade laser at 5.33 μm,” Appl. Phys. B103(2), 451–459 (2011).
[CrossRef]

X. Wang, M. Jefferson, P. C. D. Hobbs, W. P. Risk, B. E. Feller, R. D. Miller, and A. Knoesen, “Shot-noise limited detection for surface plasmon sensing,” Opt. Express19(1), 107–117 (2011).
[CrossRef] [PubMed]

W. Zhao, G. Wysocki, W. Chen, E. Fertein, D. Le Coq, D. Petitprez, and W. Zhang, “Sensitive and selective detection of OH radicals using Faraday rotation spectroscopy at 2.8 µm,” Opt. Express19(3), 2493–2501 (2011).
[CrossRef] [PubMed]

2009 (2)

P. Kwee, B. Willke, and K. Danzmann, “Shot-noise-limited laser power stabilization with a high-power photodiode array,” Opt. Lett.34(19), 2912–2914 (2009).
[CrossRef] [PubMed]

R. Lewicki, J. H. Doty, R. F. Curl, F. K. Tittel, and G. Wysocki, “Ultrasensitive detection of nitric oxide at 5.33 microm by using external cavity quantum cascade laser-based Faraday rotation spectroscopy,” Proc. Natl. Acad. Sci. U.S.A.106(31), 12587–12592 (2009).
[CrossRef] [PubMed]

2008 (1)

T. Fritsch, M. Horstjann, D. Halmer, P. Sabana, P. Hering, and M. Mürtz, “Magnetic Faraday modulation spectroscopy of the 1-0 band of 14NO and 15NO,” Appl. Phys. B93(2-3), 713–723 (2008).
[CrossRef]

2007 (1)

2005 (1)

2003 (1)

H. Ganser, W. Urban, and A. M. Brown, “The sensitive detection of NO by Faraday modulation spectroscopy with a quantum cascade laser,” Mol. Phys.101(4-5), 545–550 (2003).
[CrossRef]

2002 (1)

F. Rana and R. J. Ram, “Current noise and photon noise in quantum cascade lasers,” Phys. Rev. B65(12), 125313 (2002).
[CrossRef]

2001 (1)

P. Vogel and V. Ebert, “Near shot noise detection of oxygen in the A-band with vertical-cavity surface-emitting lasers,” Appl. Phys. B72(1), 127–135 (2001).
[CrossRef]

2000 (2)

1998 (2)

B. Willke, N. Uehara, E. K. Gustafson, R. L. Byer, P. J. King, S. U. Seel, and R. L. Savage., “Spatial and temporal filtering of a 10-W Nd:YAG laser with a Fabry--Perot ring-cavity premode cleaner,” Opt. Lett.23(21), 1704–1706 (1998).
[CrossRef] [PubMed]

R. Engeln, G. Berden, R. Peeters, and G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum.69(11), 3763–3769 (1998).
[CrossRef]

1997 (3)

1995 (1)

1992 (1)

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO - the Laser-Interferometer-Gravitational-Wave-Observatory,” Science256(5055), 325–333 (1992).
[CrossRef] [PubMed]

1988 (1)

S. F. Jacobs, “Optical heterodyne (coherent) detection,” Am. J. Phys.56(3), 235–245 (1988).
[CrossRef]

1987 (1)

M. Xiao, L. A. Wu, and H. J. Kimble, “Precision measurement beyond the shot-noise limit,” Phys. Rev. Lett.59(3), 278–281 (1987).
[CrossRef] [PubMed]

1985 (2)

N. C. Wong and J. L. Hall, “Servo control of amplitude-modulation in frequency-modulation spectroscopy - demonstration of shot-noise-limited detection,” J. Opt. Soc. Am. B2(9), 1527–1533 (1985).
[CrossRef]

A. Hinz, D. Zeitz, W. Bohle, and W. Urban, “A Faraday Laser Magnetic-Resonance Spectrometer for Spectroscopy of Molecular Radical Ions,” Appl. Phys. B36(1), 1–4 (1985).
[CrossRef]

1984 (2)

H. Adams, D. Reinert, P. Kalkert, and W. Urban, “A Differential Detection Scheme for Faraday-Rotation Spectroscopy with a Color Center Laser,” Appl. Phys. B.34(4), 179–185 (1984).
[CrossRef]

H. Adams, D. Reinert, P. Kalkert, and W. Urban, “A differential detection scheme for Faraday rotation spectroscopy with a color center laser,” Appl. Phys. B34(4), 179–185 (1984).
[CrossRef]

1983 (1)

W. Dillenschneider and R. F. Curl., “Color center laser spectroscopy of ν1 + ν2 + ν3 of NO2 using magnetic rotation,” J. Mol. Spectrosc.99(1), 87–97 (1983).
[CrossRef]

1981 (1)

