Abstract

We demonstrate a Sagnac interferometer (SI) based on a selective-filling photonic crystal fiber (SF-PCF), which is achieved by infiltrating a liquid with higher refractive index than background silica into two adjacent air holes of the innermost layer. The SF-PCF guides light by both index-guiding and bandgap-guiding. The modal birefringence of the SF-PCF is decidedly dependent on wavelength, and the modal group birefringence has zero value at a certain wavelength. We also theoretically and experimentally investigate in detail the transmission and temperature characteristics of the SI. Results reveal that the temperature sensitivity of the interference spectrum is also acutely dependent on wavelength and temperature, and an ultrahigh even theoretically infinite sensitivity can be achieved at a certain temperature by choosing proper fiber length. An ultrahigh sensitivity with −26.0 nm/°C (63,882 nm/RIU) at 50.0 °C is experimentally achieved.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Vali and R. W. Shorthill, “Fiber ring interferometer,” Appl. Opt.15(5), 1099–1100 (1976).
    [CrossRef] [PubMed]
  2. Y. G. Liu, B. Liu, X. H. Feng, W. Zhang, G. Zhou, S. Z. Yuan, G. Y. Kai, and X. Y. Dong, “High-birefringence fiber loop mirrors and their applications as sensors,” Appl. Opt.44(12), 2382–2390 (2005).
    [CrossRef] [PubMed]
  3. C. L. Zhao, X. F. Yang, C. E. Lu, W. Jin, and M. S. Demokan, “Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror,” IEEE Photon. Technol. Lett.16(11), 2535–2537 (2004).
    [CrossRef]
  4. H. Y. Fu, H. Y. Tam, L. Y. Shao, X. Y. Dong, P. K. A. Wai, C. Lu, and S. K. Khijwania, “Pressure sensor realized with polarization-maintaining photonic crystal fiber-based Sagnac interferometer,” Appl. Opt.47(15), 2835–2839 (2008).
    [CrossRef] [PubMed]
  5. C. Kerbage and B. J. Eggleton, “Numerical analysis and experimental design of tunable birefringence in microstructured optical fiber,” Opt. Express10(5), 246–255 (2002).
    [CrossRef] [PubMed]
  6. W. W. Qian, C. L. Zhao, S. L. He, X. Y. Dong, S. Q. Zhang, Z. X. Zhang, S. Z. Jin, J. T. Guo, and H. F. Wei, “High-sensitivity temperature sensor based on an alcohol-filled photonic crystal fiber loop mirror,” Opt. Lett.36(9), 1548–1550 (2011).
    [CrossRef] [PubMed]
  7. K. Saitoh and M. Koshiba, “Photonic bandgap fibers with high birefringence,” IEEE Photon. Technol. Lett.14(9), 1291–1293 (2002).
    [CrossRef]
  8. M. S. Alam, K. Saitoh, and M. Koshiba, “High group birefringence in air-core photonic bandgap fibers,” Opt. Lett.30(8), 824–826 (2005).
    [CrossRef] [PubMed]
  9. X. Yu, M. Yan, L. W. Luo, and P. Shum, “Theoretical investigation of highly birefringent all-solid photonic bandgap fiber with elliptical cladding rods,” IEEE Photon. Technol. Lett.18(11), 1243–1245 (2006).
    [CrossRef]
  10. P. J. Roberts, D. P. Williams, H. Sabert, B. J. Mangan, D. M. Bird, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Design of low-loss and highly birefringent hollow-core photonic crystal fiber,” Opt. Express14(16), 7329–7341 (2006).
    [CrossRef] [PubMed]
  11. V. Pureur, G. Bouwmans, K. Delplace, Y. Quiquempois, and M. Douay, “Birefringent solid-core photonic bandgap fibers assisted by interstitial air holes,” Appl. Phys. Lett.94(13), 131102 (2009).
    [CrossRef]
  12. T. R. Wolinski, A. Czapla, S. Ertman, M. Tefelska, A. Domanski, E. Nowinowski-Kruszelnicki, and R. Dabrowski, “Tunable highly birefringent solid-core photonic liquid crystal fibers,” Opt. Quantum Electron.39(12-13), 1021–1032 (2007).
    [CrossRef]
  13. X. B. Zheng, Y. G. Liu, Z. Wang, T. T. Han, C. L. Wei, and J. J. Chen, “Transmission and temperature sensing characteristics of a selectively liquid-filled photonic-bandgap-fiber-based Sagnac interferometer,” Appl. Phys. Lett.100(14), 141104 (2012).
    [CrossRef]
  14. G. Kim, T. Y. Cho, K. Hwang, K. Lee, K. S. Lee, Y. G. Han, and S. B. Lee, “Strain and temperature sensitivities of an elliptical hollow-core photonic bandgap fiber based on Sagnac interferometer,” Opt. Express17(4), 2481–2486 (2009).
    [CrossRef] [PubMed]
  15. L. M. Xiao, W. Jin, and M. S. Demokan, “Photonic crystal fibers confining light by both index-guiding and bandgap-guiding: hybrid PCFs,” Opt. Express15(24), 15637–15647 (2007).
    [CrossRef] [PubMed]
  16. R. Goto, S. D. Jackson, and K. Takenaga, “Single-polarization operation in birefringent all-solid hybrid microstructured fiber with additional stress applying parts,” Opt. Lett.34(20), 3119–3121 (2009).
    [CrossRef] [PubMed]
  17. A. Cucinotta, S. Selleri, L. Vincetti, and M. Zoboli, “Holey fiber analysis through the finite-element method,” IEEE Photon. Technol. Lett.14(11), 1530–1532 (2002).
    [CrossRef]
  18. B. T. Kuhlmey, B. J. Eggleton, and D. K. C. Wu, “Fluid-filled solid-core photonic bandgap fibers,” J. Lightwave Technol.27(11), 1617–1630 (2009).
    [CrossRef]

