Abstract

We present the nonpolarizing resonance properties of two types of one-dimensional (1D) guided-mode resonance (GMR) gratings consisting of the sinusoidal-profile grating substrate and the conformal dielectric thin films. The optimization with respect to the grating height and the phase of the conformal graded-index layer is important for the design of nonpolarizing type-I GMR gratings. The thin films design of the conformal step-index multilayer and the optimization with respect to the grating height are of two critical steps to obtain the nonpolarizing type-II GMR gratings. Both of the two types of nonpolarizing GMR gratings can be designed to support single-mode resonance and multimode resonance under normal incidence.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt.32(14), 2606–2613 (1993).
    [CrossRef] [PubMed]
  2. A. T. Cannistra, M. K. Poutous, E. G. Johnson, and T. J. Suleski, “Performance of conformal guided mode resonance filters,” Opt. Lett.36(7), 1155–1157 (2011).
    [CrossRef] [PubMed]
  3. A.-L. Fehrembach, K. C. S. Yu, A. Monmayrant, P. Arguel, A. Sentenac, and O. Gauthier-Lafaye, “Tunable, polarization independent, narrow-band filtering with one-dimensional crossed resonant gratings,” Opt. Lett.36(9), 1662–1664 (2011).
    [CrossRef] [PubMed]
  4. A. J. Pung, M. K. Poutous, R. C. Rumpf, Z. A. Roth, and E. G. Johnson, “Two-dimensional guided mode resonance filters fabricated in a uniform low-index material system,” Opt. Lett.36(16), 3293–3295 (2011).
    [CrossRef] [PubMed]
  5. R. Magnusson, M. Shokooh-Saremi, K. J. Lee, J. Curzan, D. Wawro, S. Zimmerman, W. Wu, J. Yoon, H. G. Svavarsson, and S. H. Song, “Leaky-mode resonance photonics: an applications platform,” Proc. SPIE8102, 810202, 810202-13 (2011).
    [CrossRef]
  6. R. Magnusson, “Spectrally dense comb-like filters fashioned with thick guided-mode resonant gratings,” Opt. Lett.37(18), 3792–3794 (2012).
    [PubMed]
  7. D. Lacour, G. Granet, J.-P. Plumey, and A. Mure-Ravaud, “Polarization independence of a one-dimensional grating in conical mounting,” J. Opt. Soc. Am. A20(8), 1546–1552 (2003).
    [CrossRef] [PubMed]
  8. D. W. Peters, R. R. Boye, J. R. Wendt, R. A. Kellogg, S. A. Kemme, T. R. Carter, and S. Samora, “Demonstration of polarization-independent resonant subwavelength grating filter arrays,” Opt. Lett.35(19), 3201–3203 (2010).
    [CrossRef] [PubMed]
  9. T. Alasaarela, D. Zheng, L. Huang, A. Priimagi, B. Bai, A. Tervonen, S. Honkanen, M. Kuittinen, and J. Turunen, “Single-layer one-dimensional nonpolarizing guided-mode resonance filters under normal incidence,” Opt. Lett.36(13), 2411–2413 (2011).
    [CrossRef] [PubMed]
  10. M. R. Saleem, D. Zheng, B. Bai, P. Stenberg, M. Kuittinen, S. Honkanen, and J. Turunen, “Replicable one-dimensional non-polarizing guided mode resonance gratings under normal incidence,” Opt. Express20(15), 16974–16980 (2012).
    [CrossRef]
  11. T. K. Gaylord and M. G. Moharam, “Analysis and applications of optical diffraction by gratings,” Proc. IEEE73(5), 894–937 (1985).
    [CrossRef]
  12. D. H. Raguin and G. M. Morris, “Analysis of antireflection-structured surfaces with continuous one-dimensional surface profiles,” Appl. Opt.32(14), 2582–2598 (1993).
    [CrossRef] [PubMed]
  13. Z. S. Liu and R. Magnusson, “Concept of multiorder multimode resonant optical filters,” IEEE Photon. Technol. Lett.14(8), 1091–1093 (2002).
    [CrossRef]
  14. W. Qiu, Y. M. Kang, and L. L. Goddard, “Quasicontinuous refractive index tailoring of SiNx and SiOxNy for broadband antireflective coatings,” Appl. Phys. Lett.96(14), 141116 (2010).
    [CrossRef]
  15. K. Lau, J. Weber, H. Bartzsch, and P. Frach, “Reactive pulse magnetron sputtered SiOxNy coatings on polymers,” Thin Solid Films517(10), 3110–3114 (2009).
    [CrossRef]
  16. S. Baek, A. V. Baryshev, and M. Inoue, “Multiple diffraction in two-dimensional magnetophotonic crystals fabricated by the autocloning method,” J. Appl. Phys.109(7), 07B701 (2011).
    [CrossRef]
  17. D. L. Voronov, P. Gawlitza, R. Cambie, S. Dhuey, E. M. Gullikson, T. Warwick, S. Braun, V. V. Yashchuk, and H. A. Padmore, “Conformal growth of Mo/Si multilayers on grating substrates using collimated ion beam sputtering,” J. Appl. Phys.111(9), 093521 (2012).
    [CrossRef]
  18. K. D. Hendrix, C. A. Hulse, G. J. Ockenfuss, and R. B. Sargent, “Demonstration of narrowband notch and multi-notch filters,” Proc. SPIE7067, 706702, 706702-14 (2008).
    [CrossRef]