J. Pfeiffer, D. Kirsten, P. Kalkert, and W. Urban, “Sensitive Magnetic Rotation Spectroscopy of the Oh Free-Radical Fundamental-Band with a Color Center Laser,” Appl. Phys. B26(3), 173–177 (1981).
[CrossRef]

1980 (1)

G. Litfin, C. R. Pollock, R. F. Curl, and F. K. Tittel, “Sensitivity Enhancement of Laser-Absorption Spectroscopy by Magnetic Rotation Effect,” J. Chem. Phys.72(12), 6602–6605 (1980).
[CrossRef]

1968 (1)

M. C. Teich, “Infrared heterodyne detection,” Proc. IEEE56(1), 37–46 (1968).
[CrossRef]

1960 (1)

E. N. Gilbert and H. O. Pollak, “Amplitude Distribution of Shot Noise,” AT&T Tech J 39, 333–350 (1960).

Abramovici, A.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO - the Laser-Interferometer-Gravitational-Wave-Observatory,” Science256(5055), 325–333 (1992).
[CrossRef] [PubMed]

Adams, H.

H. Adams, D. Reinert, P. Kalkert, and W. Urban, “A differential detection scheme for Faraday rotation spectroscopy with a color center laser,” Appl. Phys. B34(4), 179–185 (1984).
[CrossRef]

H. Adams, D. Reinert, P. Kalkert, and W. Urban, “A Differential Detection Scheme for Faraday-Rotation Spectroscopy with a Color Center Laser,” Appl. Phys. B.34(4), 179–185 (1984).
[CrossRef]

Althouse, W. E.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO - the Laser-Interferometer-Gravitational-Wave-Observatory,” Science256(5055), 325–333 (1992).
[CrossRef] [PubMed]

Amarouche, N.

Axner, O.

P. Kluczynski, S. Lundqvist, J. Westberg, and O. Axner, “Faraday rotation spectrometer with sub-second response time for detection of nitric oxide using a cw DFB quantum cascade laser at 5.33 μm,” Appl. Phys. B103(2), 451–459 (2011).
[CrossRef]

Berden, G.

R. Engeln, G. Berden, R. Peeters, and G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum.69(11), 3763–3769 (1998).
[CrossRef]

Bloch, J. C.

Bohle, W.

A. Hinz, D. Zeitz, W. Bohle, and W. Urban, “A Faraday Laser Magnetic-Resonance Spectrometer for Spectroscopy of Molecular Radical Ions,” Appl. Phys. B36(1), 1–4 (1985).
[CrossRef]

Boone, C. D.

C. D. Boone, F. W. Dalby, and I. Ozier, “Magnetic rotation molecular spectroscopy using an oscillating field,” J. Chem. Phys.113(19), 8594–8607 (2000).
[CrossRef]

Brecha, R. J.

Brown, A. M.

H. Ganser, W. Urban, and A. M. Brown, “The sensitive detection of NO by Faraday modulation spectroscopy with a quantum cascade laser,” Mol. Phys.101(4-5), 545–550 (2003).
[CrossRef]

Byer, R. L.

Chen, W.

Curl, R. F.

R. Lewicki, J. H. Doty, R. F. Curl, F. K. Tittel, and G. Wysocki, “Ultrasensitive detection of nitric oxide at 5.33 microm by using external cavity quantum cascade laser-based Faraday rotation spectroscopy,” Proc. Natl. Acad. Sci. U.S.A.106(31), 12587–12592 (2009).
[CrossRef] [PubMed]

W. Dillenschneider and R. F. Curl., “Color center laser spectroscopy of ν1 + ν2 + ν3 of NO2 using magnetic rotation,” J. Mol. Spectrosc.99(1), 87–97 (1983).
[CrossRef]

G. Litfin, C. R. Pollock, R. F. Curl, and F. K. Tittel, “Sensitivity Enhancement of Laser-Absorption Spectroscopy by Magnetic Rotation Effect,” J. Chem. Phys.72(12), 6602–6605 (1980).
[CrossRef]

Dalby, F. W.

C. D. Boone, F. W. Dalby, and I. Ozier, “Magnetic rotation molecular spectroscopy using an oscillating field,” J. Chem. Phys.113(19), 8594–8607 (2000).
[CrossRef]

Danguy, T.

Danzmann, K.

Dillenschneider, W.

W. Dillenschneider and R. F. Curl., “Color center laser spectroscopy of ν1 + ν2 + ν3 of NO2 using magnetic rotation,” J. Mol. Spectrosc.99(1), 87–97 (1983).
[CrossRef]

Doty, J. H.

R. Lewicki, J. H. Doty, R. F. Curl, F. K. Tittel, and G. Wysocki, “Ultrasensitive detection of nitric oxide at 5.33 microm by using external cavity quantum cascade laser-based Faraday rotation spectroscopy,” Proc. Natl. Acad. Sci. U.S.A.106(31), 12587–12592 (2009).
[CrossRef] [PubMed]

Drever, R. W. P.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO - the Laser-Interferometer-Gravitational-Wave-Observatory,” Science256(5055), 325–333 (1992).
[CrossRef] [PubMed]

Durry, G.

Ebert, V.

P. Vogel and V. Ebert, “Near shot noise detection of oxygen in the A-band with vertical-cavity surface-emitting lasers,” Appl. Phys. B72(1), 127–135 (2001).
[CrossRef]

Elsäßer, W.

Engeln, R.

R. Engeln, G. Berden, R. Peeters, and G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum.69(11), 3763–3769 (1998).
[CrossRef]

Feller, B. E.

Fertein, E.

Field, R. W.

Fritsch, T.

T. Fritsch, M. Horstjann, D. Halmer, P. Sabana, P. Hering, and M. Mürtz, “Magnetic Faraday modulation spectroscopy of the 1-0 band of 14NO and 15NO,” Appl. Phys. B93(2-3), 713–723 (2008).
[CrossRef]

Galvez, E. J.

Ganser, H.

H. Ganser, W. Urban, and A. M. Brown, “The sensitive detection of NO by Faraday modulation spectroscopy with a quantum cascade laser,” Mol. Phys.101(4-5), 545–550 (2003).
[CrossRef]

Gensty, T.

Gilbert, E. N.

E. N. Gilbert and H. O. Pollak, “Amplitude Distribution of Shot Noise,” AT&T Tech J 39, 333–350 (1960).

Gürsel, Y.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO - the Laser-Interferometer-Gravitational-Wave-Observatory,” Science256(5055), 325–333 (1992).
[CrossRef] [PubMed]

Gustafson, E. K.

Hall, J. L.

Halmer, D.

T. Fritsch, M. Horstjann, D. Halmer, P. Sabana, P. Hering, and M. Mürtz, “Magnetic Faraday modulation spectroscopy of the 1-0 band of 14NO and 15NO,” Appl. Phys. B93(2-3), 713–723 (2008).
[CrossRef]

Hering, P.

T. Fritsch, M. Horstjann, D. Halmer, P. Sabana, P. Hering, and M. Mürtz, “Magnetic Faraday modulation spectroscopy of the 1-0 band of 14NO and 15NO,” Appl. Phys. B93(2-3), 713–723 (2008).
[CrossRef]

Hinz, A.

A. Hinz, D. Zeitz, W. Bohle, and W. Urban, “A Faraday Laser Magnetic-Resonance Spectrometer for Spectroscopy of Molecular Radical Ions,” Appl. Phys. B36(1), 1–4 (1985).
[CrossRef]

Hobbs, P. C. D.

Horstjann, M.

T. Fritsch, M. Horstjann, D. Halmer, P. Sabana, P. Hering, and M. Mürtz, “Magnetic Faraday modulation spectroscopy of the 1-0 band of 14NO and 15NO,” Appl. Phys. B93(2-3), 713–723 (2008).
[CrossRef]

Jacobs, S. F.

S. F. Jacobs, “Optical heterodyne (coherent) detection,” Am. J. Phys.56(3), 235–245 (1988).
[CrossRef]

Jefferson, M.

Jeng, E.

S. G. So, E. Jeng, and G. Wysocki, “VCSEL based Faraday rotation spectroscopy with a modulated and static magnetic field for trace molecular oxygen detection,” Appl. Phys. B102(2), 279–291 (2011).
[CrossRef]

Jurna, M.

Kalkert, P.

H. Adams, D. Reinert, P. Kalkert, and W. Urban, “A Differential Detection Scheme for Faraday-Rotation Spectroscopy with a Color Center Laser,” Appl. Phys. B.34(4), 179–185 (1984).
[CrossRef]

H. Adams, D. Reinert, P. Kalkert, and W. Urban, “A differential detection scheme for Faraday rotation spectroscopy with a color center laser,” Appl. Phys. B34(4), 179–185 (1984).
[CrossRef]

J. Pfeiffer, D. Kirsten, P. Kalkert, and W. Urban, “Sensitive Magnetic Rotation Spectroscopy of the Oh Free-Radical Fundamental-Band with a Color Center Laser,” Appl. Phys. B26(3), 173–177 (1981).
[CrossRef]

Kawamura, S.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO - the Laser-Interferometer-Gravitational-Wave-Observatory,” Science256(5055), 325–333 (1992).
[CrossRef] [PubMed]

Kimble, H. J.

M. Xiao, L. A. Wu, and H. J. Kimble, “Precision measurement beyond the shot-noise limit,” Phys. Rev. Lett.59(3), 278–281 (1987).
[CrossRef] [PubMed]

King, P. J.

