Abstract

A simple technique is presented allowing the fabrication of high density periodic patterns via direct laser ablation. Applying fluence control for reducing the ablated feature sizes combined with lateral translation of an interference pattern between two (or more) irradiation cycles, sub-wavelength period patterns (< 200 nm) are created. Variation of the amount and direction of translation and the applied intensities during subsequent irradiation steps leads to variable pattern design as demonstrated for polymeric and silicon samples.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K.-C. Park, H. J. Choi, C. H. Chang, R. E. Cohen, G. H. McKinley, and G. Barbastathis, “Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity,” ACS Nano6(5), 3789–3799 (2012).
    [CrossRef] [PubMed]
  2. M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond,” Phys. Rev. B79(12), 125436 (2009).
    [CrossRef]
  3. F. Liang, R. Vallée, and S. L. Chin, “Physical evolution of nanograting inscription on the surface of fused silica,” Opt. Mater. Express2(7), 900–906 (2012).
    [CrossRef]
  4. A. K. Sharma, J. Smedley, T. Tsang, and T. Rao, “Formation of subwavelength grating on molybdenum mirrors using a femtosecond Ti:sapphire laser system operating at 10 Hz,” Rev. Sci. Instrum.82(3), 033113 (2011).
    [CrossRef] [PubMed]
  5. A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett.82(25), 4462–4464 (2003).
    [CrossRef]
  6. J. Bekesi, J.-H. Klein-Wiele, and P. Simon, “Efficient submicron processing of metals with femtosecond UV pulses,” Appl. Phys., A Mater. Sci. Process.76(3), 355–357 (2003).
    [CrossRef]
  7. J.-H. Klein-Wiele and P. Simon, “Fabrication of periodic nanostructures by phase-controlled multiple-beam interference,” Appl. Phys. Lett.83(23), 4707–4709 (2003).
    [CrossRef]
  8. F. Korte, J. Serbin, J. Koch, A. Egbert, C. Fallnich, A. Ostendorf, and B. N. Chichkov, “Towards nanostructuring with femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process.77, 229–235 (2003).
  9. G. Marowsky, P. Simon, K. Mann, and C. K. Rhodes, Femtosecond Excimer Laser Pulses, Träger Ed., (Springer-Verlag Berlin Heidelberg 2012) p. 842.

2012 (2)

K.-C. Park, H. J. Choi, C. H. Chang, R. E. Cohen, G. H. McKinley, and G. Barbastathis, “Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity,” ACS Nano6(5), 3789–3799 (2012).
[CrossRef] [PubMed]

F. Liang, R. Vallée, and S. L. Chin, “Physical evolution of nanograting inscription on the surface of fused silica,” Opt. Mater. Express2(7), 900–906 (2012).
[CrossRef]

2011 (1)

A. K. Sharma, J. Smedley, T. Tsang, and T. Rao, “Formation of subwavelength grating on molybdenum mirrors using a femtosecond Ti:sapphire laser system operating at 10 Hz,” Rev. Sci. Instrum.82(3), 033113 (2011).
[CrossRef] [PubMed]

2009 (1)

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond,” Phys. Rev. B79(12), 125436 (2009).
[CrossRef]

2003 (4)

A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett.82(25), 4462–4464 (2003).
[CrossRef]

J. Bekesi, J.-H. Klein-Wiele, and P. Simon, “Efficient submicron processing of metals with femtosecond UV pulses,” Appl. Phys., A Mater. Sci. Process.76(3), 355–357 (2003).
[CrossRef]

J.-H. Klein-Wiele and P. Simon, “Fabrication of periodic nanostructures by phase-controlled multiple-beam interference,” Appl. Phys. Lett.83(23), 4707–4709 (2003).
[CrossRef]

F. Korte, J. Serbin, J. Koch, A. Egbert, C. Fallnich, A. Ostendorf, and B. N. Chichkov, “Towards nanostructuring with femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process.77, 229–235 (2003).

Barbastathis, G.

K.-C. Park, H. J. Choi, C. H. Chang, R. E. Cohen, G. H. McKinley, and G. Barbastathis, “Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity,” ACS Nano6(5), 3789–3799 (2012).
[CrossRef] [PubMed]

Bekesi, J.

J. Bekesi, J.-H. Klein-Wiele, and P. Simon, “Efficient submicron processing of metals with femtosecond UV pulses,” Appl. Phys., A Mater. Sci. Process.76(3), 355–357 (2003).
[CrossRef]

Borowiec, A.