2012

2011

2010

D. W. Peters, R. R. Boye, J. R. Wendt, R. A. Kellogg, S. A. Kemme, T. R. Carter, and S. Samora, “Demonstration of polarization-independent resonant subwavelength grating filter arrays,” Opt. Lett.35(19), 3201–3203 (2010).
[CrossRef] [PubMed]

W. Qiu, Y. M. Kang, and L. L. Goddard, “Quasicontinuous refractive index tailoring of SiNx and SiOxNy for broadband antireflective coatings,” Appl. Phys. Lett.96(14), 141116 (2010).
[CrossRef]

2009

K. Lau, J. Weber, H. Bartzsch, and P. Frach, “Reactive pulse magnetron sputtered SiOxNy coatings on polymers,” Thin Solid Films517(10), 3110–3114 (2009).
[CrossRef]

2008

K. D. Hendrix, C. A. Hulse, G. J. Ockenfuss, and R. B. Sargent, “Demonstration of narrowband notch and multi-notch filters,” Proc. SPIE7067, 706702, 706702-14 (2008).
[CrossRef]

2003

2002

Z. S. Liu and R. Magnusson, “Concept of multiorder multimode resonant optical filters,” IEEE Photon. Technol. Lett.14(8), 1091–1093 (2002).
[CrossRef]

1993

1985

T. K. Gaylord and M. G. Moharam, “Analysis and applications of optical diffraction by gratings,” Proc. IEEE73(5), 894–937 (1985).
[CrossRef]

Alasaarela, T.

Arguel, P.

Baek, S.

S. Baek, A. V. Baryshev, and M. Inoue, “Multiple diffraction in two-dimensional magnetophotonic crystals fabricated by the autocloning method,” J. Appl. Phys.109(7), 07B701 (2011).
[CrossRef]

Bai, B.

Bartzsch, H.

K. Lau, J. Weber, H. Bartzsch, and P. Frach, “Reactive pulse magnetron sputtered SiOxNy coatings on polymers,” Thin Solid Films517(10), 3110–3114 (2009).
[CrossRef]

Baryshev, A. V.

S. Baek, A. V. Baryshev, and M. Inoue, “Multiple diffraction in two-dimensional magnetophotonic crystals fabricated by the autocloning method,” J. Appl. Phys.109(7), 07B701 (2011).
[CrossRef]

Boye, R. R.

Braun, S.

D. L. Voronov, P. Gawlitza, R. Cambie, S. Dhuey, E. M. Gullikson, T. Warwick, S. Braun, V. V. Yashchuk, and H. A. Padmore, “Conformal growth of Mo/Si multilayers on grating substrates using collimated ion beam sputtering,” J. Appl. Phys.111(9), 093521 (2012).
[CrossRef]

Cambie, R.

D. L. Voronov, P. Gawlitza, R. Cambie, S. Dhuey, E. M. Gullikson, T. Warwick, S. Braun, V. V. Yashchuk, and H. A. Padmore, “Conformal growth of Mo/Si multilayers on grating substrates using collimated ion beam sputtering,” J. Appl. Phys.111(9), 093521 (2012).
[CrossRef]

Cannistra, A. T.

Carter, T. R.

Curzan, J.