Kirsten, D.

J. Pfeiffer, D. Kirsten, P. Kalkert, and W. Urban, “Sensitive Magnetic Rotation Spectroscopy of the Oh Free-Radical Fundamental-Band with a Color Center Laser,” Appl. Phys. B26(3), 173–177 (1981).
[CrossRef]

Kluczynski, P.

P. Kluczynski, S. Lundqvist, J. Westberg, and O. Axner, “Faraday rotation spectrometer with sub-second response time for detection of nitric oxide using a cw DFB quantum cascade laser at 5.33 μm,” Appl. Phys. B103(2), 451–459 (2011).
[CrossRef]

Knoesen, A.

Koch, M.

M. Koch, X. Luo, P. Murtz, W. Urban, and K. Morike, “Detection of small traces of 15N2 and 15N2 by Faraday LMR spectroscopy of the corresponding isotopomers of nitric oxide,” Appl. Phys. B64(6), 683–688 (1997).
[CrossRef]

Koch, P. M.

Korterik, J. P.

Krause, D.

Kwee, P.

Le Coq, D.

Lewicki, R.

R. Lewicki, J. H. Doty, R. F. Curl, F. K. Tittel, and G. Wysocki, “Ultrasensitive detection of nitric oxide at 5.33 microm by using external cavity quantum cascade laser-based Faraday rotation spectroscopy,” Proc. Natl. Acad. Sci. U.S.A.106(31), 12587–12592 (2009).
[CrossRef] [PubMed]

Litfin, G.

G. Litfin, C. R. Pollock, R. F. Curl, and F. K. Tittel, “Sensitivity Enhancement of Laser-Absorption Spectroscopy by Magnetic Rotation Effect,” J. Chem. Phys.72(12), 6602–6605 (1980).
[CrossRef]

Lundqvist, S.

P. Kluczynski, S. Lundqvist, J. Westberg, and O. Axner, “Faraday rotation spectrometer with sub-second response time for detection of nitric oxide using a cw DFB quantum cascade laser at 5.33 μm,” Appl. Phys. B103(2), 451–459 (2011).
[CrossRef]

Luo, X.

M. Koch, X. Luo, P. Murtz, W. Urban, and K. Morike, “Detection of small traces of 15N2 and 15N2 by Faraday LMR spectroscopy of the corresponding isotopomers of nitric oxide,” Appl. Phys. B64(6), 683–688 (1997).
[CrossRef]

Mann, C.

Megie, G.

Meijer, G.

R. Engeln, G. Berden, R. Peeters, and G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum.69(11), 3763–3769 (1998).
[CrossRef]

Miller, R. D.

Morike, K.

M. Koch, X. Luo, P. Murtz, W. Urban, and K. Morike, “Detection of small traces of 15N2 and 15N2 by Faraday LMR spectroscopy of the corresponding isotopomers of nitric oxide,” Appl. Phys. B64(6), 683–688 (1997).
[CrossRef]

Murtz, P.

M. Koch, X. Luo, P. Murtz, W. Urban, and K. Morike, “Detection of small traces of 15N2 and 15N2 by Faraday LMR spectroscopy of the corresponding isotopomers of nitric oxide,” Appl. Phys. B64(6), 683–688 (1997).
[CrossRef]

Mürtz, M.

T. Fritsch, M. Horstjann, D. Halmer, P. Sabana, P. Hering, and M. Mürtz, “Magnetic Faraday modulation spectroscopy of the 1-0 band of 14NO and 15NO,” Appl. Phys. B93(2-3), 713–723 (2008).
[CrossRef]

Nikodem, M.

M. Nikodem and G. Wysocki, “Molecular dispersion spectroscopy--new capabilities in laser chemical sensing,” Ann. N. Y. Acad. Sci.1260(1), 101–111 (2012).
[CrossRef] [PubMed]

Offerhaus, H. L.

Otto, C.

Ozier, I.

C. D. Boone, F. W. Dalby, and I. Ozier, “Magnetic rotation molecular spectroscopy using an oscillating field,” J. Chem. Phys.113(19), 8594–8607 (2000).
[CrossRef]

Pedrotti, L. M.

Peeters, R.

R. Engeln, G. Berden, R. Peeters, and G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum.69(11), 3763–3769 (1998).
[CrossRef]

Petitprez, D.

Pfeiffer, J.

J. Pfeiffer, D. Kirsten, P. Kalkert, and W. Urban, “Sensitive Magnetic Rotation Spectroscopy of the Oh Free-Radical Fundamental-Band with a Color Center Laser,” Appl. Phys. B26(3), 173–177 (1981).
[CrossRef]

Pollak, H. O.

E. N. Gilbert and H. O. Pollak, “Amplitude Distribution of Shot Noise,” AT&T Tech J 39, 333–350 (1960).

Pollock, C. R.

