Abstract

A new tuning method for tuning whispering gallery modes (WGMs) in a cryogenic environment is presented. Within a home-made exchange gas cryostat the applicability of pressure tuning in microbubbles at liquid nitrogen (LN) temperature is shown. The general thermal shift and tuning behavior of borosilicate microbubbles is theoretically analyzed and compared to experimental data. We show that stress/strain tuning using compressed gas is widely unaffected by system temperature.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Ward and O. Benson, “WGM microresonators: sensing, lasing and fundamental optics with microspheres,” Laser Photon. Rev.5(4), 553–570 (2011).
    [CrossRef]
  2. F. Treussart, V. S. Ilchenko, J. F. Roch, J. Hare, V. Lefevre-Seguin, J. M. Raimond, and S. Haroche, “Evidence for intrinsic kerr bistability of high-q microsphere resonators in superfluid helium,” Eur. Phys. J. D1, 235–238 (1998).
  3. M. Gregor, R. Henze, T. Schröder, and O. Benson, “On-demand positioning of a preselected quantum emitter on a fiber-coupled toroidal microresonator,” Appl. Phys. Lett.95(15), 153110 (2009).
    [CrossRef]
  4. P. E. Barclay, C. Santori, K.-M. Fu, R. G. Beausoleil, and O. Painter, “Coherent interference effects in a nano-assembled diamond NV center cavity-QED system,” Opt. Express17(10), 8081–8097 (2009).
    [CrossRef] [PubMed]
  5. Y.-S. Park, A. K. Cook, and H. Wang, “Cavity QED with diamond nanocrystals and silica microspheres,” Nano Lett.6(9), 2075–2079 (2006).
    [CrossRef] [PubMed]
  6. A. Chiba, H. Fujiwara, J. Hotta, S. Takeuchi, and K. Sasaki, “Resonant frequency control of a microspherical cavity by temperature adjustment,” Jpn. J. Appl. Phys.43(9A), 6138–6141 (2004).
    [CrossRef]
  7. Q. Ma, T. Rossmann, and Z. Guo, “Whispering-gallery mode silica microsensors for cryogenic to room temperature measurement,” Meas. Sci. Technol.21(2), 025310 (2010).
    [CrossRef]
  8. V. S. Ilchenko, P. S. Volikov, V. L. Velichansky, F. Treussart, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, “Strain-tunable high-Q optical microsphere resonator,” Opt. Commun.145(1-6), 86–90 (1998).
    [CrossRef]
  9. G. Senthil Murugan, M. N. Petrovich, Y. Jung, J. S. Wilkinson, and M. N. Zervas, “Hollow-bottle optical microresonators,” Opt. Express19(21), 20773–20784 (2011).
    [CrossRef] [PubMed]
  10. M. Sumetsky, Y. Dulashko, and R. S. Windeler, “Optical microbubble resonator,” Opt. Lett.35(7), 898–900 (2010).
    [CrossRef] [PubMed]
  11. R. Henze, T. Seifert, J. Ward, and O. Benson, “Tuning whispering gallery modes using internal aerostatic pressure,” Opt. Lett.36(23), 4536–4538 (2011).
    [CrossRef] [PubMed]
  12. S. P. Timoshenko and J. N. Goodier, Theory of Elasticity 2nd ed. (McGraw-Hill, 1951).
  13. S. F. Jacobs, “Dimensional stability of materials useful in optical engineering,” Opt. Acta (Lond.)33(11), 1377–1388 (1986).
    [CrossRef]
  14. S. Spinner, “Elastic moduli of glasses at elevated temperatures by a dynamic method,” J. Am. Ceram. Soc.39(3), 113–118 (1956).
    [CrossRef]

2011

2010

M. Sumetsky, Y. Dulashko, and R. S. Windeler, “Optical microbubble resonator,” Opt. Lett.35(7), 898–900 (2010).
[CrossRef] [PubMed]

Q. Ma, T. Rossmann, and Z. Guo, “Whispering-gallery mode silica microsensors for cryogenic to room temperature measurement,” Meas. Sci. Technol.21(2), 025310 (2010).
[CrossRef]