R. Magnusson, M. Shokooh-Saremi, K. J. Lee, J. Curzan, D. Wawro, S. Zimmerman, W. Wu, J. Yoon, H. G. Svavarsson, and S. H. Song, “Leaky-mode resonance photonics: an applications platform,” Proc. SPIE8102, 810202, 810202-13 (2011).
[CrossRef]

Dhuey, S.

D. L. Voronov, P. Gawlitza, R. Cambie, S. Dhuey, E. M. Gullikson, T. Warwick, S. Braun, V. V. Yashchuk, and H. A. Padmore, “Conformal growth of Mo/Si multilayers on grating substrates using collimated ion beam sputtering,” J. Appl. Phys.111(9), 093521 (2012).
[CrossRef]

Fehrembach, A.-L.

Frach, P.

K. Lau, J. Weber, H. Bartzsch, and P. Frach, “Reactive pulse magnetron sputtered SiOxNy coatings on polymers,” Thin Solid Films517(10), 3110–3114 (2009).
[CrossRef]

Gauthier-Lafaye, O.

Gawlitza, P.

D. L. Voronov, P. Gawlitza, R. Cambie, S. Dhuey, E. M. Gullikson, T. Warwick, S. Braun, V. V. Yashchuk, and H. A. Padmore, “Conformal growth of Mo/Si multilayers on grating substrates using collimated ion beam sputtering,” J. Appl. Phys.111(9), 093521 (2012).
[CrossRef]

Gaylord, T. K.

T. K. Gaylord and M. G. Moharam, “Analysis and applications of optical diffraction by gratings,” Proc. IEEE73(5), 894–937 (1985).
[CrossRef]

Goddard, L. L.

W. Qiu, Y. M. Kang, and L. L. Goddard, “Quasicontinuous refractive index tailoring of SiNx and SiOxNy for broadband antireflective coatings,” Appl. Phys. Lett.96(14), 141116 (2010).
[CrossRef]

Granet, G.

Gullikson, E. M.

D. L. Voronov, P. Gawlitza, R. Cambie, S. Dhuey, E. M. Gullikson, T. Warwick, S. Braun, V. V. Yashchuk, and H. A. Padmore, “Conformal growth of Mo/Si multilayers on grating substrates using collimated ion beam sputtering,” J. Appl. Phys.111(9), 093521 (2012).
[CrossRef]

Hendrix, K. D.

K. D. Hendrix, C. A. Hulse, G. J. Ockenfuss, and R. B. Sargent, “Demonstration of narrowband notch and multi-notch filters,” Proc. SPIE7067, 706702, 706702-14 (2008).
[CrossRef]

Honkanen, S.

Huang, L.

Hulse, C. A.

K. D. Hendrix, C. A. Hulse, G. J. Ockenfuss, and R. B. Sargent, “Demonstration of narrowband notch and multi-notch filters,” Proc. SPIE7067, 706702, 706702-14 (2008).
[CrossRef]

Inoue, M.

S. Baek, A. V. Baryshev, and M. Inoue, “Multiple diffraction in two-dimensional magnetophotonic crystals fabricated by the autocloning method,” J. Appl. Phys.109(7), 07B701 (2011).
[CrossRef]

Johnson, E. G.

Kang, Y. M.

W. Qiu, Y. M. Kang, and L. L. Goddard, “Quasicontinuous refractive index tailoring of SiNx and SiOxNy for broadband antireflective coatings,” Appl. Phys. Lett.96(14), 141116 (2010).
[CrossRef]

Kellogg, R. A.

Kemme, S. A.

Kuittinen, M.

Lacour, D.

Lau, K.

K. Lau, J. Weber, H. Bartzsch, and P. Frach, “Reactive pulse magnetron sputtered SiOxNy coatings on polymers,” Thin Solid Films517(10), 3110–3114 (2009).
[CrossRef]

Lee, K. J.

R. Magnusson, M. Shokooh-Saremi, K. J. Lee, J. Curzan, D. Wawro, S. Zimmerman, W. Wu, J. Yoon, H. G. Svavarsson, and S. H. Song, “Leaky-mode resonance photonics: an applications platform,” Proc. SPIE8102, 810202, 810202-13 (2011).
[CrossRef]

Liu, Z. S.

Z. S. Liu and R. Magnusson, “Concept of multiorder multimode resonant optical filters,” IEEE Photon. Technol. Lett.14(8), 1091–1093 (2002).
[CrossRef]

Magnusson, R.

R. Magnusson, “Spectrally dense comb-like filters fashioned with thick guided-mode resonant gratings,” Opt. Lett.37(18), 3792–3794 (2012).
[PubMed]

R. Magnusson, M. Shokooh-Saremi, K. J. Lee, J. Curzan, D. Wawro, S. Zimmerman, W. Wu, J. Yoon, H. G. Svavarsson, and S. H. Song, “Leaky-mode resonance photonics: an applications platform,” Proc. SPIE8102, 810202, 810202-13 (2011).
[CrossRef]

Z. S. Liu and R. Magnusson, “Concept of multiorder multimode resonant optical filters,” IEEE Photon. Technol. Lett.14(8), 1091–1093 (2002).
[CrossRef]

S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt.32(14), 2606–2613 (1993).
[CrossRef] [PubMed]

Moharam, M. G.

T. K. Gaylord and M. G. Moharam, “Analysis and applications of optical diffraction by gratings,” Proc. IEEE73(5), 894–937 (1985).
[CrossRef]

Monmayrant, A.

Morris, G. M.

Mure-Ravaud, A.

Ockenfuss, G. J.

K. D. Hendrix, C. A. Hulse, G. J. Ockenfuss, and R. B. Sargent, “Demonstration of narrowband notch and multi-notch filters,” Proc. SPIE7067, 706702, 706702-14 (2008).
[CrossRef]

Padmore, H. A.

D. L. Voronov, P. Gawlitza, R. Cambie, S. Dhuey, E. M. Gullikson, T. Warwick, S. Braun, V. V. Yashchuk, and H. A. Padmore, “Conformal growth of Mo/Si multilayers on grating substrates using collimated ion beam sputtering,” J. Appl. Phys.111(9), 093521 (2012).
[CrossRef]

Peters, D. W.

Plumey, J.-P.

Poutous, M. K.

Priimagi, A.

Pung, A. J.

Qiu, W.

W. Qiu, Y. M. Kang, and L. L. Goddard, “Quasicontinuous refractive index tailoring of SiNx and SiOxNy for broadband antireflective coatings,” Appl. Phys. Lett.96(14), 141116 (2010).
[CrossRef]

Raguin, D. H.

Roth, Z. A.

Rumpf, R. C.

Saleem, M. R.

Samora, S.

Sargent, R. B.

K. D. Hendrix, C. A. Hulse, G. J. Ockenfuss, and R. B. Sargent, “Demonstration of narrowband notch and multi-notch filters,” Proc. SPIE7067, 706702, 706702-14 (2008).
[CrossRef]

Sentenac, A.

Shokooh-Saremi, M.

R. Magnusson, M. Shokooh-Saremi, K. J. Lee, J. Curzan, D. Wawro, S. Zimmerman, W. Wu, J. Yoon, H. G. Svavarsson, and S. H. Song, “Leaky-mode resonance photonics: an applications platform,” Proc. SPIE8102, 810202, 810202-13 (2011).
[CrossRef]

Song, S. H.

R. Magnusson, M. Shokooh-Saremi, K. J. Lee, J. Curzan, D. Wawro, S. Zimmerman, W. Wu, J. Yoon, H. G. Svavarsson, and S. H. Song, “Leaky-mode resonance photonics: an applications platform,” Proc. SPIE8102, 810202, 810202-13 (2011).
[CrossRef]

Stenberg, P.

Suleski, T. J.

Svavarsson, H. G.

R. Magnusson, M. Shokooh-Saremi, K. J. Lee, J. Curzan, D. Wawro, S. Zimmerman, W. Wu, J. Yoon, H. G. Svavarsson, and S. H. Song, “Leaky-mode resonance photonics: an applications platform,” Proc. SPIE8102, 810202, 810202-13 (2011).
[CrossRef]

Tervonen, A.

Turunen, J.

Voronov, D. L.

D. L. Voronov, P. Gawlitza, R. Cambie, S. Dhuey, E. M. Gullikson, T. Warwick, S. Braun, V. V. Yashchuk, and H. A. Padmore, “Conformal growth of Mo/Si multilayers on grating substrates using collimated ion beam sputtering,” J. Appl. Phys.111(9), 093521 (2012).
[CrossRef]

Wang, S. S.

Warwick, T.

D. L. Voronov, P. Gawlitza, R. Cambie, S. Dhuey, E. M. Gullikson, T. Warwick, S. Braun, V. V. Yashchuk, and H. A. Padmore, “Conformal growth of Mo/Si multilayers on grating substrates using collimated ion beam sputtering,” J. Appl. Phys.111(9), 093521 (2012).
[CrossRef]

Wawro, D.

R. Magnusson, M. Shokooh-Saremi, K. J. Lee, J. Curzan, D. Wawro, S. Zimmerman, W. Wu, J. Yoon, H. G. Svavarsson, and S. H. Song, “Leaky-mode resonance photonics: an applications platform,” Proc. SPIE8102, 810202, 810202-13 (2011).
[CrossRef]

Weber, J.

K. Lau, J. Weber, H. Bartzsch, and P. Frach, “Reactive pulse magnetron sputtered SiOxNy coatings on polymers,” Thin Solid Films517(10), 3110–3114 (2009).
[CrossRef]

Wendt, J. R.

Wu, W.

R. Magnusson, M. Shokooh-Saremi, K. J. Lee, J. Curzan, D. Wawro, S. Zimmerman, W. Wu, J. Yoon, H. G. Svavarsson, and S. H. Song, “Leaky-mode resonance photonics: an applications platform,” Proc. SPIE8102, 810202, 810202-13 (2011).
[CrossRef]

Yashchuk, V. V.

D. L. Voronov, P. Gawlitza, R. Cambie, S. Dhuey, E. M. Gullikson, T. Warwick, S. Braun, V. V. Yashchuk, and H. A. Padmore, “Conformal growth of Mo/Si multilayers on grating substrates using collimated ion beam sputtering,” J. Appl. Phys.111(9), 093521 (2012).
[CrossRef]

Yoon, J.

R. Magnusson, M. Shokooh-Saremi, K. J. Lee, J. Curzan, D. Wawro, S. Zimmerman, W. Wu, J. Yoon, H. G. Svavarsson, and S. H. Song, “Leaky-mode resonance photonics: an applications platform,” Proc. SPIE8102, 810202, 810202-13 (2011).
[CrossRef]

Yu, K. C. S.

Zheng, D.

Zimmerman, S.

R. Magnusson, M. Shokooh-Saremi, K. J. Lee, J. Curzan, D. Wawro, S. Zimmerman, W. Wu, J. Yoon, H. G. Svavarsson, and S. H. Song, “Leaky-mode resonance photonics: an applications platform,” Proc. SPIE8102, 810202, 810202-13 (2011).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

W. Qiu, Y. M. Kang, and L. L. Goddard, “Quasicontinuous refractive index tailoring of SiNx and SiOxNy for broadband antireflective coatings,” Appl. Phys. Lett.96(14), 141116 (2010).
[CrossRef]

IEEE Photon. Technol. Lett.

Z. S. Liu and R. Magnusson, “Concept of multiorder multimode resonant optical filters,” IEEE Photon. Technol. Lett.14(8), 1091–1093 (2002).
[CrossRef]

J. Appl. Phys.

S. Baek, A. V. Baryshev, and M. Inoue, “Multiple diffraction in two-dimensional magnetophotonic crystals fabricated by the autocloning method,” J. Appl. Phys.109(7), 07B701 (2011).
[CrossRef]

D. L. Voronov, P. Gawlitza, R. Cambie, S. Dhuey, E. M. Gullikson, T. Warwick, S. Braun, V. V. Yashchuk, and H. A. Padmore, “Conformal growth of Mo/Si multilayers on grating substrates using collimated ion beam sputtering,” J. Appl. Phys.111(9), 093521 (2012).
[CrossRef]

J. Opt. Soc. Am. A

Opt. Express

Opt. Lett.

Proc. IEEE

T. K. Gaylord and M. G. Moharam, “Analysis and applications of optical diffraction by gratings,” Proc. IEEE73(5), 894–937 (1985).
[CrossRef]

Proc. SPIE

R. Magnusson, M. Shokooh-Saremi, K. J. Lee, J. Curzan, D. Wawro, S. Zimmerman, W. Wu, J. Yoon, H. G. Svavarsson, and S. H. Song, “Leaky-mode resonance photonics: an applications platform,” Proc. SPIE8102, 810202, 810202-13 (2011).
[CrossRef]

K. D. Hendrix, C. A. Hulse, G. J. Ockenfuss, and R. B. Sargent, “Demonstration of narrowband notch and multi-notch filters,” Proc. SPIE7067, 706702, 706702-14 (2008).
[CrossRef]

Thin Solid Films

K. Lau, J. Weber, H. Bartzsch, and P. Frach, “Reactive pulse magnetron sputtered SiOxNy coatings on polymers,” Thin Solid Films517(10), 3110–3114 (2009).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Schematic structure of the (a) type-I and (b) type-II GMR grating.

Fig. 2
Fig. 2

Numerical calculation of type-I GMR grating. (a) Refractive index distribution of the graded-index layer with m = 2 and Φ = 0.44π. (b) Relationship between Φ and the resonance wavelengths of TE and TM polarization.

Fig. 3
Fig. 3

The calculated reflectance spectra of the type-I GMR grating with p = 320 nm, h = 170 nm, m = 2, T = 321.7 nm, nave = 1.713, Δn = 0.15 and Φ = 0.44π.

Fig. 4
Fig. 4

Numerical simulation of the light intensity distribution at the resonance wavelength of the type-I GMR grating designed in Fig. 3 for (a) TE and (b) TM polarization.

Fig. 5
Fig. 5

Resonance wavelengths of the type-I GMR grating with different (a) h and (b) p, respectively. All the other parameters are the same as in Fig. 3.

Fig. 6
Fig. 6

Resonance wavelengths of the multimode type-I GMR grating with p = 340 nm, h = 200 nm, m = 4, T = 643.3 nm, nave = 1.713 and Δn = 0.15. (a) Relationship between Φ and the first resonance location λ1. (b) Relationship between Φ and the second resonance location λ2.

Fig. 7
Fig. 7

The calculated reflectance spectra of the optimized nonpolarizing type-I GMR grating possessing two resonance peaks with p = 340 nm, h = 200 nm, m = 4, T = 643.3 nm, nave = 1.713, Δn = 0.15 and Φ = 1.75π.

Fig. 8
Fig. 8

Resonance wavelength of the multimode type-I GMR grating with different p for (a) the first resonance location λ1 and (b) the second resonance location λ2. All the other parameters are the same as in Fig. 7.

Fig. 9
Fig. 9

The calculated reflectance spectra of the optimized nonpolarizing type-I GMR grating possessing three resonance peaks with p = 320 nm, h = 206 nm, m = 9, t = 955.7 nm, nave = 1.713, Δn = 0.152 and Φ = 0.75π.

Fig. 10
Fig. 10

Resonance wavelengths λR and linewidths of type-II GMR grating with (a) different t1 when p = 320 nm, h = 200 nm, nL = 1.650, nH = 1.781 and T = 302 nm, (b) different h when p = 320 nm, nL = 1.650, nH = 1.781, t1 = 120 nm, and t2 = 182 nm.

Fig. 11
Fig. 11

The calculated reflectance spectra of the type-II GMR grating with p = 320 nm, h = 154 nm, nL = 1.650, nH = 1.781, t1 = 120 nm, and t2 = 182 nm.

Fig. 12
Fig. 12

Dispersion relations of the leaky guided modes of the type-II GMR grating designed in Fig. 11 for (a) TE and (b) TM polarization.

Fig. 13
Fig. 13

Numerical simulation of the light intensity distribution at the resonance wavelength of the type-II GMR grating designed in Fig. 11 for (a) TE and (b) TM polarization.

Fig. 14
Fig. 14

The calculated reflectance spectra of the optimized nonpolarizing type-II GMR grating possessing two resonance peaks with p = 316 nm, h = 200 nm, nL = 1.674, nH = 1.753, t1 = 187 nm, t2 = 288, t3 = 88 nm and t4 = 101.

Fig. 15
Fig. 15

Dispersion relations of the leaky guided modes of the type-II GMR grating designed in Fig. 14 for (a) TE and (b) TM polarization.

Tables (3)

Tables Icon

Table 1 Specifications of the resonance peak depicted in Fig. 7

Tables Icon

Table 2 Specifications of the resonance peak depicted in Fig. 9

Tables Icon

Table 3 Specifications of the resonance peak depicted in Fig. 14

Metrics