G. Litfin, C. R. Pollock, R. F. Curl, and F. K. Tittel, “Sensitivity Enhancement of Laser-Absorption Spectroscopy by Magnetic Rotation Effect,” J. Chem. Phys.72(12), 6602–6605 (1980).
[CrossRef]

Pouchet, I.

Raab, F. J.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO - the Laser-Interferometer-Gravitational-Wave-Observatory,” Science256(5055), 325–333 (1992).
[CrossRef] [PubMed]

Ram, R. J.

F. Rana and R. J. Ram, “Current noise and photon noise in quantum cascade lasers,” Phys. Rev. B65(12), 125313 (2002).
[CrossRef]

Rana, F.

F. Rana and R. J. Ram, “Current noise and photon noise in quantum cascade lasers,” Phys. Rev. B65(12), 125313 (2002).
[CrossRef]

Reinert, D.

H. Adams, D. Reinert, P. Kalkert, and W. Urban, “A differential detection scheme for Faraday rotation spectroscopy with a color center laser,” Appl. Phys. B34(4), 179–185 (1984).
[CrossRef]

H. Adams, D. Reinert, P. Kalkert, and W. Urban, “A Differential Detection Scheme for Faraday-Rotation Spectroscopy with a Color Center Laser,” Appl. Phys. B.34(4), 179–185 (1984).
[CrossRef]

Risk, W. P.

Sabana, P.

T. Fritsch, M. Horstjann, D. Halmer, P. Sabana, P. Hering, and M. Mürtz, “Magnetic Faraday modulation spectroscopy of the 1-0 band of 14NO and 15NO,” Appl. Phys. B93(2-3), 713–723 (2008).
[CrossRef]

Savage, R. L.

Seel, S. U.

Shoemaker, D.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO - the Laser-Interferometer-Gravitational-Wave-Observatory,” Science256(5055), 325–333 (1992).
[CrossRef] [PubMed]

Sievers, L.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO - the Laser-Interferometer-Gravitational-Wave-Observatory,” Science256(5055), 325–333 (1992).
[CrossRef] [PubMed]

Smith, J. M.

So, S. G.

S. G. So, E. Jeng, and G. Wysocki, “VCSEL based Faraday rotation spectroscopy with a modulated and static magnetic field for trace molecular oxygen detection,” Appl. Phys. B102(2), 279–291 (2011).
[CrossRef]

Spero, R. E.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO - the Laser-Interferometer-Gravitational-Wave-Observatory,” Science256(5055), 325–333 (1992).
[CrossRef] [PubMed]

Steinfeld, J. L.

Teich, M. C.

M. C. Teich, “Infrared heterodyne detection,” Proc. IEEE56(1), 37–46 (1968).
[CrossRef]

Thorne, K. S.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO - the Laser-Interferometer-Gravitational-Wave-Observatory,” Science256(5055), 325–333 (1992).
[CrossRef] [PubMed]

Tittel, F. K.

R. Lewicki, J. H. Doty, R. F. Curl, F. K. Tittel, and G. Wysocki, “Ultrasensitive detection of nitric oxide at 5.33 microm by using external cavity quantum cascade laser-based Faraday rotation spectroscopy,” Proc. Natl. Acad. Sci. U.S.A.106(31), 12587–12592 (2009).
[CrossRef] [PubMed]

G. Litfin, C. R. Pollock, R. F. Curl, and F. K. Tittel, “Sensitivity Enhancement of Laser-Absorption Spectroscopy by Magnetic Rotation Effect,” J. Chem. Phys.72(12), 6602–6605 (1980).
[CrossRef]

Uehara, N.

Urban, W.

H. Ganser, W. Urban, and A. M. Brown, “The sensitive detection of NO by Faraday modulation spectroscopy with a quantum cascade laser,” Mol. Phys.101(4-5), 545–550 (2003).
[CrossRef]

M. Koch, X. Luo, P. Murtz, W. Urban, and K. Morike, “Detection of small traces of 15N2 and 15N2 by Faraday LMR spectroscopy of the corresponding isotopomers of nitric oxide,” Appl. Phys. B64(6), 683–688 (1997).
[CrossRef]

A. Hinz, D. Zeitz, W. Bohle, and W. Urban, “A Faraday Laser Magnetic-Resonance Spectrometer for Spectroscopy of Molecular Radical Ions,” Appl. Phys. B36(1), 1–4 (1985).
[CrossRef]

H. Adams, D. Reinert, P. Kalkert, and W. Urban, “A Differential Detection Scheme for Faraday-Rotation Spectroscopy with a Color Center Laser,” Appl. Phys. B.34(4), 179–185 (1984).
[CrossRef]

H. Adams, D. Reinert, P. Kalkert, and W. Urban, “A differential detection scheme for Faraday rotation spectroscopy with a color center laser,” Appl. Phys. B34(4), 179–185 (1984).
[CrossRef]

J. Pfeiffer, D. Kirsten, P. Kalkert, and W. Urban, “Sensitive Magnetic Rotation Spectroscopy of the Oh Free-Radical Fundamental-Band with a Color Center Laser,” Appl. Phys. B26(3), 173–177 (1981).
[CrossRef]

Vogel, P.