2009

M. Gregor, R. Henze, T. Schröder, and O. Benson, “On-demand positioning of a preselected quantum emitter on a fiber-coupled toroidal microresonator,” Appl. Phys. Lett.95(15), 153110 (2009).
[CrossRef]

P. E. Barclay, C. Santori, K.-M. Fu, R. G. Beausoleil, and O. Painter, “Coherent interference effects in a nano-assembled diamond NV center cavity-QED system,” Opt. Express17(10), 8081–8097 (2009).
[CrossRef] [PubMed]

2006

Y.-S. Park, A. K. Cook, and H. Wang, “Cavity QED with diamond nanocrystals and silica microspheres,” Nano Lett.6(9), 2075–2079 (2006).
[CrossRef] [PubMed]

2004

A. Chiba, H. Fujiwara, J. Hotta, S. Takeuchi, and K. Sasaki, “Resonant frequency control of a microspherical cavity by temperature adjustment,” Jpn. J. Appl. Phys.43(9A), 6138–6141 (2004).
[CrossRef]

1998

V. S. Ilchenko, P. S. Volikov, V. L. Velichansky, F. Treussart, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, “Strain-tunable high-Q optical microsphere resonator,” Opt. Commun.145(1-6), 86–90 (1998).
[CrossRef]

F. Treussart, V. S. Ilchenko, J. F. Roch, J. Hare, V. Lefevre-Seguin, J. M. Raimond, and S. Haroche, “Evidence for intrinsic kerr bistability of high-q microsphere resonators in superfluid helium,” Eur. Phys. J. D1, 235–238 (1998).

1986

S. F. Jacobs, “Dimensional stability of materials useful in optical engineering,” Opt. Acta (Lond.)33(11), 1377–1388 (1986).
[CrossRef]

1956

S. Spinner, “Elastic moduli of glasses at elevated temperatures by a dynamic method,” J. Am. Ceram. Soc.39(3), 113–118 (1956).
[CrossRef]

Barclay, P. E.

Beausoleil, R. G.

Benson, O.

J. Ward and O. Benson, “WGM microresonators: sensing, lasing and fundamental optics with microspheres,” Laser Photon. Rev.5(4), 553–570 (2011).
[CrossRef]

R. Henze, T. Seifert, J. Ward, and O. Benson, “Tuning whispering gallery modes using internal aerostatic pressure,” Opt. Lett.36(23), 4536–4538 (2011).
[CrossRef] [PubMed]

M. Gregor, R. Henze, T. Schröder, and O. Benson, “On-demand positioning of a preselected quantum emitter on a fiber-coupled toroidal microresonator,” Appl. Phys. Lett.95(15), 153110 (2009).
[CrossRef]

Chiba, A.

A. Chiba, H. Fujiwara, J. Hotta, S. Takeuchi, and K. Sasaki, “Resonant frequency control of a microspherical cavity by temperature adjustment,” Jpn. J. Appl. Phys.43(9A), 6138–6141 (2004).
[CrossRef]

Cook, A. K.

Y.-S. Park, A. K. Cook, and H. Wang, “Cavity QED with diamond nanocrystals and silica microspheres,” Nano Lett.6(9), 2075–2079 (2006).
[CrossRef] [PubMed]

Dulashko, Y.

Fu, K.-M.

Fujiwara, H.

A. Chiba, H. Fujiwara, J. Hotta, S. Takeuchi, and K. Sasaki, “Resonant frequency control of a microspherical cavity by temperature adjustment,” Jpn. J. Appl. Phys.43(9A), 6138–6141 (2004).
[CrossRef]

Gregor, M.

M. Gregor, R. Henze, T. Schröder, and O. Benson, “On-demand positioning of a preselected quantum emitter on a fiber-coupled toroidal microresonator,” Appl. Phys. Lett.95(15), 153110 (2009).
[CrossRef]

Guo, Z.