A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett.82(25), 4462–4464 (2003).
[CrossRef]

Chang, C. H.

K.-C. Park, H. J. Choi, C. H. Chang, R. E. Cohen, G. H. McKinley, and G. Barbastathis, “Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity,” ACS Nano6(5), 3789–3799 (2012).
[CrossRef] [PubMed]

Cheng, Y.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond,” Phys. Rev. B79(12), 125436 (2009).
[CrossRef]

Chichkov, B. N.

F. Korte, J. Serbin, J. Koch, A. Egbert, C. Fallnich, A. Ostendorf, and B. N. Chichkov, “Towards nanostructuring with femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process.77, 229–235 (2003).

Chin, S. L.

Choi, H. J.

K.-C. Park, H. J. Choi, C. H. Chang, R. E. Cohen, G. H. McKinley, and G. Barbastathis, “Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity,” ACS Nano6(5), 3789–3799 (2012).
[CrossRef] [PubMed]

Cohen, R. E.

K.-C. Park, H. J. Choi, C. H. Chang, R. E. Cohen, G. H. McKinley, and G. Barbastathis, “Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity,” ACS Nano6(5), 3789–3799 (2012).
[CrossRef] [PubMed]

Egbert, A.

F. Korte, J. Serbin, J. Koch, A. Egbert, C. Fallnich, A. Ostendorf, and B. N. Chichkov, “Towards nanostructuring with femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process.77, 229–235 (2003).

Fallnich, C.

F. Korte, J. Serbin, J. Koch, A. Egbert, C. Fallnich, A. Ostendorf, and B. N. Chichkov, “Towards nanostructuring with femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process.77, 229–235 (2003).

Haugen, H. K.

A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett.82(25), 4462–4464 (2003).
[CrossRef]

Huang, M.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond,” Phys. Rev. B79(12), 125436 (2009).
[CrossRef]

Klein-Wiele, J.-H.

J. Bekesi, J.-H. Klein-Wiele, and P. Simon, “Efficient submicron processing of metals with femtosecond UV pulses,” Appl. Phys., A Mater. Sci. Process.76(3), 355–357 (2003).
[CrossRef]

J.-H. Klein-Wiele and P. Simon, “Fabrication of periodic nanostructures by phase-controlled multiple-beam interference,” Appl. Phys. Lett.83(23), 4707–4709 (2003).
[CrossRef]

Koch, J.

F. Korte, J. Serbin, J. Koch, A. Egbert, C. Fallnich, A. Ostendorf, and B. N. Chichkov, “Towards nanostructuring with femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process.77, 229–235 (2003).

Korte, F.

F. Korte, J. Serbin, J. Koch, A. Egbert, C. Fallnich, A. Ostendorf, and B. N. Chichkov, “Towards nanostructuring with femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process.77, 229–235 (2003).

Liang, F.

McKinley, G. H.

K.-C. Park, H. J. Choi, C. H. Chang, R. E. Cohen, G. H. McKinley, and G. Barbastathis, “Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity,” ACS Nano6(5), 3789–3799 (2012).
[CrossRef] [PubMed]

Ostendorf, A.

F. Korte, J. Serbin, J. Koch, A. Egbert, C. Fallnich, A. Ostendorf, and B. N. Chichkov, “Towards nanostructuring with femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process.77, 229–235 (2003).

Park, K.-C.

K.-C. Park, H. J. Choi, C. H. Chang, R. E. Cohen, G. H. McKinley, and G. Barbastathis, “Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity,” ACS Nano6(5), 3789–3799 (2012).
[CrossRef] [PubMed]

Rao, T.

A. K. Sharma, J. Smedley, T. Tsang, and T. Rao, “Formation of subwavelength grating on molybdenum mirrors using a femtosecond Ti:sapphire laser system operating at 10 Hz,” Rev. Sci. Instrum.82(3), 033113 (2011).
[CrossRef] [PubMed]

Serbin, J.

F. Korte, J. Serbin, J. Koch, A. Egbert, C. Fallnich, A. Ostendorf, and B. N. Chichkov, “Towards nanostructuring with femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process.77, 229–235 (2003).

Sharma, A. K.