P. Vogel and V. Ebert, “Near shot noise detection of oxygen in the A-band with vertical-cavity surface-emitting lasers,” Appl. Phys. B72(1), 127–135 (2001).
[CrossRef]

Vogt, R. E.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO - the Laser-Interferometer-Gravitational-Wave-Observatory,” Science256(5055), 325–333 (1992).
[CrossRef] [PubMed]

Wang, X.

Weiss, R.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO - the Laser-Interferometer-Gravitational-Wave-Observatory,” Science256(5055), 325–333 (1992).
[CrossRef] [PubMed]

Westberg, J.

P. Kluczynski, S. Lundqvist, J. Westberg, and O. Axner, “Faraday rotation spectrometer with sub-second response time for detection of nitric oxide using a cw DFB quantum cascade laser at 5.33 μm,” Appl. Phys. B103(2), 451–459 (2011).
[CrossRef]

Whitcomb, S. E.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO - the Laser-Interferometer-Gravitational-Wave-Observatory,” Science256(5055), 325–333 (1992).
[CrossRef] [PubMed]

Willke, B.

Wong, N. C.

Wu, L. A.

M. Xiao, L. A. Wu, and H. J. Kimble, “Precision measurement beyond the shot-noise limit,” Phys. Rev. Lett.59(3), 278–281 (1987).
[CrossRef] [PubMed]

Wysocki, G.

M. Nikodem and G. Wysocki, “Molecular dispersion spectroscopy--new capabilities in laser chemical sensing,” Ann. N. Y. Acad. Sci.1260(1), 101–111 (2012).
[CrossRef] [PubMed]

W. Zhao, G. Wysocki, W. Chen, E. Fertein, D. Le Coq, D. Petitprez, and W. Zhang, “Sensitive and selective detection of OH radicals using Faraday rotation spectroscopy at 2.8 µm,” Opt. Express19(3), 2493–2501 (2011).
[CrossRef] [PubMed]

S. G. So, E. Jeng, and G. Wysocki, “VCSEL based Faraday rotation spectroscopy with a modulated and static magnetic field for trace molecular oxygen detection,” Appl. Phys. B102(2), 279–291 (2011).
[CrossRef]

R. Lewicki, J. H. Doty, R. F. Curl, F. K. Tittel, and G. Wysocki, “Ultrasensitive detection of nitric oxide at 5.33 microm by using external cavity quantum cascade laser-based Faraday rotation spectroscopy,” Proc. Natl. Acad. Sci. U.S.A.106(31), 12587–12592 (2009).
[CrossRef] [PubMed]

Xiao, M.

M. Xiao, L. A. Wu, and H. J. Kimble, “Precision measurement beyond the shot-noise limit,” Phys. Rev. Lett.59(3), 278–281 (1987).
[CrossRef] [PubMed]

Zeitz, D.

A. Hinz, D. Zeitz, W. Bohle, and W. Urban, “A Faraday Laser Magnetic-Resonance Spectrometer for Spectroscopy of Molecular Radical Ions,” Appl. Phys. B36(1), 1–4 (1985).
[CrossRef]

Zhang, W.

Zhao, W.

Zucker, M. E.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO - the Laser-Interferometer-Gravitational-Wave-Observatory,” Science256(5055), 325–333 (1992).
[CrossRef] [PubMed]

Am. J. Phys. (1)

S. F. Jacobs, “Optical heterodyne (coherent) detection,” Am. J. Phys.56(3), 235–245 (1988).
[CrossRef]

Ann. N. Y. Acad. Sci. (1)

M. Nikodem and G. Wysocki, “Molecular dispersion spectroscopy--new capabilities in laser chemical sensing,” Ann. N. Y. Acad. Sci.1260(1), 101–111 (2012).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. B (8)

A. Hinz, D. Zeitz, W. Bohle, and W. Urban, “A Faraday Laser Magnetic-Resonance Spectrometer for Spectroscopy of Molecular Radical Ions,” Appl. Phys. B36(1), 1–4 (1985).
[CrossRef]

H. Adams, D. Reinert, P. Kalkert, and W. Urban, “A differential detection scheme for Faraday rotation spectroscopy with a color center laser,” Appl. Phys. B34(4), 179–185 (1984).
[CrossRef]

M. Koch, X. Luo, P. Murtz, W. Urban, and K. Morike, “Detection of small traces of 15N2 and 15N2 by Faraday LMR spectroscopy of the corresponding isotopomers of nitric oxide,” Appl. Phys. B64(6), 683–688 (1997).
[CrossRef]

T. Fritsch, M. Horstjann, D. Halmer, P. Sabana, P. Hering, and M. Mürtz, “Magnetic Faraday modulation spectroscopy of the 1-0 band of 14NO and 15NO,” Appl. Phys. B93(2-3), 713–723 (2008).
[CrossRef]

P. Kluczynski, S. Lundqvist, J. Westberg, and O. Axner, “Faraday rotation spectrometer with sub-second response time for detection of nitric oxide using a cw DFB quantum cascade laser at 5.33 μm,” Appl. Phys. B103(2), 451–459 (2011).
[CrossRef]

S. G. So, E. Jeng, and G. Wysocki, “VCSEL based Faraday rotation spectroscopy with a modulated and static magnetic field for trace molecular oxygen detection,” Appl. Phys. B102(2), 279–291 (2011).
[CrossRef]

J. Pfeiffer, D. Kirsten, P. Kalkert, and W. Urban, “Sensitive Magnetic Rotation Spectroscopy of the Oh Free-Radical Fundamental-Band with a Color Center Laser,” Appl. Phys. B26(3), 173–177 (1981).
[CrossRef]

P. Vogel and V. Ebert, “Near shot noise detection of oxygen in the A-band with vertical-cavity surface-emitting lasers,” Appl. Phys. B72(1), 127–135 (2001).
[CrossRef]

Appl. Phys. B. (1)

H. Adams, D. Reinert, P. Kalkert, and W. Urban, “A Differential Detection Scheme for Faraday-Rotation Spectroscopy with a Color Center Laser,” Appl. Phys. B.34(4), 179–185 (1984).
[CrossRef]

J. Chem. Phys. (2)

G. Litfin, C. R. Pollock, R. F. Curl, and F. K. Tittel, “Sensitivity Enhancement of Laser-Absorption Spectroscopy by Magnetic Rotation Effect,” J. Chem. Phys.72(12), 6602–6605 (1980).
[CrossRef]

C. D. Boone, F. W. Dalby, and I. Ozier, “Magnetic rotation molecular spectroscopy using an oscillating field,” J. Chem. Phys.113(19), 8594–8607 (2000).
[CrossRef]

J. Mol. Spectrosc. (1)

W. Dillenschneider and R. F. Curl., “Color center laser spectroscopy of ν1 + ν2 + ν3 of NO2 using magnetic rotation,” J. Mol. Spectrosc.99(1), 87–97 (1983).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (3)

Mol. Phys. (1)

H. Ganser, W. Urban, and A. M. Brown, “The sensitive detection of NO by Faraday modulation spectroscopy with a quantum cascade laser,” Mol. Phys.101(4-5), 545–550 (2003).
[CrossRef]

Opt. Express (4)

Opt. Lett. (2)

Phys. Rev. B (1)

F. Rana and R. J. Ram, “Current noise and photon noise in quantum cascade lasers,” Phys. Rev. B65(12), 125313 (2002).
[CrossRef]

Phys. Rev. Lett. (1)

M. Xiao, L. A. Wu, and H. J. Kimble, “Precision measurement beyond the shot-noise limit,” Phys. Rev. Lett.59(3), 278–281 (1987).
[CrossRef] [PubMed]

Proc. IEEE (1)

M. C. Teich, “Infrared heterodyne detection,” Proc. IEEE56(1), 37–46 (1968).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (1)

R. Lewicki, J. H. Doty, R. F. Curl, F. K. Tittel, and G. Wysocki, “Ultrasensitive detection of nitric oxide at 5.33 microm by using external cavity quantum cascade laser-based Faraday rotation spectroscopy,” Proc. Natl. Acad. Sci. U.S.A.106(31), 12587–12592 (2009).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

R. Engeln, G. Berden, R. Peeters, and G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum.69(11), 3763–3769 (1998).
[CrossRef]

Science (1)

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO - the Laser-Interferometer-Gravitational-Wave-Observatory,” Science256(5055), 325–333 (1992).
[CrossRef] [PubMed]

Other (5)

Y. Wang, M. Nikodem, B. Brumfield, and G. Wysocki, “Compact multi-pass cell based Faraday rotation spectrometer for nitric oxide detection,” in Conference on Lasers and Electro-Optics (CLEO)(2012), p. CW3B.

Y. Wang, M. Nikodem, J. Hoyne, and G. Wysocki, “Heterodyne-enhanced Faraday rotation spectrometer,” Proc. SPIE 8268, 2F1–8 (2012).

