Abstract

The determination of nanoscale distances or distance changes necessitates a nanoscale ruler. In the present paper, distance dependence of particle temperature in an optically heated gold nanoparticle pair is quantitatively investigated to explore the possibility of creating a plasmon ruler based on this effect. The two origins of the distance-dependence, i.e., electromagnetic coupling and thermal accumulative effect, are studied. For the particle temperature, a scaling behavior is found, and it suggests that the decay of particle temperature with the interparticle gap for different particle sizes follows a common exponential decay equation. This scaling behavior is qualitatively explained with a simple dipolar-coupling model combined with a point heat source interaction model. On the basis of this scaling behavior of absorption power, we further establish a plasmon ruler equation relating the particle temperature and the interparticle distance. Our findings can serve as an excellent guideline for designing and optimizing temperature-based plasmon rulers.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun.220(1-3), 137–141 (2003).
    [CrossRef]
  2. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003).
    [CrossRef] [PubMed]
  3. P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett.4(5), 899–903 (2004).
    [CrossRef]
  4. D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single “bowtie” nanoantennas resonant in the visible,” Nano Lett.4(5), 957–961 (2004).
    [CrossRef]
  5. K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett.3(8), 1087–1090 (2003).
    [CrossRef]
  6. P. K. Jain and M. A. El-Sayed, “Plasmonic coupling in noble metal nanostructures,” Chem. Phys. Lett.487(4-6), 153–164 (2010).
    [CrossRef]
  7. C. Sönnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, “A molecular ruler based on plasmon coupling of single gold and silver nanoparticles,” Nat. Biotechnol.23(6), 741–745 (2005).
    [CrossRef] [PubMed]
  8. B. M. Reinhard, M. Siu, H. Agarwal, A. P. Alivisatos, and J. Liphardt, “Calibration of dynamic molecular rulers based on plasmon coupling between gold nanoparticles,” Nano Lett.5(11), 2246–2252 (2005).
    [CrossRef] [PubMed]
  9. P. K. Jain, W. Huang, and M. A. El-Sayed, “n the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation,” Nano Lett.7(7), 2080–2088 (2007).
    [CrossRef]
  10. B. M. Reinhard, S. Sheikholeslami, A. Mastroianni, A. P. Alivisatos, and J. Liphardt, “Use of plasmon coupling to reveal the dynamics of DNA bending and cleavage by single ecorv restriction enzymes,” Proc. Natl. Acad. Sci. U.S.A.104(8), 2667–2672 (2007).
    [CrossRef] [PubMed]
  11. N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science332(6036), 1407–1410 (2011).
    [CrossRef] [PubMed]
  12. X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano6(3), 2550–2557 (2012).
    [CrossRef] [PubMed]
  13. G. Baffou, R. Quidant, and F. J. García de Abajo, “Nanoscale control of optical heating in complex plasmonic systems,” ACS Nano4(2), 709–716 (2010).
    [CrossRef] [PubMed]
  14. P. Zijlstra, J. W. M. Chon, and M. Gu, “White light scattering spectroscopy and electron microscopy of laser induced melting in single gold nanorods,” Phys. Chem. Chem. Phys.11(28), 5915–5921 (2009).
    [CrossRef] [PubMed]
  15. Z. Qin and J. C. Bischof, “Thermophysical and biological responses of gold nanoparticle laser heating,” Chem. Soc. Rev.41(3), 1191–1217 (2012).
    [CrossRef] [PubMed]
  16. A. O. Govorov, W. Zhang, T. Skeini, H. Richardson, J. Lee, and N. A. Kotov, “Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances,” Nanoscale Res. Lett.1(1), 84–90 (2006).
    [CrossRef]
  17. A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett.7(7), 1929–1934 (2007).
    [CrossRef] [PubMed]
  18. W. Zhao and J. M. Karp, “Tumour targeting: nanoantennas heat up,” Nat. Mater.8(6), 453–454 (2009).
    [CrossRef] [PubMed]
  19. P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Au nanoparticles target cancer,” Nano Today2(1), 18–29 (2007).
    [CrossRef]
  20. D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science297(5584), 1160–1163 (2002).
    [CrossRef] [PubMed]
  21. S. Berciaud, D. Lasne, G. A. Blab, L. Cognet, and B. Lounis, “Photothermal heterodyne imaging of individual metallic nanoparticles: theory versus experiment,” Phys. Rev. B73(4), 045424 (2006).
    [CrossRef]
  22. D. Lasne, G. A. Blab, S. Berciaud, M. Heine, L. Groc, D. Choquet, L. Cognet, and B. Lounis, “Single nanoparticle photothermal tracking (snapt) of 5-nm gold beads in live cells,” Biophys. J.91(12), 4598–4604 (2006).
    [CrossRef] [PubMed]
  23. G. Baffou, M. P. Kreuzer, F. Kulzer, and R. Quidant, “Temperature mapping near plasmonic nanostructures using fluorescence polarization anisotropy,” Opt. Express17(5), 3291–3298 (2009).
    [CrossRef] [PubMed]
  24. A. G. Skirtach, C. Dejugnat, D. Braun, A. S. Susha, A. L. Rogach, W. J. Parak, H. Möhwald, and G. B. Sukhorukov, “The role of metal nanoparticles in remote release of encapsulated materials,” Nano Lett.5(7), 1371–1377 (2005).
    [CrossRef] [PubMed]
  25. D. Pissuwan, S. M. Valenzuela, and M. B. Cortie, “Therapeutic possibilities of plasmonically heated gold nanoparticles,” Trends Biotechnol.24(2), 62–67 (2006).
    [CrossRef] [PubMed]
  26. L. Cao, D. N. Barsic, A. R. Guichard, and M. L. Brongersma, “Plasmon-assisted local temperature control to pattern individual semiconductor nanowires and carbon nanotubes,” Nano Lett.7(11), 3523–3527 (2007).
    [CrossRef] [PubMed]
  27. H. M. Pollock and A. Hammiche, “Micro-thermal analysis: techniques and applications,” J. Phys. D Appl. Phys.34(9), R23–R53 (2001).
    [CrossRef]
  28. G. L. Liu, J. Kim, Y. Lu, and L. P. Lee, “Optofluidic control using photothermal nanoparticles,” Nat. Mater.5(1), 27–32 (2006).
    [CrossRef] [PubMed]
  29. V. Garcés-Chávez, R. Quidant, P. J. Reece, G. Badenes, L. Torner, and K. Dholakia, “Extended organization of colloidal microparticles by surface plasmon polariton excitation,” Phys. Rev. B73(8), 085417 (2006).
    [CrossRef]
  30. X. Miao, B. K. Wilson, and L. Y. Lin, “Localized surface plasmon assisted microfluidic mixing,” Appl. Phys. Lett.92(12), 124108 (2008).
    [CrossRef]
  31. A. O. Govorov and H. H. Richardson, “Generating heat with metal nanoparticles,” Nano Today2(1), 30–38 (2007).
    [CrossRef]
  32. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
    [CrossRef]
  33. U. Kreibig and M. Vollmer, Optical Properties Of Metal Clusters (Springer, 1995).
  34. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer Verlag, 2007), Chap. 5.
  35. Y. Yue and X. Wang, “Nanoscale thermal probing,” Nano Reviews 3: 11586 - DOI: 10.3402/nano.v3i0.11586 (2012)
    [CrossRef]
  36. E. R. G. Eckert and R. M. Drake, Heat and Mass Transfer (McGraw-Hill, 1959).
  37. F. Cooper, “Heat transfer from a sphere to an infinite medium,” Int. J. Heat Mass Tran.20(9), 991–993 (1977).
    [CrossRef]

2012

X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano6(3), 2550–2557 (2012).
[CrossRef] [PubMed]

Z. Qin and J. C. Bischof, “Thermophysical and biological responses of gold nanoparticle laser heating,” Chem. Soc. Rev.41(3), 1191–1217 (2012).
[CrossRef] [PubMed]

2011

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science332(6036), 1407–1410 (2011).
[CrossRef] [PubMed]

2010

G. Baffou, R. Quidant, and F. J. García de Abajo, “Nanoscale control of optical heating in complex plasmonic systems,” ACS Nano4(2), 709–716 (2010).
[CrossRef] [PubMed]

P. K. Jain and M. A. El-Sayed, “Plasmonic coupling in noble metal nanostructures,” Chem. Phys. Lett.487(4-6), 153–164 (2010).
[CrossRef]

2009

P. Zijlstra, J. W. M. Chon, and M. Gu, “White light scattering spectroscopy and electron microscopy of laser induced melting in single gold nanorods,” Phys. Chem. Chem. Phys.11(28), 5915–5921 (2009).
[CrossRef] [PubMed]

W. Zhao and J. M. Karp, “Tumour targeting: nanoantennas heat up,” Nat. Mater.8(6), 453–454 (2009).
[CrossRef] [PubMed]

G. Baffou, M. P. Kreuzer, F. Kulzer, and R. Quidant, “Temperature mapping near plasmonic nanostructures using fluorescence polarization anisotropy,” Opt. Express17(5), 3291–3298 (2009).
[CrossRef] [PubMed]

2008

X. Miao, B. K. Wilson, and L. Y. Lin, “Localized surface plasmon assisted microfluidic mixing,” Appl. Phys. Lett.92(12), 124108 (2008).
[CrossRef]

2007

A. O. Govorov and H. H. Richardson, “Generating heat with metal nanoparticles,” Nano Today2(1), 30–38 (2007).
[CrossRef]

L. Cao, D. N. Barsic, A. R. Guichard, and M. L. Brongersma, “Plasmon-assisted local temperature control to pattern individual semiconductor nanowires and carbon nanotubes,” Nano Lett.7(11), 3523–3527 (2007).
[CrossRef] [PubMed]

P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Au nanoparticles target cancer,” Nano Today2(1), 18–29 (2007).
[CrossRef]

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett.7(7), 1929–1934 (2007).
[CrossRef] [PubMed]

P. K. Jain, W. Huang, and M. A. El-Sayed, “n the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation,” Nano Lett.7(7), 2080–2088 (2007).
[CrossRef]

B. M. Reinhard, S. Sheikholeslami, A. Mastroianni, A. P. Alivisatos, and J. Liphardt, “Use of plasmon coupling to reveal the dynamics of DNA bending and cleavage by single ecorv restriction enzymes,” Proc. Natl. Acad. Sci. U.S.A.104(8), 2667–2672 (2007).
[CrossRef] [PubMed]

2006

A. O. Govorov, W. Zhang, T. Skeini, H. Richardson, J. Lee, and N. A. Kotov, “Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances,” Nanoscale Res. Lett.1(1), 84–90 (2006).
[CrossRef]

G. L. Liu, J. Kim, Y. Lu, and L. P. Lee, “Optofluidic control using photothermal nanoparticles,” Nat. Mater.5(1), 27–32 (2006).
[CrossRef] [PubMed]

V. Garcés-Chávez, R. Quidant, P. J. Reece, G. Badenes, L. Torner, and K. Dholakia, “Extended organization of colloidal microparticles by surface plasmon polariton excitation,” Phys. Rev. B73(8), 085417 (2006).
[CrossRef]

S. Berciaud, D. Lasne, G. A. Blab, L. Cognet, and B. Lounis, “Photothermal heterodyne imaging of individual metallic nanoparticles: theory versus experiment,” Phys. Rev. B73(4), 045424 (2006).
[CrossRef]

D. Lasne, G. A. Blab, S. Berciaud, M. Heine, L. Groc, D. Choquet, L. Cognet, and B. Lounis, “Single nanoparticle photothermal tracking (snapt) of 5-nm gold beads in live cells,” Biophys. J.91(12), 4598–4604 (2006).
[CrossRef] [PubMed]

D. Pissuwan, S. M. Valenzuela, and M. B. Cortie, “Therapeutic possibilities of plasmonically heated gold nanoparticles,” Trends Biotechnol.24(2), 62–67 (2006).
[CrossRef] [PubMed]

2005

A. G. Skirtach, C. Dejugnat, D. Braun, A. S. Susha, A. L. Rogach, W. J. Parak, H. Möhwald, and G. B. Sukhorukov, “The role of metal nanoparticles in remote release of encapsulated materials,” Nano Lett.5(7), 1371–1377 (2005).
[CrossRef] [PubMed]

C. Sönnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, “A molecular ruler based on plasmon coupling of single gold and silver nanoparticles,” Nat. Biotechnol.23(6), 741–745 (2005).
[CrossRef] [PubMed]