Q. Ma, T. Rossmann, and Z. Guo, “Whispering-gallery mode silica microsensors for cryogenic to room temperature measurement,” Meas. Sci. Technol.21(2), 025310 (2010).
[CrossRef]

Hare, J.

F. Treussart, V. S. Ilchenko, J. F. Roch, J. Hare, V. Lefevre-Seguin, J. M. Raimond, and S. Haroche, “Evidence for intrinsic kerr bistability of high-q microsphere resonators in superfluid helium,” Eur. Phys. J. D1, 235–238 (1998).

Haroche, S.

F. Treussart, V. S. Ilchenko, J. F. Roch, J. Hare, V. Lefevre-Seguin, J. M. Raimond, and S. Haroche, “Evidence for intrinsic kerr bistability of high-q microsphere resonators in superfluid helium,” Eur. Phys. J. D1, 235–238 (1998).

V. S. Ilchenko, P. S. Volikov, V. L. Velichansky, F. Treussart, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, “Strain-tunable high-Q optical microsphere resonator,” Opt. Commun.145(1-6), 86–90 (1998).
[CrossRef]

Henze, R.

R. Henze, T. Seifert, J. Ward, and O. Benson, “Tuning whispering gallery modes using internal aerostatic pressure,” Opt. Lett.36(23), 4536–4538 (2011).
[CrossRef] [PubMed]

M. Gregor, R. Henze, T. Schröder, and O. Benson, “On-demand positioning of a preselected quantum emitter on a fiber-coupled toroidal microresonator,” Appl. Phys. Lett.95(15), 153110 (2009).
[CrossRef]

Hotta, J.

A. Chiba, H. Fujiwara, J. Hotta, S. Takeuchi, and K. Sasaki, “Resonant frequency control of a microspherical cavity by temperature adjustment,” Jpn. J. Appl. Phys.43(9A), 6138–6141 (2004).
[CrossRef]

Ilchenko, V. S.

V. S. Ilchenko, P. S. Volikov, V. L. Velichansky, F. Treussart, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, “Strain-tunable high-Q optical microsphere resonator,” Opt. Commun.145(1-6), 86–90 (1998).
[CrossRef]

F. Treussart, V. S. Ilchenko, J. F. Roch, J. Hare, V. Lefevre-Seguin, J. M. Raimond, and S. Haroche, “Evidence for intrinsic kerr bistability of high-q microsphere resonators in superfluid helium,” Eur. Phys. J. D1, 235–238 (1998).

Jacobs, S. F.

S. F. Jacobs, “Dimensional stability of materials useful in optical engineering,” Opt. Acta (Lond.)33(11), 1377–1388 (1986).
[CrossRef]

Jung, Y.

Lefevre-Seguin, V.

F. Treussart, V. S. Ilchenko, J. F. Roch, J. Hare, V. Lefevre-Seguin, J. M. Raimond, and S. Haroche, “Evidence for intrinsic kerr bistability of high-q microsphere resonators in superfluid helium,” Eur. Phys. J. D1, 235–238 (1998).

Lefèvre-Seguin, V.

V. S. Ilchenko, P. S. Volikov, V. L. Velichansky, F. Treussart, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, “Strain-tunable high-Q optical microsphere resonator,” Opt. Commun.145(1-6), 86–90 (1998).
[CrossRef]

Ma, Q.

Q. Ma, T. Rossmann, and Z. Guo, “Whispering-gallery mode silica microsensors for cryogenic to room temperature measurement,” Meas. Sci. Technol.21(2), 025310 (2010).
[CrossRef]

Painter, O.

Park, Y.-S.

Y.-S. Park, A. K. Cook, and H. Wang, “Cavity QED with diamond nanocrystals and silica microspheres,” Nano Lett.6(9), 2075–2079 (2006).
[CrossRef] [PubMed]

Petrovich, M. N.

Raimond, J. M.

F. Treussart, V. S. Ilchenko, J. F. Roch, J. Hare, V. Lefevre-Seguin, J. M. Raimond, and S. Haroche, “Evidence for intrinsic kerr bistability of high-q microsphere resonators in superfluid helium,” Eur. Phys. J. D1, 235–238 (1998).