P. C. D. Hobbs, “Shot noise limited optical measurement at baseband with noisy lasers,” in Laser Noise, R. Roy, ed. (Proc. SPIE, 1991), pp. 216–221.

K. L. Haller and P. C. D. Hobbs, “Double-beam laser absorption spectroscopy: shot noise-limited performance at baseband with a novel electronic noise canceler,” in Optical Methods for Ultrasensitive Detection and Analysis: Techniques and Applications,(1991), pp. 298–309.

E. N. Gilbert and H. O. Pollak, “Amplitude Distribution of Shot Noise,” AT&T Tech J 39, 333–350 (1960).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) A concept diagram for the H-FRS system configuration. The extraordinary beam exiting the Rochon prism is frequency-shifted by AOM, and serves as the LO wave. Since its polarization is orthogonal to the signal wave, a polarization rotator (PR) was used to transform its polarization axis by 90° and assure maximum heterodyne efficiency. A principle of signal generation is schematically shown for conventional FRS in (b) and for H-FRS in (c). (d) An electrical RF spectrum of the photocurrent in H-FRS is an equivalent of a carrier-suppressed amplitude modulated signal.

Fig. 2
Fig. 2

Schematic diagram of the H-FRS setup. BS: 50/50 beam splitter; M: mirror; AOM: acousto-optical modulator; PR: polarization rotator; RP: Rochon polarizer; Fun. Gen.: function generator; BPS: band pass filter centered at 30 MHz with a bandwidth of 6 MHz.

Fig. 3
Fig. 3

Noise spectrum recorded at the detector output without (black) and with the laser light shining at the detector (red). The contribution of the laser noise is clearly noticeable. The resolution bandwidth (RBW) of the RF spectrum analyzer is 100 Hz. QCL was operated at 0°C with 160 mA bias current, and the optical power on the photodetector was set to ~120 μW.

Fig. 4
Fig. 4

(a) The photodetected noise density at 1.08 kHz (black dots) as a function of laser power. A slope of a linear fit (blue line) to the data in laser noise dominated regime is used to measure RIN. For comparison, shot noise calculated from Eq. (6) is shown by red dots. The QCL is operated at 160 mA, and at heatsink temperature of 0°C. Optical power was adjusted by the polarizer. Green dash line indicates the measured photodetector noise, which corresponds to NEP = 4.8 × 10−11 W/Hz1/2 at 1.08 kHz. (b) The total noise (black dots) at ~30 MHz measured with an RF spectrum analyzer as a function of optical power. The same QCL operating conditions were used as in Fig. 4(a). The shot noise (red dots) and laser noise (blue dots) were calculated based on photodetector current responsivity of 2.0 A/W, and detector transimpedance of 8350 V/A. The green dashed line indicates the measured photodetector noise, which at ~30 MHz corresponds to NEP = 1 × 10−11 W/Hz1/2.

Fig. 5
Fig. 5

An H-FRS spectrum of the NO R(17/2) transition at 1906.73 cm−1. Experimental conditions: 2 ppmv NO in N2 mixture, sample pressure of 30 Torr, sample temperature of 300 K, magnetic field of ~100 G, active optical pathlength L = 15 cm, optical power before analyzer P0 = 14 mW, LO power PLO = 1 mW, photodetector current responsivity 2.0 A/W, transimpedance Rv = 8350 V/A, heterodyne efficiency ηhet = 0.5, and a measurement bandwidth of 0.83 Hz. The system electrical gains have been factored in and the y-scale reflects voltage at the detector output.

Tables (1)

Tables Icon

Table 1 Performance comparison of selected conventional FRS systems with H-FRS.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

Θ NEA CFRS = ΔfNEP( ω m )σ( ω m ) 2 P 0
E'= E 0 Θsin( ω m t)
I (E'+ E LO ) 2 = (E') 2 + E LO 2 +2E' E LO cos(Ωt+Φ) P LO +2 P 0 P LO Θsin( ω m t)cos(Ωt+Φ)
S=2 R V η het ηe hv P 0 P LO Θ
N PD = Δf R V ηe hv NEP
N shot = Δf R V 2e ηe hv P LO
N RIN = Δf σ(Ω± ω m ) R V ηe hv P LO
Δf R V 2e ηe hv P > Δf σ(λ,f) R V ηe hv P
Δf R V 2e ηe hv P > Δf R V ηe hv NEP(λ,f)
P min =NEP(λ,f) η 2hv < P < 1 σ(λ,f) 2hv η = P max
σ(λ,f)NEP(λ,f)< 2hv η
Θ SNEA HFRS = Δf 1 η het 2 hv η P 0
Θ SNEA CFRS = Δf R V 2e ηe hv P 0 sin 2 θ R V ηe hv P 0 sin(2θ) = Δf 2hv η P 0 sinθ sin(2θ)
N RIN = N total 2 N shot 2 N PD 2

Metrics