A simple and low-cost synchronized signaling delivery scheme has been proposed for a 60 GHz in-building optical wireless network with 12.7Gbps throughput based on digital frequency division multiplexing and digital Nyquist shaping.

©2013 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-Wideband and 60-GHz Generation and Transmission Over a Wavelength Division Multiplexing-Passive Optical Network

Weilin Liu, Tong Shao, and Jianping Yao
J. Opt. Commun. Netw. 5(9) 1076-1082 (2013)

Transmission of 20-Gb/s OFDM signals occupying 7-GHz license-free band at 60 GHz using a RoF system employing frequency sextupling optical up-conversion

Po-Tsung Shih, Chun-Ting Lin, Wen-Jr Jiang, Han-Sheng Huang, Jyehong Chen, Anthony Ng’oma, Michael Sauer, and Sien Chi
Opt. Express 18(12) 12748-12755 (2010)


  • View by:
  • |
  • |
  • |

  1. T. Kuri, H. Toda, J. Olmos, and K. Kitayama, “Reconfigurable dense wavelength-division-multiplexing millimeter-waveband radio-over-fiber access system technologies,” J. Lightwave Technol. 28(16), 2247–2257 (2010).
  2. J. Yu, G. K. Chang, Z. Jia, A. Chowdhury, M. Huang, H. Chien, Y. Hsueh, W. Jian, C. Liu, and Z. Dong, “Cost-effective optical millimeter technologies and field demonstrations for very high throughput wireless-over-fiber access systems,” J. Lightwave Technol. 28(16), 2376–2397 (2010).
  3. W. Jiang, C. Lin, A. Ng'oma, P. Shih, J. Chen, M. Sauer, F. Annunziata, and S. Chi, “Simple 14-Gb/s short-range radio-over-fiber system employing a single-electrode MZM for 60-GHz wireless applications,” J. Lightwave Technol. 28(16), 2238–2246 (2010).
  4. Y. Hsueh, Z. Jia, H. Chien, A. Chowdhury, J. Yu, and G. K. Chang, “Multiband 60-GHz wireless over fiber access system with high dispersion tolerance using frequency tripling technique,” J. Lightwave Technol. 29(8), 1105–1111 (2011).
  5. Z. Cao, J. Yu, M. Xia, Q. Tang, Y. Gao, W. Wang, and L. Chen, “Reduction of intersubcarrier interference and frequency-selective fading in OFDM-ROF systems,” J. Lightwave Technol. 28(16), 2423–2429 (2010).

2011 (1)

2010 (4)

Annunziata, F.

Cao, Z.

Chang, G. K.

Chen, J.

Chen, L.

Chi, S.

Chien, H.

Chowdhury, A.

Dong, Z.

Gao, Y.

Hsueh, Y.

Huang, M.

Jia, Z.

Jian, W.

Jiang, W.

Kitayama, K.

Kuri, T.

Lin, C.

Liu, C.

Ng'oma, A.

Olmos, J.

Sauer, M.

Shih, P.

Tang, Q.

Toda, H.

Wang, W.

Xia, M.

Yu, J.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.

Figures (7)

Fig. 1
Fig. 1 Principle of D-FDM for: (a) time domain and (b) frequency domain.
Fig. 2
Fig. 2 Process of Nyquist shaping: (a) without and (b) with Nyquist shaping
Fig. 3
Fig. 3 Beating process and low frequency detection: (a) optical spectrum of data modulated optical mm-wave; (b) RF spectrum of detected BB signal; (c) RF spectrum of detected 60 GHz signal.
Fig. 4
Fig. 4 Experimental setup and measured results: (a)-(c): measured optical spectrum; (d)-(e): measured RF spectrum.
Fig. 5
Fig. 5 Constellations of OFDM signals (a) without and (b) with Polar-NRZ, (c) with Nyquist shaped Polar-NRZ
Fig. 6
Fig. 6 The eye diagrams of the signaling inserted OFDM signal at 60 GHz optical mm-wave over 4.5 km SMF with different detection low pass filters.
Fig. 7
Fig. 7 Measured system performance for BTB and 4.5 km SMF transmission: (a) EVM for user data, (b) Q factor for signaling data

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

S( t )= k=1 N ( a k coskΩt+ b k sinkΩt )
I( t )= 1 2 μ( A +1 2 + A 1 2 )[1+2γS(t)+ γ 2 S 2 (t)]+μ A +1 A 1 cos(2 ω m t)[1+2γS(t)+ γ 2 S 2 (t)]