Raimond, J.-M.

V. S. Ilchenko, P. S. Volikov, V. L. Velichansky, F. Treussart, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, “Strain-tunable high-Q optical microsphere resonator,” Opt. Commun.145(1-6), 86–90 (1998).
[CrossRef]

Roch, J. F.

F. Treussart, V. S. Ilchenko, J. F. Roch, J. Hare, V. Lefevre-Seguin, J. M. Raimond, and S. Haroche, “Evidence for intrinsic kerr bistability of high-q microsphere resonators in superfluid helium,” Eur. Phys. J. D1, 235–238 (1998).

Rossmann, T.

Q. Ma, T. Rossmann, and Z. Guo, “Whispering-gallery mode silica microsensors for cryogenic to room temperature measurement,” Meas. Sci. Technol.21(2), 025310 (2010).
[CrossRef]

Santori, C.

Sasaki, K.

A. Chiba, H. Fujiwara, J. Hotta, S. Takeuchi, and K. Sasaki, “Resonant frequency control of a microspherical cavity by temperature adjustment,” Jpn. J. Appl. Phys.43(9A), 6138–6141 (2004).
[CrossRef]

Schröder, T.

M. Gregor, R. Henze, T. Schröder, and O. Benson, “On-demand positioning of a preselected quantum emitter on a fiber-coupled toroidal microresonator,” Appl. Phys. Lett.95(15), 153110 (2009).
[CrossRef]

Seifert, T.

Senthil Murugan, G.

Spinner, S.

S. Spinner, “Elastic moduli of glasses at elevated temperatures by a dynamic method,” J. Am. Ceram. Soc.39(3), 113–118 (1956).
[CrossRef]

Sumetsky, M.

Takeuchi, S.

A. Chiba, H. Fujiwara, J. Hotta, S. Takeuchi, and K. Sasaki, “Resonant frequency control of a microspherical cavity by temperature adjustment,” Jpn. J. Appl. Phys.43(9A), 6138–6141 (2004).
[CrossRef]

Treussart, F.

F. Treussart, V. S. Ilchenko, J. F. Roch, J. Hare, V. Lefevre-Seguin, J. M. Raimond, and S. Haroche, “Evidence for intrinsic kerr bistability of high-q microsphere resonators in superfluid helium,” Eur. Phys. J. D1, 235–238 (1998).

V. S. Ilchenko, P. S. Volikov, V. L. Velichansky, F. Treussart, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, “Strain-tunable high-Q optical microsphere resonator,” Opt. Commun.145(1-6), 86–90 (1998).
[CrossRef]

Velichansky, V. L.

V. S. Ilchenko, P. S. Volikov, V. L. Velichansky, F. Treussart, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, “Strain-tunable high-Q optical microsphere resonator,” Opt. Commun.145(1-6), 86–90 (1998).
[CrossRef]

Volikov, P. S.

V. S. Ilchenko, P. S. Volikov, V. L. Velichansky, F. Treussart, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, “Strain-tunable high-Q optical microsphere resonator,” Opt. Commun.145(1-6), 86–90 (1998).
[CrossRef]

Wang, H.

Y.-S. Park, A. K. Cook, and H. Wang, “Cavity QED with diamond nanocrystals and silica microspheres,” Nano Lett.6(9), 2075–2079 (2006).
[CrossRef] [PubMed]

Ward, J.

J. Ward and O. Benson, “WGM microresonators: sensing, lasing and fundamental optics with microspheres,” Laser Photon. Rev.5(4), 553–570 (2011).
[CrossRef]

R. Henze, T. Seifert, J. Ward, and O. Benson, “Tuning whispering gallery modes using internal aerostatic pressure,” Opt. Lett.36(23), 4536–4538 (2011).
[CrossRef] [PubMed]

Wilkinson, J. S.

Windeler, R. S.

Zervas, M. N.

Appl. Phys. Lett.