B. M. Reinhard, M. Siu, H. Agarwal, A. P. Alivisatos, and J. Liphardt, “Calibration of dynamic molecular rulers based on plasmon coupling between gold nanoparticles,” Nano Lett.5(11), 2246–2252 (2005).
[CrossRef] [PubMed]

2004

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett.4(5), 899–903 (2004).
[CrossRef]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single “bowtie” nanoantennas resonant in the visible,” Nano Lett.4(5), 957–961 (2004).
[CrossRef]

2003

K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett.3(8), 1087–1090 (2003).
[CrossRef]

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun.220(1-3), 137–141 (2003).
[CrossRef]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003).
[CrossRef] [PubMed]

2002

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science297(5584), 1160–1163 (2002).
[CrossRef] [PubMed]

2001

H. M. Pollock and A. Hammiche, “Micro-thermal analysis: techniques and applications,” J. Phys. D Appl. Phys.34(9), R23–R53 (2001).
[CrossRef]

1977

F. Cooper, “Heat transfer from a sphere to an infinite medium,” Int. J. Heat Mass Tran.20(9), 991–993 (1977).
[CrossRef]

1972

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Agarwal, H.

B. M. Reinhard, M. Siu, H. Agarwal, A. P. Alivisatos, and J. Liphardt, “Calibration of dynamic molecular rulers based on plasmon coupling between gold nanoparticles,” Nano Lett.5(11), 2246–2252 (2005).
[CrossRef] [PubMed]

Alivisatos, A. P.

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science332(6036), 1407–1410 (2011).
[CrossRef] [PubMed]

B. M. Reinhard, S. Sheikholeslami, A. Mastroianni, A. P. Alivisatos, and J. Liphardt, “Use of plasmon coupling to reveal the dynamics of DNA bending and cleavage by single ecorv restriction enzymes,” Proc. Natl. Acad. Sci. U.S.A.104(8), 2667–2672 (2007).
[CrossRef] [PubMed]

B. M. Reinhard, M. Siu, H. Agarwal, A. P. Alivisatos, and J. Liphardt, “Calibration of dynamic molecular rulers based on plasmon coupling between gold nanoparticles,” Nano Lett.5(11), 2246–2252 (2005).
[CrossRef] [PubMed]

C. Sönnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, “A molecular ruler based on plasmon coupling of single gold and silver nanoparticles,” Nat. Biotechnol.23(6), 741–745 (2005).
[CrossRef] [PubMed]

Aussenegg, F. R.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun.220(1-3), 137–141 (2003).
[CrossRef]

Badenes, G.

V. Garcés-Chávez, R. Quidant, P. J. Reece, G. Badenes, L. Torner, and K. Dholakia, “Extended organization of colloidal microparticles by surface plasmon polariton excitation,” Phys. Rev. B73(8), 085417 (2006).
[CrossRef]

Baffou, G.

G. Baffou, R. Quidant, and F. J. García de Abajo, “Nanoscale control of optical heating in complex plasmonic systems,” ACS Nano4(2), 709–716 (2010).
[CrossRef] [PubMed]

G. Baffou, M. P. Kreuzer, F. Kulzer, and R. Quidant, “Temperature mapping near plasmonic nanostructures using fluorescence polarization anisotropy,” Opt. Express17(5), 3291–3298 (2009).
[CrossRef] [PubMed]

Barsic, D. N.

L. Cao, D. N. Barsic, A. R. Guichard, and M. L. Brongersma, “Plasmon-assisted local temperature control to pattern individual semiconductor nanowires and carbon nanotubes,” Nano Lett.7(11), 3523–3527 (2007).
[CrossRef] [PubMed]

Berciaud, S.

S. Berciaud, D. Lasne, G. A. Blab, L. Cognet, and B. Lounis, “Photothermal heterodyne imaging of individual metallic nanoparticles: theory versus experiment,” Phys. Rev. B73(4), 045424 (2006).
[CrossRef]

D. Lasne, G. A. Blab, S. Berciaud, M. Heine, L. Groc, D. Choquet, L. Cognet, and B. Lounis, “Single nanoparticle photothermal tracking (snapt) of 5-nm gold beads in live cells,” Biophys. J.91(12), 4598–4604 (2006).
[CrossRef] [PubMed]

Bischof, J. C.

Z. Qin and J. C. Bischof, “Thermophysical and biological responses of gold nanoparticle laser heating,” Chem. Soc. Rev.41(3), 1191–1217 (2012).
[CrossRef] [PubMed]

Blab, G. A.

S. Berciaud, D. Lasne, G. A. Blab, L. Cognet, and B. Lounis, “Photothermal heterodyne imaging of individual metallic nanoparticles: theory versus experiment,” Phys. Rev. B73(4), 045424 (2006).
[CrossRef]

D. Lasne, G. A. Blab, S. Berciaud, M. Heine, L. Groc, D. Choquet, L. Cognet, and B. Lounis, “Single nanoparticle photothermal tracking (snapt) of 5-nm gold beads in live cells,” Biophys. J.91(12), 4598–4604 (2006).
[CrossRef] [PubMed]

Boyer, D.

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science297(5584), 1160–1163 (2002).
[CrossRef] [PubMed]

Braun, D.

A. G. Skirtach, C. Dejugnat, D. Braun, A. S. Susha, A. L. Rogach, W. J. Parak, H. Möhwald, and G. B. Sukhorukov, “The role of metal nanoparticles in remote release of encapsulated materials,” Nano Lett.5(7), 1371–1377 (2005).
[CrossRef] [PubMed]

Brongersma, M. L.

L. Cao, D. N. Barsic, A. R. Guichard, and M. L. Brongersma, “Plasmon-assisted local temperature control to pattern individual semiconductor nanowires and carbon nanotubes,” Nano Lett.7(11), 3523–3527 (2007).
[CrossRef] [PubMed]

Cao, L.

L. Cao, D. N. Barsic, A. R. Guichard, and M. L. Brongersma, “Plasmon-assisted local temperature control to pattern individual semiconductor nanowires and carbon nanotubes,” Nano Lett.7(11), 3523–3527 (2007).
[CrossRef] [PubMed]

Chen, X.

X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano6(3), 2550–2557 (2012).
[CrossRef] [PubMed]

Chen, Y.

X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano6(3), 2550–2557 (2012).
[CrossRef] [PubMed]

Chon, J. W. M.