2012 (1)

X. B. Zheng, Y. G. Liu, Z. Wang, T. T. Han, C. L. Wei, and J. J. Chen, “Transmission and temperature sensing characteristics of a selectively liquid-filled photonic-bandgap-fiber-based Sagnac interferometer,” Appl. Phys. Lett.100(14), 141104 (2012).
[CrossRef]

2011 (1)

2009 (4)

2008 (1)

2007 (2)

T. R. Wolinski, A. Czapla, S. Ertman, M. Tefelska, A. Domanski, E. Nowinowski-Kruszelnicki, and R. Dabrowski, “Tunable highly birefringent solid-core photonic liquid crystal fibers,” Opt. Quantum Electron.39(12-13), 1021–1032 (2007).
[CrossRef]

L. M. Xiao, W. Jin, and M. S. Demokan, “Photonic crystal fibers confining light by both index-guiding and bandgap-guiding: hybrid PCFs,” Opt. Express15(24), 15637–15647 (2007).
[CrossRef] [PubMed]

2006 (2)

X. Yu, M. Yan, L. W. Luo, and P. Shum, “Theoretical investigation of highly birefringent all-solid photonic bandgap fiber with elliptical cladding rods,” IEEE Photon. Technol. Lett.18(11), 1243–1245 (2006).
[CrossRef]

P. J. Roberts, D. P. Williams, H. Sabert, B. J. Mangan, D. M. Bird, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Design of low-loss and highly birefringent hollow-core photonic crystal fiber,” Opt. Express14(16), 7329–7341 (2006).
[CrossRef] [PubMed]

2005 (2)

2004 (1)

C. L. Zhao, X. F. Yang, C. E. Lu, W. Jin, and M. S. Demokan, “Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror,” IEEE Photon. Technol. Lett.16(11), 2535–2537 (2004).
[CrossRef]

2002 (3)

C. Kerbage and B. J. Eggleton, “Numerical analysis and experimental design of tunable birefringence in microstructured optical fiber,” Opt. Express10(5), 246–255 (2002).
[CrossRef] [PubMed]

K. Saitoh and M. Koshiba, “Photonic bandgap fibers with high birefringence,” IEEE Photon. Technol. Lett.14(9), 1291–1293 (2002).
[CrossRef]

A. Cucinotta, S. Selleri, L. Vincetti, and M. Zoboli, “Holey fiber analysis through the finite-element method,” IEEE Photon. Technol. Lett.14(11), 1530–1532 (2002).
[CrossRef]

1976 (1)

Alam, M. S.

Bird, D. M.

Birks, T. A.

Bouwmans, G.

V. Pureur, G. Bouwmans, K. Delplace, Y. Quiquempois, and M. Douay, “Birefringent solid-core photonic bandgap fibers assisted by interstitial air holes,” Appl. Phys. Lett.94(13), 131102 (2009).
[CrossRef]

Chen, J. J.

X. B. Zheng, Y. G. Liu, Z. Wang, T. T. Han, C. L. Wei, and J. J. Chen, “Transmission and temperature sensing characteristics of a selectively liquid-filled photonic-bandgap-fiber-based Sagnac interferometer,” Appl. Phys. Lett.100(14), 141104 (2012).
[CrossRef]

Cho, T. Y.

Cucinotta, A.

A. Cucinotta, S. Selleri, L. Vincetti, and M. Zoboli, “Holey fiber analysis through the finite-element method,” IEEE Photon. Technol. Lett.14(11), 1530–1532 (2002).
[CrossRef]

Czapla, A.

T. R. Wolinski, A. Czapla, S. Ertman, M. Tefelska, A. Domanski, E. Nowinowski-Kruszelnicki, and R. Dabrowski, “Tunable highly birefringent solid-core photonic liquid crystal fibers,” Opt. Quantum Electron.39(12-13), 1021–1032 (2007).
[CrossRef]

Dabrowski, R.

T. R. Wolinski, A. Czapla, S. Ertman, M. Tefelska, A. Domanski, E. Nowinowski-Kruszelnicki, and R. Dabrowski, “Tunable highly birefringent solid-core photonic liquid crystal fibers,” Opt. Quantum Electron.39(12-13), 1021–1032 (2007).
[CrossRef]

Delplace, K.

V. Pureur, G. Bouwmans, K. Delplace, Y. Quiquempois, and M. Douay, “Birefringent solid-core photonic bandgap fibers assisted by interstitial air holes,” Appl. Phys. Lett.94(13), 131102 (2009).
[CrossRef]

Demokan, M. S.

L. M. Xiao, W. Jin, and M. S. Demokan, “Photonic crystal fibers confining light by both index-guiding and bandgap-guiding: hybrid PCFs,” Opt. Express15(24), 15637–15647 (2007).
[CrossRef] [PubMed]

C. L. Zhao, X. F. Yang, C. E. Lu, W. Jin, and M. S. Demokan, “Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror,” IEEE Photon. Technol. Lett.16(11), 2535–2537 (2004).
[CrossRef]

Domanski, A.

T. R. Wolinski, A. Czapla, S. Ertman, M. Tefelska, A. Domanski, E. Nowinowski-Kruszelnicki, and R. Dabrowski, “Tunable highly birefringent solid-core photonic liquid crystal fibers,” Opt. Quantum Electron.39(12-13), 1021–1032 (2007).
[CrossRef]

Dong, X. Y.

Douay, M.

V. Pureur, G. Bouwmans, K. Delplace, Y. Quiquempois, and M. Douay, “Birefringent solid-core photonic bandgap fibers assisted by interstitial air holes,” Appl. Phys. Lett.94(13), 131102 (2009).
[CrossRef]

Eggleton, B. J.

Ertman, S.

T. R. Wolinski, A. Czapla, S. Ertman, M. Tefelska, A. Domanski, E. Nowinowski-Kruszelnicki, and R. Dabrowski, “Tunable highly birefringent solid-core photonic liquid crystal fibers,” Opt. Quantum Electron.39(12-13), 1021–1032 (2007).
[CrossRef]

Feng, X. H.

Fu, H. Y.

Goto, R.

Guo, J. T.

Han, T. T.

X. B. Zheng, Y. G. Liu, Z. Wang, T. T. Han, C. L. Wei, and J. J. Chen, “Transmission and temperature sensing characteristics of a selectively liquid-filled photonic-bandgap-fiber-based Sagnac interferometer,” Appl. Phys. Lett.100(14), 141104 (2012).
[CrossRef]

Han, Y. G.

He, S. L.

Hwang, K.

Jackson, S. D.

Jin, S. Z.

Jin, W.

L. M. Xiao, W. Jin, and M. S. Demokan, “Photonic crystal fibers confining light by both index-guiding and bandgap-guiding: hybrid PCFs,” Opt. Express15(24), 15637–15647 (2007).
[CrossRef] [PubMed]

C. L. Zhao, X. F. Yang, C. E. Lu, W. Jin, and M. S. Demokan, “Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror,” IEEE Photon. Technol. Lett.16(11), 2535–2537 (2004).
[CrossRef]

Kai, G. Y.

Kerbage, C.

Khijwania, S. K.

Kim, G.

Knight, J. C.

Koshiba, M.

M. S. Alam, K. Saitoh, and M. Koshiba, “High group birefringence in air-core photonic bandgap fibers,” Opt. Lett.30(8), 824–826 (2005).
[CrossRef] [PubMed]

K. Saitoh and M. Koshiba, “Photonic bandgap fibers with high birefringence,” IEEE Photon. Technol. Lett.14(9), 1291–1293 (2002).
[CrossRef]

Kuhlmey, B. T.

Lee, K.

Lee, K. S.

Lee, S. B.

Liu, B.

Liu, Y. G.

X. B. Zheng, Y. G. Liu, Z. Wang, T. T. Han, C. L. Wei, and J. J. Chen, “Transmission and temperature sensing characteristics of a selectively liquid-filled photonic-bandgap-fiber-based Sagnac interferometer,” Appl. Phys. Lett.100(14), 141104 (2012).
[CrossRef]

Y. G. Liu, B. Liu, X. H. Feng, W. Zhang, G. Zhou, S. Z. Yuan, G. Y. Kai, and X. Y. Dong, “High-birefringence fiber loop mirrors and their applications as sensors,” Appl. Opt.44(12), 2382–2390 (2005).
[CrossRef] [PubMed]

Lu, C.

Lu, C. E.

C. L. Zhao, X. F. Yang, C. E. Lu, W. Jin, and M. S. Demokan, “Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror,” IEEE Photon. Technol. Lett.16(11), 2535–2537 (2004).
[CrossRef]

Luo, L. W.

X. Yu, M. Yan, L. W. Luo, and P. Shum, “Theoretical investigation of highly birefringent all-solid photonic bandgap fiber with elliptical cladding rods,” IEEE Photon. Technol. Lett.18(11), 1243–1245 (2006).
[CrossRef]

Mangan, B. J.

Nowinowski-Kruszelnicki, E.

T. R. Wolinski, A. Czapla, S. Ertman, M. Tefelska, A. Domanski, E. Nowinowski-Kruszelnicki, and R. Dabrowski, “Tunable highly birefringent solid-core photonic liquid crystal fibers,” Opt. Quantum Electron.39(12-13), 1021–1032 (2007).
[CrossRef]

Pureur, V.

V. Pureur, G. Bouwmans, K. Delplace, Y. Quiquempois, and M. Douay, “Birefringent solid-core photonic bandgap fibers assisted by interstitial air holes,” Appl. Phys. Lett.94(13), 131102 (2009).
[CrossRef]

Qian, W. W.

Quiquempois, Y.

V. Pureur, G. Bouwmans, K. Delplace, Y. Quiquempois, and M. Douay, “Birefringent solid-core photonic bandgap fibers assisted by interstitial air holes,” Appl. Phys. Lett.94(13), 131102 (2009).
[CrossRef]

Roberts, P. J.

Russell, P. St. J.

Sabert, H.

Saitoh, K.

M. S. Alam, K. Saitoh, and M. Koshiba, “High group birefringence in air-core photonic bandgap fibers,” Opt. Lett.30(8), 824–826 (2005).
[CrossRef] [PubMed]

K. Saitoh and M. Koshiba, “Photonic bandgap fibers with high birefringence,” IEEE Photon. Technol. Lett.14(9), 1291–1293 (2002).
[CrossRef]

Selleri, S.

A. Cucinotta, S. Selleri, L. Vincetti, and M. Zoboli, “Holey fiber analysis through the finite-element method,” IEEE Photon. Technol. Lett.14(11), 1530–1532 (2002).
[CrossRef]

Shao, L. Y.

Shorthill, R. W.

Shum, P.

X. Yu, M. Yan, L. W. Luo, and P. Shum, “Theoretical investigation of highly birefringent all-solid photonic bandgap fiber with elliptical cladding rods,” IEEE Photon. Technol. Lett.18(11), 1243–1245 (2006).
[CrossRef]

Takenaga, K.

Tam, H. Y.

Tefelska, M.

T. R. Wolinski, A. Czapla, S. Ertman, M. Tefelska, A. Domanski, E. Nowinowski-Kruszelnicki, and R. Dabrowski, “Tunable highly birefringent solid-core photonic liquid crystal fibers,” Opt. Quantum Electron.39(12-13), 1021–1032 (2007).
[CrossRef]

Vali, V.

Vincetti, L.

A. Cucinotta, S. Selleri, L. Vincetti, and M. Zoboli, “Holey fiber analysis through the finite-element method,” IEEE Photon. Technol. Lett.14(11), 1530–1532 (2002).
[CrossRef]

Wai, P. K. A.

Wang, Z.

X. B. Zheng, Y. G. Liu, Z. Wang, T. T. Han, C. L. Wei, and J. J. Chen, “Transmission and temperature sensing characteristics of a selectively liquid-filled photonic-bandgap-fiber-based Sagnac interferometer,” Appl. Phys. Lett.100(14), 141104 (2012).
[CrossRef]

Wei, C. L.

X. B. Zheng, Y. G. Liu, Z. Wang, T. T. Han, C. L. Wei, and J. J. Chen, “Transmission and temperature sensing characteristics of a selectively liquid-filled photonic-bandgap-fiber-based Sagnac interferometer,” Appl. Phys. Lett.100(14), 141104 (2012).
[CrossRef]

Wei, H. F.

Williams, D. P.

Wolinski, T. R.

T. R. Wolinski, A. Czapla, S. Ertman, M. Tefelska, A. Domanski, E. Nowinowski-Kruszelnicki, and R. Dabrowski, “Tunable highly birefringent solid-core photonic liquid crystal fibers,” Opt. Quantum Electron.39(12-13), 1021–1032 (2007).
[CrossRef]

Wu, D. K. C.

Xiao, L. M.

Yan, M.

X. Yu, M. Yan, L. W. Luo, and P. Shum, “Theoretical investigation of highly birefringent all-solid photonic bandgap fiber with elliptical cladding rods,” IEEE Photon. Technol. Lett.18(11), 1243–1245 (2006).
[CrossRef]

Yang, X. F.

C. L. Zhao, X. F. Yang, C. E. Lu, W. Jin, and M. S. Demokan, “Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror,” IEEE Photon. Technol. Lett.16(11), 2535–2537 (2004).
[CrossRef]

Yu, X.

X. Yu, M. Yan, L. W. Luo, and P. Shum, “Theoretical investigation of highly birefringent all-solid photonic bandgap fiber with elliptical cladding rods,” IEEE Photon. Technol. Lett.18(11), 1243–1245 (2006).
[CrossRef]

Yuan, S. Z.

Zhang, S. Q.

Zhang, W.

Zhang, Z. X.

Zhao, C. L.

W. W. Qian, C. L. Zhao, S. L. He, X. Y. Dong, S. Q. Zhang, Z. X. Zhang, S. Z. Jin, J. T. Guo, and H. F. Wei, “High-sensitivity temperature sensor based on an alcohol-filled photonic crystal fiber loop mirror,” Opt. Lett.36(9), 1548–1550 (2011).
[CrossRef] [PubMed]

C. L. Zhao, X. F. Yang, C. E. Lu, W. Jin, and M. S. Demokan, “Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror,” IEEE Photon. Technol. Lett.16(11), 2535–2537 (2004).
[CrossRef]

Zheng, X. B.

X. B. Zheng, Y. G. Liu, Z. Wang, T. T. Han, C. L. Wei, and J. J. Chen, “Transmission and temperature sensing characteristics of a selectively liquid-filled photonic-bandgap-fiber-based Sagnac interferometer,” Appl. Phys. Lett.100(14), 141104 (2012).
[CrossRef]

Zhou, G.

Zoboli, M.

A. Cucinotta, S. Selleri, L. Vincetti, and M. Zoboli, “Holey fiber analysis through the finite-element method,” IEEE Photon. Technol. Lett.14(11), 1530–1532 (2002).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (2)

X. B. Zheng, Y. G. Liu, Z. Wang, T. T. Han, C. L. Wei, and J. J. Chen, “Transmission and temperature sensing characteristics of a selectively liquid-filled photonic-bandgap-fiber-based Sagnac interferometer,” Appl. Phys. Lett.100(14), 141104 (2012).
[CrossRef]

V. Pureur, G. Bouwmans, K. Delplace, Y. Quiquempois, and M. Douay, “Birefringent solid-core photonic bandgap fibers assisted by interstitial air holes,” Appl. Phys. Lett.94(13), 131102 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

A. Cucinotta, S. Selleri, L. Vincetti, and M. Zoboli, “Holey fiber analysis through the finite-element method,” IEEE Photon. Technol. Lett.14(11), 1530–1532 (2002).
[CrossRef]

C. L. Zhao, X. F. Yang, C. E. Lu, W. Jin, and M. S. Demokan, “Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror,” IEEE Photon. Technol. Lett.16(11), 2535–2537 (2004).
[CrossRef]

K. Saitoh and M. Koshiba, “Photonic bandgap fibers with high birefringence,” IEEE Photon. Technol. Lett.14(9), 1291–1293 (2002).
[CrossRef]

X. Yu, M. Yan, L. W. Luo, and P. Shum, “Theoretical investigation of highly birefringent all-solid photonic bandgap fiber with elliptical cladding rods,” IEEE Photon. Technol. Lett.18(11), 1243–1245 (2006).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Express (4)

Opt. Lett. (3)

Opt. Quantum Electron. (1)

T. R. Wolinski, A. Czapla, S. Ertman, M. Tefelska, A. Domanski, E. Nowinowski-Kruszelnicki, and R. Dabrowski, “Tunable highly birefringent solid-core photonic liquid crystal fibers,” Opt. Quantum Electron.39(12-13), 1021–1032 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic diagram of the proposed SF-PCF based SI. The inset is the cross-section of the PCF used in this paper (top inset) and theory model for simulation (bottom inset), where, the white circles are air holes and the red circles are high index inclusions. (b) Calculated phase birefringence B and group birefringence Bg dependence on wavelength under different temperatures.

Fig. 2
Fig. 2

Calculated temperature sensitivity S(T) versus wavelength for different heated length ratio γ at 50.0 °C.

Fig. 3
Fig. 3

(a) Calculated interference transmission spectra of two interference dips A and B from 45°C to 50.3°C. The inset shows the interference transmission spectrum at room temperature when L = L1 = 25 cm. (b) The wavelength variation of interference dips A, B, C and D in (a) dependence on temperature. The red curves shows the variation of dips A and B when L = 25 cm and the heated ratio γ = 0.48 (L1 = 12 cm). The blue doted line represents the variation of the wavelength λBg = 0 satisfying Bg = 0 at different temperatures.

Fig. 4
Fig. 4

(a) The experimental transmission spectra of the SI from 46.4°C to 71.3°C when L = 25 cm and L1 = 12 cm. (b) (top) The experimental wavelength variation (the circles) AEX-DEX and theoretical wavelength variation (the solid curves) ATHE-DTHE of dips A, B, C and D dependence on temperature. The blue solid curves are the nonlinear fitting curves of the experimental results. (bottom) The temperature sensitivity of dips A, B, C and D dependence on temperature.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

t( λ,T )= 1-cos( δ 1 + δ 2 ) 2 ,
λ( T )= 1 m [ ( L L 1 )B( λ, T 0 )+ L 1 B( λ,T ) ].
S( T )= dλ dT = B( λ,T ) T λ( T ) ( 1 γ -1 ) B g ( λ, T 0 )+ B g ( λ,T ) ,

Metrics