M. Gregor, R. Henze, T. Schröder, and O. Benson, “On-demand positioning of a preselected quantum emitter on a fiber-coupled toroidal microresonator,” Appl. Phys. Lett.95(15), 153110 (2009).
[CrossRef]

Eur. Phys. J. D

F. Treussart, V. S. Ilchenko, J. F. Roch, J. Hare, V. Lefevre-Seguin, J. M. Raimond, and S. Haroche, “Evidence for intrinsic kerr bistability of high-q microsphere resonators in superfluid helium,” Eur. Phys. J. D1, 235–238 (1998).

J. Am. Ceram. Soc.

S. Spinner, “Elastic moduli of glasses at elevated temperatures by a dynamic method,” J. Am. Ceram. Soc.39(3), 113–118 (1956).
[CrossRef]

Jpn. J. Appl. Phys.

A. Chiba, H. Fujiwara, J. Hotta, S. Takeuchi, and K. Sasaki, “Resonant frequency control of a microspherical cavity by temperature adjustment,” Jpn. J. Appl. Phys.43(9A), 6138–6141 (2004).
[CrossRef]

Laser Photon. Rev.

J. Ward and O. Benson, “WGM microresonators: sensing, lasing and fundamental optics with microspheres,” Laser Photon. Rev.5(4), 553–570 (2011).
[CrossRef]

Meas. Sci. Technol.

Q. Ma, T. Rossmann, and Z. Guo, “Whispering-gallery mode silica microsensors for cryogenic to room temperature measurement,” Meas. Sci. Technol.21(2), 025310 (2010).
[CrossRef]

Nano Lett.

Y.-S. Park, A. K. Cook, and H. Wang, “Cavity QED with diamond nanocrystals and silica microspheres,” Nano Lett.6(9), 2075–2079 (2006).
[CrossRef] [PubMed]

Opt. Acta (Lond.)

S. F. Jacobs, “Dimensional stability of materials useful in optical engineering,” Opt. Acta (Lond.)33(11), 1377–1388 (1986).
[CrossRef]

Opt. Commun.

V. S. Ilchenko, P. S. Volikov, V. L. Velichansky, F. Treussart, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, “Strain-tunable high-Q optical microsphere resonator,” Opt. Commun.145(1-6), 86–90 (1998).
[CrossRef]

Opt. Express

Opt. Lett.

Other

S. P. Timoshenko and J. N. Goodier, Theory of Elasticity 2nd ed. (McGraw-Hill, 1951).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Microbubble under a microscope. (b) Schematic of the cryogenic setup with laser control, camera, digital storage oscilloscope (DSO), and gas supply system.

Fig. 2
Fig. 2

(a) Absolute and (b) differential shift curves for the WGMs resonance positions. The dotted lines are based on theoretical assumptions while the straight lines are experimental data.

Fig. 3
Fig. 3

(a) Temperature dependency of the linear expansion coefficient α(T) in borosilicate glass. The presented data points are directly taken from ref [13]. The solid line is a quadratic fit to these values within the relevant temperature range. (b) Temperature dependency of the corresponding thermo-optic coefficient β(T) gained from the experimental data. Also here a quadratic fit to the data is given for the examined temperature range.

Fig. 4
Fig. 4

Example of mode shift in a microbubble due to internal pressure. It can be seen, that all of the modes shift nearly by the same frequency. A residual is based on slightly different tuning conditions for the various mode orders in the microbubble.

Fig. 5
Fig. 5

Pressure tuning curves of a microbubble at LN and room temperature. The observed room temperature tuning rate for this microbubble corresponds well with the estimated value from its geometrical parameter χ.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

dλ dT =(α+ 1 n β)λ.
Δλ λ = dT[ α(T)+ β(T) n 0 ] .
dλ λ = 2 n 0 b 3 +12CG b 3 4G n 0 ( a 3 b 3 ) p i n 0 ( a 3 + b 3 )+12CG a 3 4G n 0 ( a 3 b 3 ) p 0 .

Metrics