P. Zijlstra, J. W. M. Chon, and M. Gu, “White light scattering spectroscopy and electron microscopy of laser induced melting in single gold nanorods,” Phys. Chem. Chem. Phys.11(28), 5915–5921 (2009).
[CrossRef] [PubMed]

Choquet, D.

D. Lasne, G. A. Blab, S. Berciaud, M. Heine, L. Groc, D. Choquet, L. Cognet, and B. Lounis, “Single nanoparticle photothermal tracking (snapt) of 5-nm gold beads in live cells,” Biophys. J.91(12), 4598–4604 (2006).
[CrossRef] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Cognet, L.

D. Lasne, G. A. Blab, S. Berciaud, M. Heine, L. Groc, D. Choquet, L. Cognet, and B. Lounis, “Single nanoparticle photothermal tracking (snapt) of 5-nm gold beads in live cells,” Biophys. J.91(12), 4598–4604 (2006).
[CrossRef] [PubMed]

S. Berciaud, D. Lasne, G. A. Blab, L. Cognet, and B. Lounis, “Photothermal heterodyne imaging of individual metallic nanoparticles: theory versus experiment,” Phys. Rev. B73(4), 045424 (2006).
[CrossRef]

Cooper, F.

F. Cooper, “Heat transfer from a sphere to an infinite medium,” Int. J. Heat Mass Tran.20(9), 991–993 (1977).
[CrossRef]

Cortie, M. B.

D. Pissuwan, S. M. Valenzuela, and M. B. Cortie, “Therapeutic possibilities of plasmonically heated gold nanoparticles,” Trends Biotechnol.24(2), 62–67 (2006).
[CrossRef] [PubMed]

Dejugnat, C.

A. G. Skirtach, C. Dejugnat, D. Braun, A. S. Susha, A. L. Rogach, W. J. Parak, H. Möhwald, and G. B. Sukhorukov, “The role of metal nanoparticles in remote release of encapsulated materials,” Nano Lett.5(7), 1371–1377 (2005).
[CrossRef] [PubMed]

Dholakia, K.

V. Garcés-Chávez, R. Quidant, P. J. Reece, G. Badenes, L. Torner, and K. Dholakia, “Extended organization of colloidal microparticles by surface plasmon polariton excitation,” Phys. Rev. B73(8), 085417 (2006).
[CrossRef]

Drezek, R. A.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett.7(7), 1929–1934 (2007).
[CrossRef] [PubMed]

El-Sayed, I. H.

P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Au nanoparticles target cancer,” Nano Today2(1), 18–29 (2007).
[CrossRef]

El-Sayed, M. A.

P. K. Jain and M. A. El-Sayed, “Plasmonic coupling in noble metal nanostructures,” Chem. Phys. Lett.487(4-6), 153–164 (2010).
[CrossRef]

P. K. Jain, W. Huang, and M. A. El-Sayed, “n the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation,” Nano Lett.7(7), 2080–2088 (2007).
[CrossRef]

P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Au nanoparticles target cancer,” Nano Today2(1), 18–29 (2007).
[CrossRef]

Fromm, D. P.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single “bowtie” nanoantennas resonant in the visible,” Nano Lett.4(5), 957–961 (2004).
[CrossRef]

Garcés-Chávez, V.

V. Garcés-Chávez, R. Quidant, P. J. Reece, G. Badenes, L. Torner, and K. Dholakia, “Extended organization of colloidal microparticles by surface plasmon polariton excitation,” Phys. Rev. B73(8), 085417 (2006).
[CrossRef]

García de Abajo, F. J.

G. Baffou, R. Quidant, and F. J. García de Abajo, “Nanoscale control of optical heating in complex plasmonic systems,” ACS Nano4(2), 709–716 (2010).
[CrossRef] [PubMed]

Giessen, H.

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science332(6036), 1407–1410 (2011).
[CrossRef] [PubMed]

Gobin, A. M.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett.7(7), 1929–1934 (2007).
[CrossRef] [PubMed]

Govorov, A. O.

A. O. Govorov and H. H. Richardson, “Generating heat with metal nanoparticles,” Nano Today2(1), 30–38 (2007).
[CrossRef]

A. O. Govorov, W. Zhang, T. Skeini, H. Richardson, J. Lee, and N. A. Kotov, “Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances,” Nanoscale Res. Lett.1(1), 84–90 (2006).
[CrossRef]

Groc, L.

D. Lasne, G. A. Blab, S. Berciaud, M. Heine, L. Groc, D. Choquet, L. Cognet, and B. Lounis, “Single nanoparticle photothermal tracking (snapt) of 5-nm gold beads in live cells,” Biophys. J.91(12), 4598–4604 (2006).
[CrossRef] [PubMed]

Gu, M.

P. Zijlstra, J. W. M. Chon, and M. Gu, “White light scattering spectroscopy and electron microscopy of laser induced melting in single gold nanorods,” Phys. Chem. Chem. Phys.11(28), 5915–5921 (2009).
[CrossRef] [PubMed]

Guichard, A. R.

L. Cao, D. N. Barsic, A. R. Guichard, and M. L. Brongersma, “Plasmon-assisted local temperature control to pattern individual semiconductor nanowires and carbon nanotubes,” Nano Lett.7(11), 3523–3527 (2007).
[CrossRef] [PubMed]

Halas, N. J.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett.7(7), 1929–1934 (2007).
[CrossRef] [PubMed]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Hammiche, A.

H. M. Pollock and A. Hammiche, “Micro-thermal analysis: techniques and applications,” J. Phys. D Appl. Phys.34(9), R23–R53 (2001).
[CrossRef]

Heine, M.

D. Lasne, G. A. Blab, S. Berciaud, M. Heine, L. Groc, D. Choquet, L. Cognet, and B. Lounis, “Single nanoparticle photothermal tracking (snapt) of 5-nm gold beads in live cells,” Biophys. J.91(12), 4598–4604 (2006).
[CrossRef] [PubMed]

Hentschel, M.

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science332(6036), 1407–1410 (2011).
[CrossRef] [PubMed]

Hohenau, A.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun.220(1-3), 137–141 (2003).
[CrossRef]

Huang, W.

P. K. Jain, W. Huang, and M. A. El-Sayed, “n the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation,” Nano Lett.7(7), 2080–2088 (2007).
[CrossRef]

Jain, P. K.

P. K. Jain and M. A. El-Sayed, “Plasmonic coupling in noble metal nanostructures,” Chem. Phys. Lett.487(4-6), 153–164 (2010).
[CrossRef]

P. K. Jain, W. Huang, and M. A. El-Sayed, “n the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation,” Nano Lett.7(7), 2080–2088 (2007).
[CrossRef]

P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Au nanoparticles target cancer,” Nano Today2(1), 18–29 (2007).
[CrossRef]

James, W. D.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett.7(7), 1929–1934 (2007).
[CrossRef] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Karp, J. M.

W. Zhao and J. M. Karp, “Tumour targeting: nanoantennas heat up,” Nat. Mater.8(6), 453–454 (2009).
[CrossRef] [PubMed]

Kim, J.

G. L. Liu, J. Kim, Y. Lu, and L. P. Lee, “Optofluidic control using photothermal nanoparticles,” Nat. Mater.5(1), 27–32 (2006).
[CrossRef] [PubMed]

Kino, G.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single “bowtie” nanoantennas resonant in the visible,” Nano Lett.4(5), 957–961 (2004).
[CrossRef]

Kotov, N. A.

A. O. Govorov, W. Zhang, T. Skeini, H. Richardson, J. Lee, and N. A. Kotov, “Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances,” Nanoscale Res. Lett.1(1), 84–90 (2006).
[CrossRef]

Krenn, J. R.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun.220(1-3), 137–141 (2003).
[CrossRef]

Kreuzer, M. P.

Kulzer, F.

Lamprecht, B.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun.220(1-3), 137–141 (2003).
[CrossRef]

Lasne, D.

D. Lasne, G. A. Blab, S. Berciaud, M. Heine, L. Groc, D. Choquet, L. Cognet, and B. Lounis, “Single nanoparticle photothermal tracking (snapt) of 5-nm gold beads in live cells,” Biophys. J.91(12), 4598–4604 (2006).
[CrossRef] [PubMed]

S. Berciaud, D. Lasne, G. A. Blab, L. Cognet, and B. Lounis, “Photothermal heterodyne imaging of individual metallic nanoparticles: theory versus experiment,” Phys. Rev. B73(4), 045424 (2006).
[CrossRef]

Lee, J.

A. O. Govorov, W. Zhang, T. Skeini, H. Richardson, J. Lee, and N. A. Kotov, “Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances,” Nanoscale Res. Lett.1(1), 84–90 (2006).
[CrossRef]

Lee, L. P.

G. L. Liu, J. Kim, Y. Lu, and L. P. Lee, “Optofluidic control using photothermal nanoparticles,” Nat. Mater.5(1), 27–32 (2006).
[CrossRef] [PubMed]

Lee, M. H.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett.7(7), 1929–1934 (2007).
[CrossRef] [PubMed]

Leitner, A.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun.220(1-3), 137–141 (2003).
[CrossRef]

Li, K.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett.4(5), 899–903 (2004).
[CrossRef]

Lin, L. Y.

X. Miao, B. K. Wilson, and L. Y. Lin, “Localized surface plasmon assisted microfluidic mixing,” Appl. Phys. Lett.92(12), 124108 (2008).
[CrossRef]

Liphardt, J.

B. M. Reinhard, S. Sheikholeslami, A. Mastroianni, A. P. Alivisatos, and J. Liphardt, “Use of plasmon coupling to reveal the dynamics of DNA bending and cleavage by single ecorv restriction enzymes,” Proc. Natl. Acad. Sci. U.S.A.104(8), 2667–2672 (2007).
[CrossRef] [PubMed]

C. Sönnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, “A molecular ruler based on plasmon coupling of single gold and silver nanoparticles,” Nat. Biotechnol.23(6), 741–745 (2005).
[CrossRef] [PubMed]

B. M. Reinhard, M. Siu, H. Agarwal, A. P. Alivisatos, and J. Liphardt, “Calibration of dynamic molecular rulers based on plasmon coupling between gold nanoparticles,” Nano Lett.5(11), 2246–2252 (2005).
[CrossRef] [PubMed]

Liu, G. L.

G. L. Liu, J. Kim, Y. Lu, and L. P. Lee, “Optofluidic control using photothermal nanoparticles,” Nat. Mater.5(1), 27–32 (2006).
[CrossRef] [PubMed]

Liu, N.

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science332(6036), 1407–1410 (2011).
[CrossRef] [PubMed]

Lounis, B.

S. Berciaud, D. Lasne, G. A. Blab, L. Cognet, and B. Lounis, “Photothermal heterodyne imaging of individual metallic nanoparticles: theory versus experiment,” Phys. Rev. B73(4), 045424 (2006).
[CrossRef]

D. Lasne, G. A. Blab, S. Berciaud, M. Heine, L. Groc, D. Choquet, L. Cognet, and B. Lounis, “Single nanoparticle photothermal tracking (snapt) of 5-nm gold beads in live cells,” Biophys. J.91(12), 4598–4604 (2006).
[CrossRef] [PubMed]

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science297(5584), 1160–1163 (2002).
[CrossRef] [PubMed]

Lu, Y.

G. L. Liu, J. Kim, Y. Lu, and L. P. Lee, “Optofluidic control using photothermal nanoparticles,” Nat. Mater.5(1), 27–32 (2006).
[CrossRef] [PubMed]

Maali, A.

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science297(5584), 1160–1163 (2002).
[CrossRef] [PubMed]

Mastroianni, A.

B. M. Reinhard, S. Sheikholeslami, A. Mastroianni, A. P. Alivisatos, and J. Liphardt, “Use of plasmon coupling to reveal the dynamics of DNA bending and cleavage by single ecorv restriction enzymes,” Proc. Natl. Acad. Sci. U.S.A.104(8), 2667–2672 (2007).
[CrossRef] [PubMed]

Miao, X.

X. Miao, B. K. Wilson, and L. Y. Lin, “Localized surface plasmon assisted microfluidic mixing,” Appl. Phys. Lett.92(12), 124108 (2008).
[CrossRef]

Mock, J. J.

K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett.3(8), 1087–1090 (2003).
[CrossRef]

Moerner, W. E.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single “bowtie” nanoantennas resonant in the visible,” Nano Lett.4(5), 957–961 (2004).
[CrossRef]

Möhwald, H.

A. G. Skirtach, C. Dejugnat, D. Braun, A. S. Susha, A. L. Rogach, W. J. Parak, H. Möhwald, and G. B. Sukhorukov, “The role of metal nanoparticles in remote release of encapsulated materials,” Nano Lett.5(7), 1371–1377 (2005).
[CrossRef] [PubMed]

Nordlander, P.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett.4(5), 899–903 (2004).
[CrossRef]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Orrit, M.

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science297(5584), 1160–1163 (2002).
[CrossRef] [PubMed]

Oubre, C.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett.4(5), 899–903 (2004).
[CrossRef]

Parak, W. J.

A. G. Skirtach, C. Dejugnat, D. Braun, A. S. Susha, A. L. Rogach, W. J. Parak, H. Möhwald, and G. B. Sukhorukov, “The role of metal nanoparticles in remote release of encapsulated materials,” Nano Lett.5(7), 1371–1377 (2005).
[CrossRef] [PubMed]

Pissuwan, D.

D. Pissuwan, S. M. Valenzuela, and M. B. Cortie, “Therapeutic possibilities of plasmonically heated gold nanoparticles,” Trends Biotechnol.24(2), 62–67 (2006).
[CrossRef] [PubMed]

Pollock, H. M.

H. M. Pollock and A. Hammiche, “Micro-thermal analysis: techniques and applications,” J. Phys. D Appl. Phys.34(9), R23–R53 (2001).
[CrossRef]

Prodan, E.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett.4(5), 899–903 (2004).
[CrossRef]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Qin, Z.

Z. Qin and J. C. Bischof, “Thermophysical and biological responses of gold nanoparticle laser heating,” Chem. Soc. Rev.41(3), 1191–1217 (2012).
[CrossRef] [PubMed]

Qiu, M.

X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano6(3), 2550–2557 (2012).
[CrossRef] [PubMed]

Quidant, R.

G. Baffou, R. Quidant, and F. J. García de Abajo, “Nanoscale control of optical heating in complex plasmonic systems,” ACS Nano4(2), 709–716 (2010).
[CrossRef] [PubMed]

G. Baffou, M. P. Kreuzer, F. Kulzer, and R. Quidant, “Temperature mapping near plasmonic nanostructures using fluorescence polarization anisotropy,” Opt. Express17(5), 3291–3298 (2009).
[CrossRef] [PubMed]

V. Garcés-Chávez, R. Quidant, P. J. Reece, G. Badenes, L. Torner, and K. Dholakia, “Extended organization of colloidal microparticles by surface plasmon polariton excitation,” Phys. Rev. B73(8), 085417 (2006).
[CrossRef]

Radloff, C.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Rechberger, W.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun.220(1-3), 137–141 (2003).
[CrossRef]

Reece, P. J.

V. Garcés-Chávez, R. Quidant, P. J. Reece, G. Badenes, L. Torner, and K. Dholakia, “Extended organization of colloidal microparticles by surface plasmon polariton excitation,” Phys. Rev. B73(8), 085417 (2006).
[CrossRef]

Reinhard, B. M.

B. M. Reinhard, S. Sheikholeslami, A. Mastroianni, A. P. Alivisatos, and J. Liphardt, “Use of plasmon coupling to reveal the dynamics of DNA bending and cleavage by single ecorv restriction enzymes,” Proc. Natl. Acad. Sci. U.S.A.104(8), 2667–2672 (2007).
[CrossRef] [PubMed]

B. M. Reinhard, M. Siu, H. Agarwal, A. P. Alivisatos, and J. Liphardt, “Calibration of dynamic molecular rulers based on plasmon coupling between gold nanoparticles,” Nano Lett.5(11), 2246–2252 (2005).
[CrossRef] [PubMed]

C. Sönnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, “A molecular ruler based on plasmon coupling of single gold and silver nanoparticles,” Nat. Biotechnol.23(6), 741–745 (2005).
[CrossRef] [PubMed]

Richardson, H.

A. O. Govorov, W. Zhang, T. Skeini, H. Richardson, J. Lee, and N. A. Kotov, “Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances,” Nanoscale Res. Lett.1(1), 84–90 (2006).
[CrossRef]

Richardson, H. H.

A. O. Govorov and H. H. Richardson, “Generating heat with metal nanoparticles,” Nano Today2(1), 30–38 (2007).
[CrossRef]

Rogach, A. L.

A. G. Skirtach, C. Dejugnat, D. Braun, A. S. Susha, A. L. Rogach, W. J. Parak, H. Möhwald, and G. B. Sukhorukov, “The role of metal nanoparticles in remote release of encapsulated materials,” Nano Lett.5(7), 1371–1377 (2005).
[CrossRef] [PubMed]

Schuck, P. J.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single “bowtie” nanoantennas resonant in the visible,” Nano Lett.4(5), 957–961 (2004).
[CrossRef]

Schultz, S.

K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett.3(8), 1087–1090 (2003).
[CrossRef]

Sheikholeslami, S.

B. M. Reinhard, S. Sheikholeslami, A. Mastroianni, A. P. Alivisatos, and J. Liphardt, “Use of plasmon coupling to reveal the dynamics of DNA bending and cleavage by single ecorv restriction enzymes,” Proc. Natl. Acad. Sci. U.S.A.104(8), 2667–2672 (2007).
[CrossRef] [PubMed]

Siu, M.

B. M. Reinhard, M. Siu, H. Agarwal, A. P. Alivisatos, and J. Liphardt, “Calibration of dynamic molecular rulers based on plasmon coupling between gold nanoparticles,” Nano Lett.5(11), 2246–2252 (2005).
[CrossRef] [PubMed]

Skeini, T.

A. O. Govorov, W. Zhang, T. Skeini, H. Richardson, J. Lee, and N. A. Kotov, “Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances,” Nanoscale Res. Lett.1(1), 84–90 (2006).
[CrossRef]

Skirtach, A. G.

A. G. Skirtach, C. Dejugnat, D. Braun, A. S. Susha, A. L. Rogach, W. J. Parak, H. Möhwald, and G. B. Sukhorukov, “The role of metal nanoparticles in remote release of encapsulated materials,” Nano Lett.5(7), 1371–1377 (2005).
[CrossRef] [PubMed]

Smith, D. R.

K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett.3(8), 1087–1090 (2003).
[CrossRef]

Sönnichsen, C.

C. Sönnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, “A molecular ruler based on plasmon coupling of single gold and silver nanoparticles,” Nat. Biotechnol.23(6), 741–745 (2005).
[CrossRef] [PubMed]

Stockman, M. I.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett.4(5), 899–903 (2004).
[CrossRef]

Su, K. H.

K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett.3(8), 1087–1090 (2003).
[CrossRef]

Sukhorukov, G. B.

A. G. Skirtach, C. Dejugnat, D. Braun, A. S. Susha, A. L. Rogach, W. J. Parak, H. Möhwald, and G. B. Sukhorukov, “The role of metal nanoparticles in remote release of encapsulated materials,” Nano Lett.5(7), 1371–1377 (2005).
[CrossRef] [PubMed]

Sundaramurthy, A.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single “bowtie” nanoantennas resonant in the visible,” Nano Lett.4(5), 957–961 (2004).
[CrossRef]

Susha, A. S.

A. G. Skirtach, C. Dejugnat, D. Braun, A. S. Susha, A. L. Rogach, W. J. Parak, H. Möhwald, and G. B. Sukhorukov, “The role of metal nanoparticles in remote release of encapsulated materials,” Nano Lett.5(7), 1371–1377 (2005).
[CrossRef] [PubMed]

Tamarat, P.

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science297(5584), 1160–1163 (2002).
[CrossRef] [PubMed]

Torner, L.

V. Garcés-Chávez, R. Quidant, P. J. Reece, G. Badenes, L. Torner, and K. Dholakia, “Extended organization of colloidal microparticles by surface plasmon polariton excitation,” Phys. Rev. B73(8), 085417 (2006).
[CrossRef]

Valenzuela, S. M.

D. Pissuwan, S. M. Valenzuela, and M. B. Cortie, “Therapeutic possibilities of plasmonically heated gold nanoparticles,” Trends Biotechnol.24(2), 62–67 (2006).
[CrossRef] [PubMed]

Wei, Q. H.

K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett.3(8), 1087–1090 (2003).
[CrossRef]

Weiss, T.

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science332(6036), 1407–1410 (2011).
[CrossRef] [PubMed]

West, J. L.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett.7(7), 1929–1934 (2007).
[CrossRef] [PubMed]

Wilson, B. K.

X. Miao, B. K. Wilson, and L. Y. Lin, “Localized surface plasmon assisted microfluidic mixing,” Appl. Phys. Lett.92(12), 124108 (2008).
[CrossRef]

Yan, M.

X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano6(3), 2550–2557 (2012).
[CrossRef] [PubMed]

Zhang, W.

A. O. Govorov, W. Zhang, T. Skeini, H. Richardson, J. Lee, and N. A. Kotov, “Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances,” Nanoscale Res. Lett.1(1), 84–90 (2006).
[CrossRef]

Zhang, X.

K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett.3(8), 1087–1090 (2003).
[CrossRef]

Zhao, W.

W. Zhao and J. M. Karp, “Tumour targeting: nanoantennas heat up,” Nat. Mater.8(6), 453–454 (2009).
[CrossRef] [PubMed]

Zijlstra, P.

P. Zijlstra, J. W. M. Chon, and M. Gu, “White light scattering spectroscopy and electron microscopy of laser induced melting in single gold nanorods,” Phys. Chem. Chem. Phys.11(28), 5915–5921 (2009).
[CrossRef] [PubMed]

ACS Nano

X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano6(3), 2550–2557 (2012).
[CrossRef] [PubMed]

G. Baffou, R. Quidant, and F. J. García de Abajo, “Nanoscale control of optical heating in complex plasmonic systems,” ACS Nano4(2), 709–716 (2010).
[CrossRef] [PubMed]

Appl. Phys. Lett.

X. Miao, B. K. Wilson, and L. Y. Lin, “Localized surface plasmon assisted microfluidic mixing,” Appl. Phys. Lett.92(12), 124108 (2008).
[CrossRef]

Biophys. J.

D. Lasne, G. A. Blab, S. Berciaud, M. Heine, L. Groc, D. Choquet, L. Cognet, and B. Lounis, “Single nanoparticle photothermal tracking (snapt) of 5-nm gold beads in live cells,” Biophys. J.91(12), 4598–4604 (2006).
[CrossRef] [PubMed]

Chem. Phys. Lett.

P. K. Jain and M. A. El-Sayed, “Plasmonic coupling in noble metal nanostructures,” Chem. Phys. Lett.487(4-6), 153–164 (2010).
[CrossRef]

Chem. Soc. Rev.

Z. Qin and J. C. Bischof, “Thermophysical and biological responses of gold nanoparticle laser heating,” Chem. Soc. Rev.41(3), 1191–1217 (2012).
[CrossRef] [PubMed]

Int. J. Heat Mass Tran.

F. Cooper, “Heat transfer from a sphere to an infinite medium,” Int. J. Heat Mass Tran.20(9), 991–993 (1977).
[CrossRef]

J. Phys. D Appl. Phys.

H. M. Pollock and A. Hammiche, “Micro-thermal analysis: techniques and applications,” J. Phys. D Appl. Phys.34(9), R23–R53 (2001).
[CrossRef]

Nano Lett.

A. G. Skirtach, C. Dejugnat, D. Braun, A. S. Susha, A. L. Rogach, W. J. Parak, H. Möhwald, and G. B. Sukhorukov, “The role of metal nanoparticles in remote release of encapsulated materials,” Nano Lett.5(7), 1371–1377 (2005).
[CrossRef] [PubMed]

L. Cao, D. N. Barsic, A. R. Guichard, and M. L. Brongersma, “Plasmon-assisted local temperature control to pattern individual semiconductor nanowires and carbon nanotubes,” Nano Lett.7(11), 3523–3527 (2007).
[CrossRef] [PubMed]

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett.7(7), 1929–1934 (2007).
[CrossRef] [PubMed]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett.4(5), 899–903 (2004).
[CrossRef]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single “bowtie” nanoantennas resonant in the visible,” Nano Lett.4(5), 957–961 (2004).
[CrossRef]

K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett.3(8), 1087–1090 (2003).
[CrossRef]

B. M. Reinhard, M. Siu, H. Agarwal, A. P. Alivisatos, and J. Liphardt, “Calibration of dynamic molecular rulers based on plasmon coupling between gold nanoparticles,” Nano Lett.5(11), 2246–2252 (2005).
[CrossRef] [PubMed]

P. K. Jain, W. Huang, and M. A. El-Sayed, “n the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation,” Nano Lett.7(7), 2080–2088 (2007).
[CrossRef]

Nano Today

P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Au nanoparticles target cancer,” Nano Today2(1), 18–29 (2007).
[CrossRef]

A. O. Govorov and H. H. Richardson, “Generating heat with metal nanoparticles,” Nano Today2(1), 30–38 (2007).
[CrossRef]

Nanoscale Res. Lett.

A. O. Govorov, W. Zhang, T. Skeini, H. Richardson, J. Lee, and N. A. Kotov, “Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances,” Nanoscale Res. Lett.1(1), 84–90 (2006).
[CrossRef]

Nat. Biotechnol.

C. Sönnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, “A molecular ruler based on plasmon coupling of single gold and silver nanoparticles,” Nat. Biotechnol.23(6), 741–745 (2005).
[CrossRef] [PubMed]

Nat. Mater.

W. Zhao and J. M. Karp, “Tumour targeting: nanoantennas heat up,” Nat. Mater.8(6), 453–454 (2009).
[CrossRef] [PubMed]

G. L. Liu, J. Kim, Y. Lu, and L. P. Lee, “Optofluidic control using photothermal nanoparticles,” Nat. Mater.5(1), 27–32 (2006).
[CrossRef] [PubMed]

Opt. Commun.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun.220(1-3), 137–141 (2003).
[CrossRef]

Opt. Express

Phys. Chem. Chem. Phys.

P. Zijlstra, J. W. M. Chon, and M. Gu, “White light scattering spectroscopy and electron microscopy of laser induced melting in single gold nanorods,” Phys. Chem. Chem. Phys.11(28), 5915–5921 (2009).
[CrossRef] [PubMed]

Phys. Rev. B

S. Berciaud, D. Lasne, G. A. Blab, L. Cognet, and B. Lounis, “Photothermal heterodyne imaging of individual metallic nanoparticles: theory versus experiment,” Phys. Rev. B73(4), 045424 (2006).
[CrossRef]

V. Garcés-Chávez, R. Quidant, P. J. Reece, G. Badenes, L. Torner, and K. Dholakia, “Extended organization of colloidal microparticles by surface plasmon polariton excitation,” Phys. Rev. B73(8), 085417 (2006).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A.

B. M. Reinhard, S. Sheikholeslami, A. Mastroianni, A. P. Alivisatos, and J. Liphardt, “Use of plasmon coupling to reveal the dynamics of DNA bending and cleavage by single ecorv restriction enzymes,” Proc. Natl. Acad. Sci. U.S.A.104(8), 2667–2672 (2007).
[CrossRef] [PubMed]

Science

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science332(6036), 1407–1410 (2011).
[CrossRef] [PubMed]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003).
[CrossRef] [PubMed]

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science297(5584), 1160–1163 (2002).
[CrossRef] [PubMed]

Trends Biotechnol.

D. Pissuwan, S. M. Valenzuela, and M. B. Cortie, “Therapeutic possibilities of plasmonically heated gold nanoparticles,” Trends Biotechnol.24(2), 62–67 (2006).
[CrossRef] [PubMed]

Other

U. Kreibig and M. Vollmer, Optical Properties Of Metal Clusters (Springer, 1995).

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer Verlag, 2007), Chap. 5.

Y. Yue and X. Wang, “Nanoscale thermal probing,” Nano Reviews 3: 11586 - DOI: 10.3402/nano.v3i0.11586 (2012)
[CrossRef]

E. R. G. Eckert and R. M. Drake, Heat and Mass Transfer (McGraw-Hill, 1959).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Light absorption of a gold sphere dimer versus interparticle gap. (a) Sketch of the dimer. (b,c) Absorption spectra of gold nanosphere dimers of varying interparticle gap for incident light polarized (b) parallel and (c) perpendicular to the interparticle axis. (d) Absorption power of each sphere in the gold sphere dimer as a function of interparticle gap for light polarization direction parallel to the interparticle axis. The red curve is least-square fit to exponential decay P = P0 + e-s/l, and the decay length l is 10.9 ± 2.1 nm. The incident light intensity is 1 mW/μm2.

Fig. 2
Fig. 2

Absorption enhancement versus gap-diameter ratio. The data is exponentially fit with the parameters of a = 5.9 ± 0.7 and τ = 0.19 ± 0.02.

Fig. 3
Fig. 3

Plot of the absorption enhancement as a function of gap/diameter calculated using the dipolar-coupling model (Eq. (6)) for a gold nanosphere pair system in water (n = 1.33) under parallel polarization, i.e. κ = 2. The green solid curve is the least-square fit to the single exponential decay y = e-x/τ, where τ = 0.30 ± 0.02 and a = 2.0 ± 0.2.

Fig. 4
Fig. 4

Temperature increase versus interparticle distance between two 50 nm diameter gold nanospheres: comparison of Eq. (8) with the FEM simulation. The heat power of each sphere is 20 μW.

Fig. 5
Fig. 5

Temperature increase enhancement versus gap-diameter ratio and exponential fit with a = 6.1 ± 0.8 and τ = 0.17 ± 0.02.

Fig. 6
Fig. 6

Plot of temperature increase versus interparticle gap of a 50 nm diameter Au nanosphere dimer for perpendicular polarization. The intensity and wavelength of the incident light are respectively 1 mW/μm2 and 530 nm.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

P P 0 =aexp( s/D τ )+1,
p= ε 0 ε m αE,
α= 1 2 π D 3 ε ε m ε+2 ε m ,
E'=E+ κp' 4π ε m ε 0 d 3 .
α'= α 1 α 2π d 3 = 2π D 3 ( ε ε m ) ε[ 4 ( D d ) 3 ]+ ε m [ 8+ ( D d ) 3 ] .
P P 0 = 16[ ( ε r +2 ε m ) 2 + ε i 2 ] { [ 4 ( 1 1+s/D ) 3 ] ε r +[ 8+ ( 1 1+s/D ) 3 ] ε m } 2 + [ 4 ( 1 1+s/D ) 3 ] 2 ε i 2 .
ΔT( r )={ P 4π κ m R ,r<R, P 4π κ m r ,r>R.
Δ T NP = P 4π κ m ( 1 R + 1 d )= P 4π κ m ( 2 D + 1 s+D ).
Δ T NP Δ T NP 0 =[ aexp( s/D τ )+1 ][ 1+ 1 2( s/D+1 ) ],

Metrics