A. K. Sharma, J. Smedley, T. Tsang, and T. Rao, “Formation of subwavelength grating on molybdenum mirrors using a femtosecond Ti:sapphire laser system operating at 10 Hz,” Rev. Sci. Instrum.82(3), 033113 (2011).
[CrossRef] [PubMed]

Simon, P.

J.-H. Klein-Wiele and P. Simon, “Fabrication of periodic nanostructures by phase-controlled multiple-beam interference,” Appl. Phys. Lett.83(23), 4707–4709 (2003).
[CrossRef]

J. Bekesi, J.-H. Klein-Wiele, and P. Simon, “Efficient submicron processing of metals with femtosecond UV pulses,” Appl. Phys., A Mater. Sci. Process.76(3), 355–357 (2003).
[CrossRef]

Smedley, J.

A. K. Sharma, J. Smedley, T. Tsang, and T. Rao, “Formation of subwavelength grating on molybdenum mirrors using a femtosecond Ti:sapphire laser system operating at 10 Hz,” Rev. Sci. Instrum.82(3), 033113 (2011).
[CrossRef] [PubMed]

Tsang, T.

A. K. Sharma, J. Smedley, T. Tsang, and T. Rao, “Formation of subwavelength grating on molybdenum mirrors using a femtosecond Ti:sapphire laser system operating at 10 Hz,” Rev. Sci. Instrum.82(3), 033113 (2011).
[CrossRef] [PubMed]

Vallée, R.

Xu, N.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond,” Phys. Rev. B79(12), 125436 (2009).
[CrossRef]

Xu, Z.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond,” Phys. Rev. B79(12), 125436 (2009).
[CrossRef]

Zhao, F.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond,” Phys. Rev. B79(12), 125436 (2009).
[CrossRef]

ACS Nano (1)

K.-C. Park, H. J. Choi, C. H. Chang, R. E. Cohen, G. H. McKinley, and G. Barbastathis, “Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity,” ACS Nano6(5), 3789–3799 (2012).
[CrossRef] [PubMed]

Appl. Phys. Lett. (2)

A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett.82(25), 4462–4464 (2003).
[CrossRef]

J.-H. Klein-Wiele and P. Simon, “Fabrication of periodic nanostructures by phase-controlled multiple-beam interference,” Appl. Phys. Lett.83(23), 4707–4709 (2003).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (2)

F. Korte, J. Serbin, J. Koch, A. Egbert, C. Fallnich, A. Ostendorf, and B. N. Chichkov, “Towards nanostructuring with femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process.77, 229–235 (2003).

J. Bekesi, J.-H. Klein-Wiele, and P. Simon, “Efficient submicron processing of metals with femtosecond UV pulses,” Appl. Phys., A Mater. Sci. Process.76(3), 355–357 (2003).
[CrossRef]

Opt. Mater. Express (1)

Phys. Rev. B (1)

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond,” Phys. Rev. B79(12), 125436 (2009).
[CrossRef]

Rev. Sci. Instrum. (1)

A. K. Sharma, J. Smedley, T. Tsang, and T. Rao, “Formation of subwavelength grating on molybdenum mirrors using a femtosecond Ti:sapphire laser system operating at 10 Hz,” Rev. Sci. Instrum.82(3), 033113 (2011).
[CrossRef] [PubMed]

Other (1)

G. Marowsky, P. Simon, K. Mann, and C. K. Rhodes, Femtosecond Excimer Laser Pulses, Träger Ed., (Springer-Verlag Berlin Heidelberg 2012) p. 842.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Sketch of the diffractive imaging setup.

Fig. 2
Fig. 2

Irradiation steps to obtain a “double density” periodic pattern.

Fig. 3
Fig. 3

Theoretical prediction of ablation patterns at a fluence of 500 mJ/cm2 (a), 50 mJ/cm2 (b) and after shifting the pattern by D/2 followed by successive irradiation (c).

Fig. 4
Fig. 4

Hole patterns generated in PES at a peak fluence of 500 mJ/cm2 (a) and 50 mJ/cm2 (b). In c) the resulting pattern is shown after shifting the diffraction pattern and repeating the irradiation with 50 mJ/cm2.

Fig. 5
Fig. 5

Ablation patterns in PES after successive ablation and various pattern shifts.

Fig. 6
Fig. 6

Successive ablation in Si with 300 mJ/cm2 (before shifting) and 50 mJ/cm2.

Metrics