Abstract

In this paper, we propose and demonstrate a novel integrated radio-over-fiber passive optical network (RoF-PON) system for both wired and wireless access. By utilizing the polarization multiplexed four-wave mixing (FWM) effect in a semiconductor optical amplifier (SOA), scalable generation of multi-frequency millimeter-waves (MMWs) can be provided so as to assist the configuration of multi-frequency wireless access for the wire/wireless access integrated ROF-PON system. In order to obtain a better performance, the polarization multiplexed FWM effect is investigated in detail. Simulation results successfully verify the feasibility of our proposed scheme.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Jia, J. Yu, and G. Chang, “A full-duplex radio-over-fiber system based on optical carrier suppression and reuse,” IEEE Photon. Technol. Lett.18(16), 1726–1728 (2006).
    [CrossRef]
  2. D. Wake, A. Nkansah, and J. Gomes, “Radio over fiber link design for next generation wireless systems,” J. Lightwave Technol.28(16), 2456–2464 (2010).
    [CrossRef]
  3. J. Seo, C. Choi, Y. Kang, Y. Chung, J. Kim, and W. Choi, “SOA-EAM frequency up/down-converters for 60-GHz bi-directional radio-over-fiber systems,” IEEE Trans. Microw. Theory Tech.54(2), 959–966 (2006).
    [CrossRef]
  4. P. T. Shih, C. T. Lin, W. J. Jiang, Y. H. Chen, J. J. Chen, and S. Chi, “Full duplex 60-GHz RoF link employing tandem single sideband modulation scheme and high spectral efficiency modulation format,” Opt. Express17(22), 19501–19508 (2009).
    [CrossRef] [PubMed]
  5. Z. Cao, J. Yu, L. Chen, and Q. Shu, “Reversely modulated optical single sideband scheme and its application in a 60-GHz full duplex ROF system,” IEEE Photon. Technol. Lett.24(10), 827–829 (2012).
    [CrossRef]
  6. C. Zhang, L. Wang, and K. Qiu, “Proposal for all-optical generation of multiple-frequency millimeter-wave signals for RoF system with multiple base stations using FWM in SOA,” Opt. Express19(15), 13957–13962 (2011).
    [CrossRef] [PubMed]
  7. Y. Hsueh, Z. Jia, H. Chien, A. Chowdhury, J. Yu, and G. Chang, “Multiband 60-GHz wireless over fiber access system with high dispersion tolerance using frequency tripling technique,” J. Lightwave Technol.29(8), 1105–1111 (2011).
    [CrossRef]
  8. M. Zhu, L. Zhang, S. Fan, C. Su, G. Gu, and G.-K. Chang, “Efficient delivery of integrated wired and wirless services in UDWDM-RoF-PON coherent access network,” IEEE Photon. Technol. Lett.24(13), 1127–1129 (2012).
    [CrossRef]
  9. Z. Cao, J. Yu, H. Zhou, W. Wang, M. Xia, J. Wang, Q. Tang, and L. Chen, “WDM-RoF-PON architecture for flexible wireless and wire-line layout,” J. Opt. Commun. Netw.2(2), 117–121 (2010).
    [CrossRef]
  10. L. Xu, C. Chow, and H. Tsang, “Long-reach multicast high split-ratio wired and wireless WDM-PON using SOA for remote upconversion,” IEEE Trans. Microw. Theory Tech.58(11), 3136–3143 (2010).
    [CrossRef]
  11. L. Zhang, X. Hu, P. Cao, Q. Chang, and Y. Su, “Simultaneous generation of independent wired and 60-GHz wireless signals in an integrated WDM-PON-RoF system based on frequency-sextupling and OCS-DPSK modulation,” Opt. Express20(13), 14648–14655 (2012).
    [CrossRef] [PubMed]
  12. C. Zhang, C. Chen, Y. Feng, and K. Qiu, “Experimental demonstration of novel source-free ONUs in bidirectional RF up-converted optical OFDM-PON utilizing polarization multiplexing,” Opt. Express20(6), 6230–6235 (2012).
    [CrossRef] [PubMed]
  13. C. Chen, C. Zhang, Y. Feng, and K. Qiu, “Bidirectional radio frequency up-converted orthogonal frequency-division multiple access passive optical network with novel source-free optical network units using four-wave mixing in semiconductor optical amplifier,” IEEE Photon. Technol. Lett.24(24), 2206–2209 (2012).
    [CrossRef]
  14. D. Qian, N. Cvijetic, J. Hu, and T. Wang, “108 Gb/s OFDMA-PON with polarization multiplexing and direct detection,” J. Lightwave Technol.28(4), 484–493 (2010).
    [CrossRef]

2012 (5)

Z. Cao, J. Yu, L. Chen, and Q. Shu, “Reversely modulated optical single sideband scheme and its application in a 60-GHz full duplex ROF system,” IEEE Photon. Technol. Lett.24(10), 827–829 (2012).
[CrossRef]

M. Zhu, L. Zhang, S. Fan, C. Su, G. Gu, and G.-K. Chang, “Efficient delivery of integrated wired and wirless services in UDWDM-RoF-PON coherent access network,” IEEE Photon. Technol. Lett.24(13), 1127–1129 (2012).
[CrossRef]

C. Chen, C. Zhang, Y. Feng, and K. Qiu, “Bidirectional radio frequency up-converted orthogonal frequency-division multiple access passive optical network with novel source-free optical network units using four-wave mixing in semiconductor optical amplifier,” IEEE Photon. Technol. Lett.24(24), 2206–2209 (2012).
[CrossRef]

C. Zhang, C. Chen, Y. Feng, and K. Qiu, “Experimental demonstration of novel source-free ONUs in bidirectional RF up-converted optical OFDM-PON utilizing polarization multiplexing,” Opt. Express20(6), 6230–6235 (2012).
[CrossRef] [PubMed]

L. Zhang, X. Hu, P. Cao, Q. Chang, and Y. Su, “Simultaneous generation of independent wired and 60-GHz wireless signals in an integrated WDM-PON-RoF system based on frequency-sextupling and OCS-DPSK modulation,” Opt. Express20(13), 14648–14655 (2012).
[CrossRef] [PubMed]

2011 (2)

2010 (4)

2009 (1)

2006 (2)

Z. Jia, J. Yu, and G. Chang, “A full-duplex radio-over-fiber system based on optical carrier suppression and reuse,” IEEE Photon. Technol. Lett.18(16), 1726–1728 (2006).
[CrossRef]

J. Seo, C. Choi, Y. Kang, Y. Chung, J. Kim, and W. Choi, “SOA-EAM frequency up/down-converters for 60-GHz bi-directional radio-over-fiber systems,” IEEE Trans. Microw. Theory Tech.54(2), 959–966 (2006).
[CrossRef]

Cao, P.

Cao, Z.

Z. Cao, J. Yu, L. Chen, and Q. Shu, “Reversely modulated optical single sideband scheme and its application in a 60-GHz full duplex ROF system,” IEEE Photon. Technol. Lett.24(10), 827–829 (2012).
[CrossRef]

Z. Cao, J. Yu, H. Zhou, W. Wang, M. Xia, J. Wang, Q. Tang, and L. Chen, “WDM-RoF-PON architecture for flexible wireless and wire-line layout,” J. Opt. Commun. Netw.2(2), 117–121 (2010).
[CrossRef]

Chang, G.

Y. Hsueh, Z. Jia, H. Chien, A. Chowdhury, J. Yu, and G. Chang, “Multiband 60-GHz wireless over fiber access system with high dispersion tolerance using frequency tripling technique,” J. Lightwave Technol.29(8), 1105–1111 (2011).
[CrossRef]

Z. Jia, J. Yu, and G. Chang, “A full-duplex radio-over-fiber system based on optical carrier suppression and reuse,” IEEE Photon. Technol. Lett.18(16), 1726–1728 (2006).
[CrossRef]

Chang, G.-K.

M. Zhu, L. Zhang, S. Fan, C. Su, G. Gu, and G.-K. Chang, “Efficient delivery of integrated wired and wirless services in UDWDM-RoF-PON coherent access network,” IEEE Photon. Technol. Lett.24(13), 1127–1129 (2012).
[CrossRef]

Chang, Q.

Chen, C.

C. Chen, C. Zhang, Y. Feng, and K. Qiu, “Bidirectional radio frequency up-converted orthogonal frequency-division multiple access passive optical network with novel source-free optical network units using four-wave mixing in semiconductor optical amplifier,” IEEE Photon. Technol. Lett.24(24), 2206–2209 (2012).
[CrossRef]

C. Zhang, C. Chen, Y. Feng, and K. Qiu, “Experimental demonstration of novel source-free ONUs in bidirectional RF up-converted optical OFDM-PON utilizing polarization multiplexing,” Opt. Express20(6), 6230–6235 (2012).
[CrossRef] [PubMed]

Chen, J. J.

Chen, L.

Z. Cao, J. Yu, L. Chen, and Q. Shu, “Reversely modulated optical single sideband scheme and its application in a 60-GHz full duplex ROF system,” IEEE Photon. Technol. Lett.24(10), 827–829 (2012).
[CrossRef]

Z. Cao, J. Yu, H. Zhou, W. Wang, M. Xia, J. Wang, Q. Tang, and L. Chen, “WDM-RoF-PON architecture for flexible wireless and wire-line layout,” J. Opt. Commun. