Abstract

Here we combined experiments and theory to study the optical properties of a plasmonic cavity consisting of a perforated metal film and a flat metal sheet separated by a semiconductor spacer. Three different types of optical modes are clearly identified—the propagating and localized surface plasmons on the perforated metal film and the Fabry-Perot modes inside the cavity. Interactions among them lead to a series of hybridized eigenmodes exhibiting excellent spectral tunability and spatially distinct field distributions, making the system particularly suitable for multicolor infrared light detections. As an example, we design a two-color detector protocol with calculated photon absorption efficiencies enhanced by more than 20 times at both colors, reaching ~42.8% at f1 = 20.0THz (15μm in wavelength) and ~46.2% at f2 = 29.5THz (~10.2μm) for a 1μm total thickness of sandwiched quantum wells.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Krier, Mid-Infrared Semiconductor Optoelectronics (Springer, 2005).
  2. H. Schneider and H. C. Liu, Quantum Well Infrared Photodetectors (Springer, 2007).
  3. A. Rogalski, “Material considerations for third generation infrared photon detectors,” Infrared Phys. Technol.50(2-3), 240–252 (2007).
    [CrossRef]
  4. D. I. Ellis and R. Goodacre, “Metabolic fingerprinting in disease diagnosis: biomedical applications of infrared and Raman spectroscopy,” Analyst (Lond.)131(8), 875–885 (2006).
    [CrossRef] [PubMed]
  5. A. Rogalski, J. Antoszewski, and L. Faraone, “Third-generation infrared photodetector arrays,” J. Appl. Phys.105(9), 091101 (2009).
    [CrossRef]
  6. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum Cascade Laser,” Science264(5158), 553–556 (1994).
    [CrossRef] [PubMed]
  7. S. D. Gunapala, S. V. Bandara, J. K. Liu, C. J. Hill, S. B. Rafol, J. M. Mumolo, J. T. Trinh, M. Z. Tidrow, and P. D. LeVan, “1024 × 1024 pixel mid-wavelength and long-wavelength infrared QWIP focal plane arrays for imaging applications,” Semicond. Sci. Technol.20(5), 473–480 (2005).
    [CrossRef]
  8. E. L. Dereniak and G. D. Boreman, Infrared Detectors and Systems (Wiley, New York, 1996), Chap. 8.
  9. S. D. Gunapala, S. V. Bandara, J. K. Liu, J. M. Mumolo, D. Z. Ting, C. J. Hill, J. Nguyen, B. Simolon, J. Woolaway, S. C. Wang, W. Li, P. D. LeVan, and M. Z. Tidrow, “Demonstration of Megapixel Dual-Band QWIP Focal Plane Array,” J. Quantum Electron.46(2), 285–293 (2010).
    [CrossRef]
  10. S. S. Li, “Recent progress in quantum well infrared photodetectors and focal plane arrays for IR imaging applications,” Mater. Chem. Phys.50(3), 188–194 (1997).
    [CrossRef]
  11. S. D. Gunapala, S. V. Bandara, J. K. Liu, S. B. Rafol, J. M. Mumolo, C. A. Shott, R. Jones, J. Woolaway, J. M. Fastenau, A. K. Liu, M. Jhabvala, and K. K. Choi, “640 x 512 pixel narrow-band, four-band, and broad-band quantum well infrared photodetector focal plane arrays,” Infrared Phys. Technol.44(5-6), 411–425 (2003).
    [CrossRef]
  12. K. K. Choi, M. D. Jhabvala, and R. J. Peralta, “Voltage-Tunable Two-Color Corrugated-QWIP Focal Plane Arrays,” IEEE Electron. Dev. Lett.29(9), 1011–1013 (2008).
    [CrossRef]
  13. S. C. Lee, S. Krishna, and S. R. J. Brueck, “Quantum dot infrared photodetector enhanced by surface plasma wave excitation,” Opt. Express17(25), 23160–23168 (2009).
    [CrossRef] [PubMed]
  14. C. C. Chang, Y. D. Sharma, Y. S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. H. Huang, and S. Y. Lin, “A Surface Plasmon Enhanced Infrared Photodetector Based on InAs Quantum Dots,” Nano Lett.10(5), 1704–1709 (2010).
    [CrossRef] [PubMed]
  15. V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells,” Nano Lett.8(12), 4391–4397 (2008).
    [CrossRef] [PubMed]
  16. G. W. Lu, B. L. Cheng, H. Shen, Y. L. Zhou, Z. H. Chen, G. Z. Yang, G. Tillement, S. Roux, and P. Perriat, “Fabry-Perot type sensor with surface plasmon resonance,” Appl. Phys. Lett.89, 22394 (2006).
  17. B. S. Dennis, V. Aksyuk, M. I. Haftel, S. T. Koev, and G. Blumberg, “Enhanced coupling between light and surface plasmons by nano-structured Fabry-Perot resonantor,” J. Appl. Phys.110(6), 066102 (2011).
    [CrossRef]
  18. W. Wu, A. Bonakdar, and H. Mohseni, “Plasmonic enhanced quantum well infrared photodetector with high detectivity,” Appl. Phys. Lett.96(16), 161107 (2010).
    [CrossRef]
  19. CONCERTO 7.0, Vector Fields Limited, England (2008).
  20. Y. Todorov, A. M. Andrews, I. Sagnes, R. Colombelli, P. Klang, G. Strasser, and C. Sirtori, “Strong Light-Matter Coupling in Subwavelength Metal-Dielectric Microcavities at Terahertz Frequencies,” Phys. Rev. Lett.102(18), 186402 (2009).
    [CrossRef] [PubMed]
  21. More accurately, in the deep subwavelength region(i.e., S<<λ1/2nGaAs), f1 is insensitive to S, as will be seen in Fig. 3.
  22. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
    [CrossRef]
  23. Y. W. Jiang, L. D. C. Tzuang, Y. H. Ye, Y. T. Wu, M. W. Tsai, C. Y. Chen, and S. C. Lee, “Effect of Wood’s anomalies on the profile of extraordinary transmission spectra through metal periodic arrays of rectangular subwavelength holes with different aspect ratio,” Opt. Express17(4), 2631–2637 (2009).
    [CrossRef] [PubMed]
  24. C. Y. Chen, M. W. Tsai, T. H. Chuang, Y. T. Chang, and S. C. Lee, “Extraordinary transmission through a silver film perforated with cross shaped hole arrays in a square lattice,” Appl. Phys. Lett.91(6), 063108 (2007).
    [CrossRef]
  25. H. Wang, Z. An, C. Qu, S. Xiao, L. Zhou, S. Komiyama, W. Lu, X. Shen, and P. Chu, “Optimization of Optoelectronic Plasmonic Structures,” Plasmonics6(2), 319–325 (2011).
    [CrossRef]
  26. A. Mary, S. G. Rodrigo, L. Martín-Moreno, and F. J. García-Vidal, “Theory of light transmission through an array of rectangular holes,” Phys. Rev. B76(19), 195414 (2007).
    [CrossRef]
  27. The formula for neff in Eq. (2) applies to the case where the insulators on two sides of the metal layer are half-infinite. Here we use same formula to roughly esitmate neff value for our plasmonic cavity case.
  28. Due to the limitation of L<P for a cross hole array, there remains a small fraction of PSP {0, ± 1} contribution for f1 in H-cavity.
  29. The PSP {0, ± 2} is readily coupled to LSP which is predicted from Eq. (2) to be near 40THz. As a result, PSP {0, ± 2} is highly hybridized with LSP mode.
  30. y-polarized excitation is used in FDTD simulation, therefore Ex≈0 for all resonant modes, and only {0, ± 1} (but not { ± 1,0}) PSP mode contributes in calculaitons. In experiments, both { ± 1,0} and {0, ± 1} modes contribute equally to the measured reflection spectra since cross hole shape is insensitive to polarization.
  31. J. L. Pan and C. G. Fonstad., “Theory, fabrication and characterization of quantum well infrared photodetectors,” Mater. Sci. Eng. Rep.28(3-4), 65–147 (2000).
    [CrossRef]
  32. W. Wu, A. Bonakdar, and H. Mohseni, “Plasmonic enhanced quantum well infrared photodetector with high detectivity,” Appl. Phys. Lett.96(16), 161107 (2010).
    [CrossRef]
  33. D. Dini, R. Köhler, A. Tredicucci, G. Biasiol, and L. Sorba, “Microcavity Polariton Splitting of Intersubband Transitions,” Phys. Rev. Lett.90(11), 116401 (2003).
    [CrossRef] [PubMed]
  34. In case of 45° edge facet incidence, the device responses only half of the unpolarized excitation due to the selection rule. For optimized polarization of the excitation, the simulated efficiencies reach ~4% for our QWs, which agree well with the previously reported values in Ref.[2].
  35. These enchancement factors increase at lower electron densities. For example, at Ns = 1 × 1011/cm2, the enhancement factors are ~55 at f1 (cavity: 23.0%; non-plasmonic: 0.84%; single-layer: 2.7%) and ~45 at f2 (cavity: 18.8%; non-plasmonic: 0.84%; single-layer: 0.3%).
  36. X. L. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett.107(4), 045901 (2011).
    [CrossRef] [PubMed]

2011 (3)

B. S. Dennis, V. Aksyuk, M. I. Haftel, S. T. Koev, and G. Blumberg, “Enhanced coupling between light and surface plasmons by nano-structured Fabry-Perot resonantor,” J. Appl. Phys.110(6), 066102 (2011).
[CrossRef]

H. Wang, Z. An, C. Qu, S. Xiao, L. Zhou, S. Komiyama, W. Lu, X. Shen, and P. Chu, “Optimization of Optoelectronic Plasmonic Structures,” Plasmonics6(2), 319–325 (2011).
[CrossRef]

X. L. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett.107(4), 045901 (2011).
[CrossRef] [PubMed]

2010 (4)

W. Wu, A. Bonakdar, and H. Mohseni, “Plasmonic enhanced quantum well infrared photodetector with high detectivity,” Appl. Phys. Lett.96(16), 161107 (2010).
[CrossRef]

W. Wu, A. Bonakdar, and H. Mohseni, “Plasmonic enhanced quantum well infrared photodetector with high detectivity,” Appl. Phys. Lett.96(16), 161107 (2010).
[CrossRef]

C. C. Chang, Y. D. Sharma, Y. S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. H. Huang, and S. Y. Lin, “A Surface Plasmon Enhanced Infrared Photodetector Based on InAs Quantum Dots,” Nano Lett.10(5), 1704–1709 (2010).
[CrossRef] [PubMed]

S. D. Gunapala, S. V. Bandara, J. K. Liu, J. M. Mumolo, D. Z. Ting, C. J. Hill, J. Nguyen, B. Simolon, J. Woolaway, S. C. Wang, W. Li, P. D. LeVan, and M. Z. Tidrow, “Demonstration of Megapixel Dual-Band QWIP Focal Plane Array,” J. Quantum Electron.46(2), 285–293 (2010).
[CrossRef]

2009 (4)

A. Rogalski, J. Antoszewski, and L. Faraone, “Third-generation infrared photodetector arrays,” J. Appl. Phys.105(9), 091101 (2009).
[CrossRef]

S. C. Lee, S. Krishna, and S. R. J. Brueck, “Quantum dot infrared photodetector enhanced by surface plasma wave excitation,” Opt. Express17(25), 23160–23168 (2009).
[CrossRef] [PubMed]

Y. Todorov, A. M. Andrews, I. Sagnes, R. Colombelli, P. Klang, G. Strasser, and C. Sirtori, “Strong Light-Matter Coupling in Subwavelength Metal-Dielectric Microcavities at Terahertz Frequencies,” Phys. Rev. Lett.102(18), 186402 (2009).
[CrossRef] [PubMed]

Y. W. Jiang, L. D. C. Tzuang, Y. H. Ye, Y. T. Wu, M. W. Tsai, C. Y. Chen, and S. C. Lee, “Effect of Wood’s anomalies on the profile of extraordinary transmission spectra through metal periodic arrays of rectangular subwavelength holes with different aspect ratio,” Opt. Express17(4), 2631–2637 (2009).
[CrossRef] [PubMed]

2008 (2)

K. K. Choi, M. D. Jhabvala, and R. J. Peralta, “Voltage-Tunable Two-Color Corrugated-QWIP Focal Plane Arrays,” IEEE Electron. Dev. Lett.29(9), 1011–1013 (2008).
[CrossRef]

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells,” Nano Lett.8(12), 4391–4397 (2008).
[CrossRef] [PubMed]

2007 (3)

A. Rogalski, “Material considerations for third generation infrared photon detectors,” Infrared Phys. Technol.50(2-3), 240–252 (2007).
[CrossRef]

C. Y. Chen, M. W. Tsai, T. H. Chuang, Y. T. Chang, and S. C. Lee, “Extraordinary transmission through a silver film perforated with cross shaped hole arrays in a square lattice,” Appl. Phys. Lett.91(6), 063108 (2007).
[CrossRef]

A. Mary, S. G. Rodrigo, L. Martín-Moreno, and F. J. García-Vidal, “Theory of light transmission through an array of rectangular holes,” Phys. Rev. B76(19), 195414 (2007).
[CrossRef]

2006 (2)

D. I. Ellis and R. Goodacre, “Metabolic fingerprinting in disease diagnosis: biomedical applications of infrared and Raman spectroscopy,” Analyst (Lond.)131(8), 875–885 (2006).
[CrossRef] [PubMed]

G. W. Lu, B. L. Cheng, H. Shen, Y. L. Zhou, Z. H. Chen, G. Z. Yang, G. Tillement, S. Roux, and P. Perriat, “Fabry-Perot type sensor with surface plasmon resonance,” Appl. Phys. Lett.89, 22394 (2006).

2005 (1)

S. D. Gunapala, S. V. Bandara, J. K. Liu, C. J. Hill, S. B. Rafol, J. M. Mumolo, J. T. Trinh, M. Z. Tidrow, and P. D. LeVan, “1024 × 1024 pixel mid-wavelength and long-wavelength infrared QWIP focal plane arrays for imaging applications,” Semicond. Sci. Technol.20(5), 473–480 (2005).
[CrossRef]

2003 (2)

S. D. Gunapala, S. V. Bandara, J. K. Liu, S. B. Rafol, J. M. Mumolo, C. A. Shott, R. Jones, J. Woolaway, J. M. Fastenau, A. K. Liu, M. Jhabvala, and K. K. Choi, “640 x 512 pixel narrow-band, four-band, and broad-band quantum well infrared photodetector focal plane arrays,” Infrared Phys. Technol.44(5-6), 411–425 (2003).
[CrossRef]

D. Dini, R. Köhler, A. Tredicucci, G. Biasiol, and L. Sorba, “Microcavity Polariton Splitting of Intersubband Transitions,” Phys. Rev. Lett.90(11), 116401 (2003).
[CrossRef] [PubMed]

2000 (1)

J. L. Pan and C. G. Fonstad., “Theory, fabrication and characterization of quantum well infrared photodetectors,” Mater. Sci. Eng. Rep.28(3-4), 65–147 (2000).
[CrossRef]

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

1997 (1)

S. S. Li, “Recent progress in quantum well infrared photodetectors and focal plane arrays for IR imaging applications,” Mater. Chem. Phys.50(3), 188–194 (1997).
[CrossRef]

1994 (1)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum Cascade Laser,” Science264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Aksyuk, V.

B. S. Dennis, V. Aksyuk, M. I. Haftel, S. T. Koev, and G. Blumberg, “Enhanced coupling between light and surface plasmons by nano-structured Fabry-Perot resonantor,” J. Appl. Phys.110(6), 066102 (2011).
[CrossRef]

An, Z.

H. Wang, Z. An, C. Qu, S. Xiao, L. Zhou, S. Komiyama, W. Lu, X. Shen, and P. Chu, “Optimization of Optoelectronic Plasmonic Structures,” Plasmonics6(2), 319–325 (2011).
[CrossRef]

Andrews, A. M.

Y. Todorov, A. M. Andrews, I. Sagnes, R. Colombelli, P. Klang, G. Strasser, and C. Sirtori, “Strong Light-Matter Coupling in Subwavelength Metal-Dielectric Microcavities at Terahertz Frequencies,” Phys. Rev. Lett.102(18), 186402 (2009).
[CrossRef] [PubMed]

Antoszewski, J.

A. Rogalski, J. Antoszewski, and L. Faraone, “Third-generation infrared photodetector arrays,” J. Appl. Phys.105(9), 091101 (2009).
[CrossRef]

Atwater, H. A.

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells,” Nano Lett.8(12), 4391–4397 (2008).
[CrossRef] [PubMed]

Bandara, S. V.

S. D. Gunapala, S. V. Bandara, J. K. Liu, J. M. Mumolo, D. Z. Ting, C. J. Hill, J. Nguyen, B. Simolon, J. Woolaway, S. C. Wang, W. Li, P. D. LeVan, and M. Z. Tidrow, “Demonstration of Megapixel Dual-Band QWIP Focal Plane Array,” J. Quantum Electron.46(2), 285–293 (2010).
[CrossRef]

S. D. Gunapala, S. V. Bandara, J. K. Liu, C. J. Hill, S. B. Rafol, J. M. Mumolo, J. T. Trinh, M. Z. Tidrow, and P. D. LeVan, “1024 × 1024 pixel mid-wavelength and long-wavelength infrared QWIP focal plane arrays for imaging applications,” Semicond. Sci. Technol.20(5), 473–480 (2005).
[CrossRef]

S. D. Gunapala, S. V. Bandara, J. K. Liu, S. B. Rafol, J. M. Mumolo, C. A. Shott, R. Jones, J. Woolaway, J. M. Fastenau, A. K. Liu, M. Jhabvala, and K. K. Choi, “640 x 512 pixel narrow-band, four-band, and broad-band quantum well infrared photodetector focal plane arrays,” Infrared Phys. Technol.44(5-6), 411–425 (2003).
[CrossRef]

Biasiol, G.

D. Dini, R. Köhler, A. Tredicucci, G. Biasiol, and L. Sorba, “Microcavity Polariton Splitting of Intersubband Transitions,” Phys. Rev. Lett.90(11), 116401 (2003).
[CrossRef] [PubMed]

Blumberg, G.

B. S. Dennis, V. Aksyuk, M. I. Haftel, S. T. Koev, and G. Blumberg, “Enhanced coupling between light and surface plasmons by nano-structured Fabry-Perot resonantor,” J. Appl. Phys.110(6), 066102 (2011).
[CrossRef]

Bonakdar, A.

W. Wu, A. Bonakdar, and H. Mohseni, “Plasmonic enhanced quantum well infrared photodetector with high detectivity,” Appl. Phys. Lett.96(16), 161107 (2010).
[CrossRef]

W. Wu, A. Bonakdar, and H. Mohseni, “Plasmonic enhanced quantum well infrared photodetector with high detectivity,” Appl. Phys. Lett.96(16), 161107 (2010).
[CrossRef]

Brueck, S. R. J.

Bur, J. A.

C. C. Chang, Y. D. Sharma, Y. S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. H. Huang, and S. Y. Lin, “A Surface Plasmon Enhanced Infrared Photodetector Based on InAs Quantum Dots,” Nano Lett.10(5), 1704–1709 (2010).
[CrossRef] [PubMed]

Capasso, F.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum Cascade Laser,” Science264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Chang, C. C.

C. C. Chang, Y. D. Sharma, Y. S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. H. Huang, and S. Y. Lin, “A Surface Plasmon Enhanced Infrared Photodetector Based on InAs Quantum Dots,” Nano Lett.10(5), 1704–1709 (2010).
[CrossRef] [PubMed]

Chang, Y. T.

C. Y. Chen, M. W. Tsai, T. H. Chuang, Y. T. Chang, and S. C. Lee, “Extraordinary transmission through a silver film perforated with cross shaped hole arrays in a square lattice,” Appl. Phys. Lett.91(6), 063108 (2007).
[CrossRef]

Chen, C. Y.

Chen, Z. H.

G. W. Lu, B. L. Cheng, H. Shen, Y. L. Zhou, Z. H. Chen, G. Z. Yang, G. Tillement, S. Roux, and P. Perriat, “Fabry-Perot type sensor with surface plasmon resonance,” Appl. Phys. Lett.89, 22394 (2006).

Cheng, B. L.

G. W. Lu, B. L. Cheng, H. Shen, Y. L. Zhou, Z. H. Chen, G. Z. Yang, G. Tillement, S. Roux, and P. Perriat, “Fabry-Perot type sensor with surface plasmon resonance,” Appl. Phys. Lett.89, 22394 (2006).

Cho, A. Y.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum Cascade Laser,” Science264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Choi, K. K.

K. K. Choi, M. D. Jhabvala, and R. J. Peralta, “Voltage-Tunable Two-Color Corrugated-QWIP Focal Plane Arrays,” IEEE Electron. Dev. Lett.29(9), 1011–1013 (2008).
[CrossRef]

S. D. Gunapala, S. V. Bandara, J. K. Liu, S. B. Rafol, J. M. Mumolo, C. A. Shott, R. Jones, J. Woolaway, J. M. Fastenau, A. K. Liu, M. Jhabvala, and K. K. Choi, “640 x 512 pixel narrow-band, four-band, and broad-band quantum well infrared photodetector focal plane arrays,” Infrared Phys. Technol.44(5-6), 411–425 (2003).
[CrossRef]

Chu, P.

H. Wang, Z. An, C. Qu, S. Xiao, L. Zhou, S. Komiyama, W. Lu, X. Shen, and P. Chu, “Optimization of Optoelectronic Plasmonic Structures,” Plasmonics6(2), 319–325 (2011).
[CrossRef]

Chuang, T. H.

C. Y. Chen, M. W. Tsai, T. H. Chuang, Y. T. Chang, and S. C. Lee, “Extraordinary transmission through a silver film perforated with cross shaped hole arrays in a square lattice,” Appl. Phys. Lett.91(6), 063108 (2007).
[CrossRef]

Colombelli, R.

Y. Todorov, A. M. Andrews, I. Sagnes, R. Colombelli, P. Klang, G. Strasser, and C. Sirtori, “Strong Light-Matter Coupling in Subwavelength Metal-Dielectric Microcavities at Terahertz Frequencies,” Phys. Rev. Lett.102(18), 186402 (2009).
[CrossRef] [PubMed]

Dennis, B. S.

B. S. Dennis, V. Aksyuk, M. I. Haftel, S. T. Koev, and G. Blumberg, “Enhanced coupling between light and surface plasmons by nano-structured Fabry-Perot resonantor,” J. Appl. Phys.110(6), 066102 (2011).
[CrossRef]

Dini, D.

D. Dini, R. Köhler, A. Tredicucci, G. Biasiol, and L. Sorba, “Microcavity Polariton Splitting of Intersubband Transitions,” Phys. Rev. Lett.90(11), 116401 (2003).
[CrossRef] [PubMed]

Ebbesen, T. W.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Ellis, D. I.

D. I. Ellis and R. Goodacre, “Metabolic fingerprinting in disease diagnosis: biomedical applications of infrared and Raman spectroscopy,” Analyst (Lond.)131(8), 875–885 (2006).
[CrossRef] [PubMed]

Faist, J.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum Cascade Laser,” Science264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Faraone, L.

A. Rogalski, J. Antoszewski, and L. Faraone, “Third-generation infrared photodetector arrays,” J. Appl. Phys.105(9), 091101 (2009).
[CrossRef]

Fastenau, J. M.

S. D. Gunapala, S. V. Bandara, J. K. Liu, S. B. Rafol, J. M. Mumolo, C. A. Shott, R. Jones, J. Woolaway, J. M. Fastenau, A. K. Liu, M. Jhabvala, and K. K. Choi, “640 x 512 pixel narrow-band, four-band, and broad-band quantum well infrared photodetector focal plane arrays,” Infrared Phys. Technol.44(5-6), 411–425 (2003).
[CrossRef]

Ferry, V. E.

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells,” Nano Lett.8(12), 4391–4397 (2008).
[CrossRef] [PubMed]

Fonstad, C. G.

J. L. Pan and C. G. Fonstad., “Theory, fabrication and characterization of quantum well infrared photodetectors,” Mater. Sci. Eng. Rep.28(3-4), 65–147 (2000).
[CrossRef]

García-Vidal, F. J.

A. Mary, S. G. Rodrigo, L. Martín-Moreno, and F. J. García-Vidal, “Theory of light transmission through an array of rectangular holes,” Phys. Rev. B76(19), 195414 (2007).
[CrossRef]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Goodacre, R.

D. I. Ellis and R. Goodacre, “Metabolic fingerprinting in disease diagnosis: biomedical applications of infrared and Raman spectroscopy,” Analyst (Lond.)131(8), 875–885 (2006).
[CrossRef] [PubMed]

Gunapala, S. D.

S. D. Gunapala, S. V. Bandara, J. K. Liu, J. M. Mumolo, D. Z. Ting, C. J. Hill, J. Nguyen, B. Simolon, J. Woolaway, S. C. Wang, W. Li, P. D. LeVan, and M. Z. Tidrow, “Demonstration of Megapixel Dual-Band QWIP Focal Plane Array,” J. Quantum Electron.46(2), 285–293 (2010).
[CrossRef]

S. D. Gunapala, S. V. Bandara, J. K. Liu, C. J. Hill, S. B. Rafol, J. M. Mumolo, J. T. Trinh, M. Z. Tidrow, and P. D. LeVan, “1024 × 1024 pixel mid-wavelength and long-wavelength infrared QWIP focal plane arrays for imaging applications,” Semicond. Sci. Technol.20(5), 473–480 (2005).
[CrossRef]

S. D. Gunapala, S. V. Bandara, J. K. Liu, S. B. Rafol, J. M. Mumolo, C. A. Shott, R. Jones, J. Woolaway, J. M. Fastenau, A. K. Liu, M. Jhabvala, and K. K. Choi, “640 x 512 pixel narrow-band, four-band, and broad-band quantum well infrared photodetector focal plane arrays,” Infrared Phys. Technol.44(5-6), 411–425 (2003).
[CrossRef]

Haftel, M. I.

B. S. Dennis, V. Aksyuk, M. I. Haftel, S. T. Koev, and G. Blumberg, “Enhanced coupling between light and surface plasmons by nano-structured Fabry-Perot resonantor,” J. Appl. Phys.110(6), 066102 (2011).
[CrossRef]

Hill, C. J.

S. D. Gunapala, S. V. Bandara, J. K. Liu, J. M. Mumolo, D. Z. Ting, C. J. Hill, J. Nguyen, B. Simolon, J. Woolaway, S. C. Wang, W. Li, P. D. LeVan, and M. Z. Tidrow, “Demonstration of Megapixel Dual-Band QWIP Focal Plane Array,” J. Quantum Electron.46(2), 285–293 (2010).
[CrossRef]

S. D. Gunapala, S. V. Bandara, J. K. Liu, C. J. Hill, S. B. Rafol, J. M. Mumolo, J. T. Trinh, M. Z. Tidrow, and P. D. LeVan, “1024 × 1024 pixel mid-wavelength and long-wavelength infrared QWIP focal plane arrays for imaging applications,” Semicond. Sci. Technol.20(5), 473–480 (2005).
[CrossRef]

Huang, D. H.

C. C. Chang, Y. D. Sharma, Y. S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. H. Huang, and S. Y. Lin, “A Surface Plasmon Enhanced Infrared Photodetector Based on InAs Quantum Dots,” Nano Lett.10(5), 1704–1709 (2010).
[CrossRef] [PubMed]

Hutchinson, A. L.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum Cascade Laser,” Science264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Jhabvala, M.

S. D. Gunapala, S. V. Bandara, J. K. Liu, S. B. Rafol, J. M. Mumolo, C. A. Shott, R. Jones, J. Woolaway, J. M. Fastenau, A. K. Liu, M. Jhabvala, and K. K. Choi, “640 x 512 pixel narrow-band, four-band, and broad-band quantum well infrared photodetector focal plane arrays,” Infrared Phys. Technol.44(5-6), 411–425 (2003).
[CrossRef]

Jhabvala, M. D.

K. K. Choi, M. D. Jhabvala, and R. J. Peralta, “Voltage-Tunable Two-Color Corrugated-QWIP Focal Plane Arrays,” IEEE Electron. Dev. Lett.29(9), 1011–1013 (2008).
[CrossRef]

Jiang, Y. W.

Jokerst, N. M.

X. L. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett.107(4), 045901 (2011).
[CrossRef] [PubMed]

Jones, R.

S. D. Gunapala, S. V. Bandara, J. K. Liu, S. B. Rafol, J. M. Mumolo, C. A. Shott, R. Jones, J. Woolaway, J. M. Fastenau, A. K. Liu, M. Jhabvala, and K. K. Choi, “640 x 512 pixel narrow-band, four-band, and broad-band quantum well infrared photodetector focal plane arrays,” Infrared Phys. Technol.44(5-6), 411–425 (2003).
[CrossRef]

Kim, Y. S.

C. C. Chang, Y. D. Sharma, Y. S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. H. Huang, and S. Y. Lin, “A Surface Plasmon Enhanced Infrared Photodetector Based on InAs Quantum Dots,” Nano Lett.10(5), 1704–1709 (2010).
[CrossRef] [PubMed]

Klang, P.

Y. Todorov, A. M. Andrews, I. Sagnes, R. Colombelli, P. Klang, G. Strasser, and C. Sirtori, “Strong Light-Matter Coupling in Subwavelength Metal-Dielectric Microcavities at Terahertz Frequencies,” Phys. Rev. Lett.102(18), 186402 (2009).
[CrossRef] [PubMed]

Koev, S. T.

B. S. Dennis, V. Aksyuk, M. I. Haftel, S. T. Koev, and G. Blumberg, “Enhanced coupling between light and surface plasmons by nano-structured Fabry-Perot resonantor,” J. Appl. Phys.110(6), 066102 (2011).
[CrossRef]

Köhler, R.

D. Dini, R. Köhler, A. Tredicucci, G. Biasiol, and L. Sorba, “Microcavity Polariton Splitting of Intersubband Transitions,” Phys. Rev. Lett.90(11), 116401 (2003).
[CrossRef] [PubMed]

Komiyama, S.

H. Wang, Z. An, C. Qu, S. Xiao, L. Zhou, S. Komiyama, W. Lu, X. Shen, and P. Chu, “Optimization of Optoelectronic Plasmonic Structures,” Plasmonics6(2), 319–325 (2011).
[CrossRef]

Krishna, S.

C. C. Chang, Y. D. Sharma, Y. S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. H. Huang, and S. Y. Lin, “A Surface Plasmon Enhanced Infrared Photodetector Based on InAs Quantum Dots,” Nano Lett.10(5), 1704–1709 (2010).
[CrossRef] [PubMed]

S. C. Lee, S. Krishna, and S. R. J. Brueck, “Quantum dot infrared photodetector enhanced by surface plasma wave excitation,” Opt. Express17(25), 23160–23168 (2009).
[CrossRef] [PubMed]

Lee, S. C.

LeVan, P. D.

S. D. Gunapala, S. V. Bandara, J. K. Liu, J. M. Mumolo, D. Z. Ting, C. J. Hill, J. Nguyen, B. Simolon, J. Woolaway, S. C. Wang, W. Li, P. D. LeVan, and M. Z. Tidrow, “Demonstration of Megapixel Dual-Band QWIP Focal Plane Array,” J. Quantum Electron.46(2), 285–293 (2010).
[CrossRef]

S. D. Gunapala, S. V. Bandara, J. K. Liu, C. J. Hill, S. B. Rafol, J. M. Mumolo, J. T. Trinh, M. Z. Tidrow, and P. D. LeVan, “1024 × 1024 pixel mid-wavelength and long-wavelength infrared QWIP focal plane arrays for imaging applications,” Semicond. Sci. Technol.20(5), 473–480 (2005).
[CrossRef]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Li, S. S.

S. S. Li, “Recent progress in quantum well infrared photodetectors and focal plane arrays for IR imaging applications,” Mater. Chem. Phys.50(3), 188–194 (1997).
[CrossRef]

Li, W.

S. D. Gunapala, S. V. Bandara, J. K. Liu, J. M. Mumolo, D. Z. Ting, C. J. Hill, J. Nguyen, B. Simolon, J. Woolaway, S. C. Wang, W. Li, P. D. LeVan, and M. Z. Tidrow, “Demonstration of Megapixel Dual-Band QWIP Focal Plane Array,” J. Quantum Electron.46(2), 285–293 (2010).
[CrossRef]

Lin, S. Y.

C. C. Chang, Y. D. Sharma, Y. S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. H. Huang, and S. Y. Lin, “A Surface Plasmon Enhanced Infrared Photodetector Based on InAs Quantum Dots,” Nano Lett.10(5), 1704–1709 (2010).
[CrossRef] [PubMed]

Liu, A. K.

S. D. Gunapala, S. V. Bandara, J. K. Liu, S. B. Rafol, J. M. Mumolo, C. A. Shott, R. Jones, J. Woolaway, J. M. Fastenau, A. K. Liu, M. Jhabvala, and K. K. Choi, “640 x 512 pixel narrow-band, four-band, and broad-band quantum well infrared photodetector focal plane arrays,” Infrared Phys. Technol.44(5-6), 411–425 (2003).
[CrossRef]

Liu, J. K.

S. D. Gunapala, S. V. Bandara, J. K. Liu, J. M. Mumolo, D. Z. Ting, C. J. Hill, J. Nguyen, B. Simolon, J. Woolaway, S. C. Wang, W. Li, P. D. LeVan, and M. Z. Tidrow, “Demonstration of Megapixel Dual-Band QWIP Focal Plane Array,” J. Quantum Electron.46(2), 285–293 (2010).
[CrossRef]

S. D. Gunapala, S. V. Bandara, J. K. Liu, C. J. Hill, S. B. Rafol, J. M. Mumolo, J. T. Trinh, M. Z. Tidrow, and P. D. LeVan, “1024 × 1024 pixel mid-wavelength and long-wavelength infrared QWIP focal plane arrays for imaging applications,” Semicond. Sci. Technol.20(5), 473–480 (2005).
[CrossRef]

S. D. Gunapala, S. V. Bandara, J. K. Liu, S. B. Rafol, J. M. Mumolo, C. A. Shott, R. Jones, J. Woolaway, J. M. Fastenau, A. K. Liu, M. Jhabvala, and K. K. Choi, “640 x 512 pixel narrow-band, four-band, and broad-band quantum well infrared photodetector focal plane arrays,” Infrared Phys. Technol.44(5-6), 411–425 (2003).
[CrossRef]

Liu, X. L.

X. L. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett.107(4), 045901 (2011).
[CrossRef] [PubMed]

Lu, G. W.

G. W. Lu, B. L. Cheng, H. Shen, Y. L. Zhou, Z. H. Chen, G. Z. Yang, G. Tillement, S. Roux, and P. Perriat, “Fabry-Perot type sensor with surface plasmon resonance,” Appl. Phys. Lett.89, 22394 (2006).

Lu, W.

H. Wang, Z. An, C. Qu, S. Xiao, L. Zhou, S. Komiyama, W. Lu, X. Shen, and P. Chu, “Optimization of Optoelectronic Plasmonic Structures,” Plasmonics6(2), 319–325 (2011).
[CrossRef]

Martín-Moreno, L.

A. Mary, S. G. Rodrigo, L. Martín-Moreno, and F. J. García-Vidal, “Theory of light transmission through an array of rectangular holes,” Phys. Rev. B76(19), 195414 (2007).
[CrossRef]

Mary, A.

A. Mary, S. G. Rodrigo, L. Martín-Moreno, and F. J. García-Vidal, “Theory of light transmission through an array of rectangular holes,” Phys. Rev. B76(19), 195414 (2007).
[CrossRef]

Mohseni, H.

W. Wu, A. Bonakdar, and H. Mohseni, “Plasmonic enhanced quantum well infrared photodetector with high detectivity,” Appl. Phys. Lett.96(16), 161107 (2010).
[CrossRef]

W. Wu, A. Bonakdar, and H. Mohseni, “Plasmonic enhanced quantum well infrared photodetector with high detectivity,” Appl. Phys. Lett.96(16), 161107 (2010).
[CrossRef]

Mumolo, J. M.

S. D. Gunapala, S. V. Bandara, J. K. Liu, J. M. Mumolo, D. Z. Ting, C. J. Hill, J. Nguyen, B. Simolon, J. Woolaway, S. C. Wang, W. Li, P. D. LeVan, and M. Z. Tidrow, “Demonstration of Megapixel Dual-Band QWIP Focal Plane Array,” J. Quantum Electron.46(2), 285–293 (2010).
[CrossRef]

S. D. Gunapala, S. V. Bandara, J. K. Liu, C. J. Hill, S. B. Rafol, J. M. Mumolo, J. T. Trinh, M. Z. Tidrow, and P. D. LeVan, “1024 × 1024 pixel mid-wavelength and long-wavelength infrared QWIP focal plane arrays for imaging applications,” Semicond. Sci. Technol.20(5), 473–480 (2005).
[CrossRef]

S. D. Gunapala, S. V. Bandara, J. K. Liu, S. B. Rafol, J. M. Mumolo, C. A. Shott, R. Jones, J. Woolaway, J. M. Fastenau, A. K. Liu, M. Jhabvala, and K. K. Choi, “640 x 512 pixel narrow-band, four-band, and broad-band quantum well infrared photodetector focal plane arrays,” Infrared Phys. Technol.44(5-6), 411–425 (2003).
[CrossRef]

Nguyen, J.

S. D. Gunapala, S. V. Bandara, J. K. Liu, J. M. Mumolo, D. Z. Ting, C. J. Hill, J. Nguyen, B. Simolon, J. Woolaway, S. C. Wang, W. Li, P. D. LeVan, and M. Z. Tidrow, “Demonstration of Megapixel Dual-Band QWIP Focal Plane Array,” J. Quantum Electron.46(2), 285–293 (2010).
[CrossRef]

Pacifici, D.

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells,” Nano Lett.8(12), 4391–4397 (2008).
[CrossRef] [PubMed]

Padilla, W. J.

X. L. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett.107(4), 045901 (2011).
[CrossRef] [PubMed]

Pan, J. L.

J. L. Pan and C. G. Fonstad., “Theory, fabrication and characterization of quantum well infrared photodetectors,” Mater. Sci. Eng. Rep.28(3-4), 65–147 (2000).
[CrossRef]

Peralta, R. J.

K. K. Choi, M. D. Jhabvala, and R. J. Peralta, “Voltage-Tunable Two-Color Corrugated-QWIP Focal Plane Arrays,” IEEE Electron. Dev. Lett.29(9), 1011–1013 (2008).
[CrossRef]

Perriat, P.

G. W. Lu, B. L. Cheng, H. Shen, Y. L. Zhou, Z. H. Chen, G. Z. Yang, G. Tillement, S. Roux, and P. Perriat, “Fabry-Perot type sensor with surface plasmon resonance,” Appl. Phys. Lett.89, 22394 (2006).

Qu, C.

H. Wang, Z. An, C. Qu, S. Xiao, L. Zhou, S. Komiyama, W. Lu, X. Shen, and P. Chu, “Optimization of Optoelectronic Plasmonic Structures,” Plasmonics6(2), 319–325 (2011).
[CrossRef]

Rafol, S. B.

S. D. Gunapala, S. V. Bandara, J. K. Liu, C. J. Hill, S. B. Rafol, J. M. Mumolo, J. T. Trinh, M. Z. Tidrow, and P. D. LeVan, “1024 × 1024 pixel mid-wavelength and long-wavelength infrared QWIP focal plane arrays for imaging applications,” Semicond. Sci. Technol.20(5), 473–480 (2005).
[CrossRef]

S. D. Gunapala, S. V. Bandara, J. K. Liu, S. B. Rafol, J. M. Mumolo, C. A. Shott, R. Jones, J. Woolaway, J. M. Fastenau, A. K. Liu, M. Jhabvala, and K. K. Choi, “640 x 512 pixel narrow-band, four-band, and broad-band quantum well infrared photodetector focal plane arrays,” Infrared Phys. Technol.44(5-6), 411–425 (2003).
[CrossRef]

Rodrigo, S. G.

A. Mary, S. G. Rodrigo, L. Martín-Moreno, and F. J. García-Vidal, “Theory of light transmission through an array of rectangular holes,” Phys. Rev. B76(19), 195414 (2007).
[CrossRef]

Rogalski, A.

A. Rogalski, J. Antoszewski, and L. Faraone, “Third-generation infrared photodetector arrays,” J. Appl. Phys.105(9), 091101 (2009).
[CrossRef]

A. Rogalski, “Material considerations for third generation infrared photon detectors,” Infrared Phys. Technol.50(2-3), 240–252 (2007).
[CrossRef]

Roux, S.

G. W. Lu, B. L. Cheng, H. Shen, Y. L. Zhou, Z. H. Chen, G. Z. Yang, G. Tillement, S. Roux, and P. Perriat, “Fabry-Perot type sensor with surface plasmon resonance,” Appl. Phys. Lett.89, 22394 (2006).

Sagnes, I.

Y. Todorov, A. M. Andrews, I. Sagnes, R. Colombelli, P. Klang, G. Strasser, and C. Sirtori, “Strong Light-Matter Coupling in Subwavelength Metal-Dielectric Microcavities at Terahertz Frequencies,” Phys. Rev. Lett.102(18), 186402 (2009).
[CrossRef] [PubMed]

Sharma, Y. D.

C. C. Chang, Y. D. Sharma, Y. S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. H. Huang, and S. Y. Lin, “A Surface Plasmon Enhanced Infrared Photodetector Based on InAs Quantum Dots,” Nano Lett.10(5), 1704–1709 (2010).
[CrossRef] [PubMed]

Shen, H.

G. W. Lu, B. L. Cheng, H. Shen, Y. L. Zhou, Z. H. Chen, G. Z. Yang, G. Tillement, S. Roux, and P. Perriat, “Fabry-Perot type sensor with surface plasmon resonance,” Appl. Phys. Lett.89, 22394 (2006).

Shen, X.

H. Wang, Z. An, C. Qu, S. Xiao, L. Zhou, S. Komiyama, W. Lu, X. Shen, and P. Chu, “Optimization of Optoelectronic Plasmonic Structures,” Plasmonics6(2), 319–325 (2011).
[CrossRef]

Shenoi, R. V.

C. C. Chang, Y. D. Sharma, Y. S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. H. Huang, and S. Y. Lin, “A Surface Plasmon Enhanced Infrared Photodetector Based on InAs Quantum Dots,” Nano Lett.10(5), 1704–1709 (2010).
[CrossRef] [PubMed]

Shott, C. A.

S. D. Gunapala, S. V. Bandara, J. K. Liu, S. B. Rafol, J. M. Mumolo, C. A. Shott, R. Jones, J. Woolaway, J. M. Fastenau, A. K. Liu, M. Jhabvala, and K. K. Choi, “640 x 512 pixel narrow-band, four-band, and broad-band quantum well infrared photodetector focal plane arrays,” Infrared Phys. Technol.44(5-6), 411–425 (2003).
[CrossRef]

Simolon, B.

S. D. Gunapala, S. V. Bandara, J. K. Liu, J. M. Mumolo, D. Z. Ting, C. J. Hill, J. Nguyen, B. Simolon, J. Woolaway, S. C. Wang, W. Li, P. D. LeVan, and M. Z. Tidrow, “Demonstration of Megapixel Dual-Band QWIP Focal Plane Array,” J. Quantum Electron.46(2), 285–293 (2010).
[CrossRef]

Sirtori, C.

Y. Todorov, A. M. Andrews, I. Sagnes, R. Colombelli, P. Klang, G. Strasser, and C. Sirtori, “Strong Light-Matter Coupling in Subwavelength Metal-Dielectric Microcavities at Terahertz Frequencies,” Phys. Rev. Lett.102(18), 186402 (2009).
[CrossRef] [PubMed]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum Cascade Laser,” Science264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Sivco, D. L.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum Cascade Laser,” Science264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Sorba, L.

D. Dini, R. Köhler, A. Tredicucci, G. Biasiol, and L. Sorba, “Microcavity Polariton Splitting of Intersubband Transitions,” Phys. Rev. Lett.90(11), 116401 (2003).
[CrossRef] [PubMed]

Starr, A. F.

X. L. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett.107(4), 045901 (2011).
[CrossRef] [PubMed]

Starr, T.

X. L. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett.107(4), 045901 (2011).
[CrossRef] [PubMed]

Strasser, G.

Y. Todorov, A. M. Andrews, I. Sagnes, R. Colombelli, P. Klang, G. Strasser, and C. Sirtori, “Strong Light-Matter Coupling in Subwavelength Metal-Dielectric Microcavities at Terahertz Frequencies,” Phys. Rev. Lett.102(18), 186402 (2009).
[CrossRef] [PubMed]

Sweatlock, L. A.

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells,” Nano Lett.8(12), 4391–4397 (2008).
[CrossRef] [PubMed]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Tidrow, M. Z.

S. D. Gunapala, S. V. Bandara, J. K. Liu, J. M. Mumolo, D. Z. Ting, C. J. Hill, J. Nguyen, B. Simolon, J. Woolaway, S. C. Wang, W. Li, P. D. LeVan, and M. Z. Tidrow, “Demonstration of Megapixel Dual-Band QWIP Focal Plane Array,” J. Quantum Electron.46(2), 285–293 (2010).
[CrossRef]

S. D. Gunapala, S. V. Bandara, J. K. Liu, C. J. Hill, S. B. Rafol, J. M. Mumolo, J. T. Trinh, M. Z. Tidrow, and P. D. LeVan, “1024 × 1024 pixel mid-wavelength and long-wavelength infrared QWIP focal plane arrays for imaging applications,” Semicond. Sci. Technol.20(5), 473–480 (2005).
[CrossRef]

Tillement, G.

G. W. Lu, B. L. Cheng, H. Shen, Y. L. Zhou, Z. H. Chen, G. Z. Yang, G. Tillement, S. Roux, and P. Perriat, “Fabry-Perot type sensor with surface plasmon resonance,” Appl. Phys. Lett.89, 22394 (2006).

Ting, D. Z.

S. D. Gunapala, S. V. Bandara, J. K. Liu, J. M. Mumolo, D. Z. Ting, C. J. Hill, J. Nguyen, B. Simolon, J. Woolaway, S. C. Wang, W. Li, P. D. LeVan, and M. Z. Tidrow, “Demonstration of Megapixel Dual-Band QWIP Focal Plane Array,” J. Quantum Electron.46(2), 285–293 (2010).
[CrossRef]

Todorov, Y.

Y. Todorov, A. M. Andrews, I. Sagnes, R. Colombelli, P. Klang, G. Strasser, and C. Sirtori, “Strong Light-Matter Coupling in Subwavelength Metal-Dielectric Microcavities at Terahertz Frequencies,” Phys. Rev. Lett.102(18), 186402 (2009).
[CrossRef] [PubMed]

Tredicucci, A.

D. Dini, R. Köhler, A. Tredicucci, G. Biasiol, and L. Sorba, “Microcavity Polariton Splitting of Intersubband Transitions,” Phys. Rev. Lett.90(11), 116401 (2003).
[CrossRef] [PubMed]

Trinh, J. T.

S. D. Gunapala, S. V. Bandara, J. K. Liu, C. J. Hill, S. B. Rafol, J. M. Mumolo, J. T. Trinh, M. Z. Tidrow, and P. D. LeVan, “1024 × 1024 pixel mid-wavelength and long-wavelength infrared QWIP focal plane arrays for imaging applications,” Semicond. Sci. Technol.20(5), 473–480 (2005).
[CrossRef]

Tsai, M. W.

Tyler, T.

X. L. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett.107(4), 045901 (2011).
[CrossRef] [PubMed]

Tzuang, L. D. C.

Wang, H.

H. Wang, Z. An, C. Qu, S. Xiao, L. Zhou, S. Komiyama, W. Lu, X. Shen, and P. Chu, “Optimization of Optoelectronic Plasmonic Structures,” Plasmonics6(2), 319–325 (2011).
[CrossRef]

Wang, S. C.

S. D. Gunapala, S. V. Bandara, J. K. Liu, J. M. Mumolo, D. Z. Ting, C. J. Hill, J. Nguyen, B. Simolon, J. Woolaway, S. C. Wang, W. Li, P. D. LeVan, and M. Z. Tidrow, “Demonstration of Megapixel Dual-Band QWIP Focal Plane Array,” J. Quantum Electron.46(2), 285–293 (2010).
[CrossRef]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Woolaway, J.

S. D. Gunapala, S. V. Bandara, J. K. Liu, J. M. Mumolo, D. Z. Ting, C. J. Hill, J. Nguyen, B. Simolon, J. Woolaway, S. C. Wang, W. Li, P. D. LeVan, and M. Z. Tidrow, “Demonstration of Megapixel Dual-Band QWIP Focal Plane Array,” J. Quantum Electron.46(2), 285–293 (2010).
[CrossRef]

S. D. Gunapala, S. V. Bandara, J. K. Liu, S. B. Rafol, J. M. Mumolo, C. A. Shott, R. Jones, J. Woolaway, J. M. Fastenau, A. K. Liu, M. Jhabvala, and K. K. Choi, “640 x 512 pixel narrow-band, four-band, and broad-band quantum well infrared photodetector focal plane arrays,” Infrared Phys. Technol.44(5-6), 411–425 (2003).
[CrossRef]

Wu, W.

W. Wu, A. Bonakdar, and H. Mohseni, “Plasmonic enhanced quantum well infrared photodetector with high detectivity,” Appl. Phys. Lett.96(16), 161107 (2010).
[CrossRef]

W. Wu, A. Bonakdar, and H. Mohseni, “Plasmonic enhanced quantum well infrared photodetector with high detectivity,” Appl. Phys. Lett.96(16), 161107 (2010).
[CrossRef]

Wu, Y. T.

Xiao, S.

H. Wang, Z. An, C. Qu, S. Xiao, L. Zhou, S. Komiyama, W. Lu, X. Shen, and P. Chu, “Optimization of Optoelectronic Plasmonic Structures,” Plasmonics6(2), 319–325 (2011).
[CrossRef]

Yang, G. Z.

G. W. Lu, B. L. Cheng, H. Shen, Y. L. Zhou, Z. H. Chen, G. Z. Yang, G. Tillement, S. Roux, and P. Perriat, “Fabry-Perot type sensor with surface plasmon resonance,” Appl. Phys. Lett.89, 22394 (2006).

Ye, Y. H.

Zhou, L.

H. Wang, Z. An, C. Qu, S. Xiao, L. Zhou, S. Komiyama, W. Lu, X. Shen, and P. Chu, “Optimization of Optoelectronic Plasmonic Structures,” Plasmonics6(2), 319–325 (2011).
[CrossRef]

Zhou, Y. L.

G. W. Lu, B. L. Cheng, H. Shen, Y. L. Zhou, Z. H. Chen, G. Z. Yang, G. Tillement, S. Roux, and P. Perriat, “Fabry-Perot type sensor with surface plasmon resonance,” Appl. Phys. Lett.89, 22394 (2006).

Analyst (Lond.) (1)

D. I. Ellis and R. Goodacre, “Metabolic fingerprinting in disease diagnosis: biomedical applications of infrared and Raman spectroscopy,” Analyst (Lond.)131(8), 875–885 (2006).
[CrossRef] [PubMed]

Appl. Phys. Lett. (4)

G. W. Lu, B. L. Cheng, H. Shen, Y. L. Zhou, Z. H. Chen, G. Z. Yang, G. Tillement, S. Roux, and P. Perriat, “Fabry-Perot type sensor with surface plasmon resonance,” Appl. Phys. Lett.89, 22394 (2006).

W. Wu, A. Bonakdar, and H. Mohseni, “Plasmonic enhanced quantum well infrared photodetector with high detectivity,” Appl. Phys. Lett.96(16), 161107 (2010).
[CrossRef]

C. Y. Chen, M. W. Tsai, T. H. Chuang, Y. T. Chang, and S. C. Lee, “Extraordinary transmission through a silver film perforated with cross shaped hole arrays in a square lattice,” Appl. Phys. Lett.91(6), 063108 (2007).
[CrossRef]

W. Wu, A. Bonakdar, and H. Mohseni, “Plasmonic enhanced quantum well infrared photodetector with high detectivity,” Appl. Phys. Lett.96(16), 161107 (2010).
[CrossRef]

IEEE Electron. Dev. Lett. (1)

K. K. Choi, M. D. Jhabvala, and R. J. Peralta, “Voltage-Tunable Two-Color Corrugated-QWIP Focal Plane Arrays,” IEEE Electron. Dev. Lett.29(9), 1011–1013 (2008).
[CrossRef]

Infrared Phys. Technol. (2)

A. Rogalski, “Material considerations for third generation infrared photon detectors,” Infrared Phys. Technol.50(2-3), 240–252 (2007).
[CrossRef]

S. D. Gunapala, S. V. Bandara, J. K. Liu, S. B. Rafol, J. M. Mumolo, C. A. Shott, R. Jones, J. Woolaway, J. M. Fastenau, A. K. Liu, M. Jhabvala, and K. K. Choi, “640 x 512 pixel narrow-band, four-band, and broad-band quantum well infrared photodetector focal plane arrays,” Infrared Phys. Technol.44(5-6), 411–425 (2003).
[CrossRef]

J. Appl. Phys. (2)

B. S. Dennis, V. Aksyuk, M. I. Haftel, S. T. Koev, and G. Blumberg, “Enhanced coupling between light and surface plasmons by nano-structured Fabry-Perot resonantor,” J. Appl. Phys.110(6), 066102 (2011).
[CrossRef]

A. Rogalski, J. Antoszewski, and L. Faraone, “Third-generation infrared photodetector arrays,” J. Appl. Phys.105(9), 091101 (2009).
[CrossRef]

J. Quantum Electron. (1)

S. D. Gunapala, S. V. Bandara, J. K. Liu, J. M. Mumolo, D. Z. Ting, C. J. Hill, J. Nguyen, B. Simolon, J. Woolaway, S. C. Wang, W. Li, P. D. LeVan, and M. Z. Tidrow, “Demonstration of Megapixel Dual-Band QWIP Focal Plane Array,” J. Quantum Electron.46(2), 285–293 (2010).
[CrossRef]

Mater. Chem. Phys. (1)

S. S. Li, “Recent progress in quantum well infrared photodetectors and focal plane arrays for IR imaging applications,” Mater. Chem. Phys.50(3), 188–194 (1997).
[CrossRef]

Mater. Sci. Eng. Rep. (1)

J. L. Pan and C. G. Fonstad., “Theory, fabrication and characterization of quantum well infrared photodetectors,” Mater. Sci. Eng. Rep.28(3-4), 65–147 (2000).
[CrossRef]

Nano Lett. (2)

C. C. Chang, Y. D. Sharma, Y. S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. H. Huang, and S. Y. Lin, “A Surface Plasmon Enhanced Infrared Photodetector Based on InAs Quantum Dots,” Nano Lett.10(5), 1704–1709 (2010).
[CrossRef] [PubMed]

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells,” Nano Lett.8(12), 4391–4397 (2008).
[CrossRef] [PubMed]

Nature (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Opt. Express (2)

Phys. Rev. B (1)

A. Mary, S. G. Rodrigo, L. Martín-Moreno, and F. J. García-Vidal, “Theory of light transmission through an array of rectangular holes,” Phys. Rev. B76(19), 195414 (2007).
[CrossRef]

Phys. Rev. Lett. (3)

D. Dini, R. Köhler, A. Tredicucci, G. Biasiol, and L. Sorba, “Microcavity Polariton Splitting of Intersubband Transitions,” Phys. Rev. Lett.90(11), 116401 (2003).
[CrossRef] [PubMed]

Y. Todorov, A. M. Andrews, I. Sagnes, R. Colombelli, P. Klang, G. Strasser, and C. Sirtori, “Strong Light-Matter Coupling in Subwavelength Metal-Dielectric Microcavities at Terahertz Frequencies,” Phys. Rev. Lett.102(18), 186402 (2009).
[CrossRef] [PubMed]

X. L. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett.107(4), 045901 (2011).
[CrossRef] [PubMed]

Plasmonics (1)

H. Wang, Z. An, C. Qu, S. Xiao, L. Zhou, S. Komiyama, W. Lu, X. Shen, and P. Chu, “Optimization of Optoelectronic Plasmonic Structures,” Plasmonics6(2), 319–325 (2011).
[CrossRef]

Science (1)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum Cascade Laser,” Science264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Semicond. Sci. Technol. (1)

S. D. Gunapala, S. V. Bandara, J. K. Liu, C. J. Hill, S. B. Rafol, J. M. Mumolo, J. T. Trinh, M. Z. Tidrow, and P. D. LeVan, “1024 × 1024 pixel mid-wavelength and long-wavelength infrared QWIP focal plane arrays for imaging applications,” Semicond. Sci. Technol.20(5), 473–480 (2005).
[CrossRef]

Other (11)

E. L. Dereniak and G. D. Boreman, Infrared Detectors and Systems (Wiley, New York, 1996), Chap. 8.

A. Krier, Mid-Infrared Semiconductor Optoelectronics (Springer, 2005).

H. Schneider and H. C. Liu, Quantum Well Infrared Photodetectors (Springer, 2007).

More accurately, in the deep subwavelength region(i.e., S<<λ1/2nGaAs), f1 is insensitive to S, as will be seen in Fig. 3.

CONCERTO 7.0, Vector Fields Limited, England (2008).

In case of 45° edge facet incidence, the device responses only half of the unpolarized excitation due to the selection rule. For optimized polarization of the excitation, the simulated efficiencies reach ~4% for our QWs, which agree well with the previously reported values in Ref.[2].

These enchancement factors increase at lower electron densities. For example, at Ns = 1 × 1011/cm2, the enhancement factors are ~55 at f1 (cavity: 23.0%; non-plasmonic: 0.84%; single-layer: 2.7%) and ~45 at f2 (cavity: 18.8%; non-plasmonic: 0.84%; single-layer: 0.3%).

The formula for neff in Eq. (2) applies to the case where the insulators on two sides of the metal layer are half-infinite. Here we use same formula to roughly esitmate neff value for our plasmonic cavity case.

Due to the limitation of L<P for a cross hole array, there remains a small fraction of PSP {0, ± 1} contribution for f1 in H-cavity.

The PSP {0, ± 2} is readily coupled to LSP which is predicted from Eq. (2) to be near 40THz. As a result, PSP {0, ± 2} is highly hybridized with LSP mode.

y-polarized excitation is used in FDTD simulation, therefore Ex≈0 for all resonant modes, and only {0, ± 1} (but not { ± 1,0}) PSP mode contributes in calculaitons. In experiments, both { ± 1,0} and {0, ± 1} modes contribute equally to the measured reflection spectra since cross hole shape is insensitive to polarization.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(Color) Schematic diagram of a plasmonic cavity designed for two-color quantum well infrared photodetectors. (b) A top view SEM image of a typical sample. (c) Experimental and (d) FDTD simulation reflection spectra of plasmonic cavities with S = 0.8μm (solid black) and 1μm (dash blue). The lateral geometric parameters are fixed at P = 3μm, L = 2.6μm, W = 0.52 μm

Fig. 2
Fig. 2

Color contour plot of the lowest resonance frequency f1 against P and L for the studied plasmonic cavities according to FDTD simulation, with solid curve depicting the equi-frequancy contour line with f1 = 20THz. Inset shows same results with normalized P (i.e., Pf1(εGaAs1/2/c)) and normalized L, (i.e., Lf1(εGaAs1/2/c)). Hollow stars are derived from experimentally measured spectra.

Fig. 3
Fig. 3

Color contour plot of the calculated reflection against f and 1/S for plasmonic cavities with lateral geometry chosen as (a) A-structure and (b) H-structure, where S is the cavity thickness. In both (a) and (b), the sloped dotted lines describes the Fabry-Perot (FP) cavity modes [Eq. (3)], the vertical dashed lines denote the PSP modes based on Eq. (1), and the parabolic-like curves describes the hybridized modes based on Eq. (4). The hollow circles in (b) display the experimentally measured resonances for S = 0.8μm,1μm and 2μm.

Fig. 4
Fig. 4

Color contour plot of the simulated electric-field distribution of the photonic FP mode (a)-(c), plasmonic LSP (d)-(f), and PSP (g)-(i). (a),(d),(g) and (b),(e),(f) are the Ey and Ez distribution over x-y plane (at the cavity center, i.e., z = -S/2) for FP, LSP and PSPs. (c),(f),(i) are the Ey,E,Ez distributions over y-z plane (at x = 0) of FP, LSP and PSP modes, respectively. z/S = 0 and z/S = −1 refer to the positions of top and bottom Au/GaAs interfaces. (j) Ratio between the averaged amplitudes of Ey and Ez components on xy-plane, i.e., ‹Ey›/‹Ez› values for FP, LSP and PSP states as functions of depth z

Fig. 5
Fig. 5

(a) FDTD calculated profiles of ‹Ez2›/‹E02› averaged over x-y plane for the H-cavity with S = 1μm at two resonances f1 = 20.0THz and f2 = 29.5THz. z = 0 refers to the top Au/GaAs interface and z = −1μm, the bottom one. (b) and (c) FDTD calculated field mapping of Ez component of the highly hybridized mode (at f2) over yz-plane at x = 0 (b) and over xy-planes at depths of z = −0.1μm, −0.5 μm and −0.9 μm (c).

Fig. 6
Fig. 6

FDTD calculated absorption spectra of each QW layer, QW1 (a) and QW2 (b), for the designed two-color plasmonic detector (solid dots), a single layer coupler with same cross hole arrays (solid triangles) and 45° edge facet incidence without any metal structures (hollow dots).The cavity is H-structure with S = 1μm.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

f PSP c P ε GaAs i 2 + j 2
f LSP = c 2L n eff
f FP (n) =n c 2S ε GaAs
f(i,j,n)= c 2π | k PSP | 2 + | k FP | 2 c ε GaAs i 2 + j 2 P 2 + n 2 4 S 2
E z 2 E 0 2 = | E z 2 |dxdy | E 0 2 | P 2
ε i,z (ω)= ε GaAs + N s e 2 f i,osc m 0 ε 0 L eff 1 ( ω i 2 - ω 2 )-i γ i ω

Metrics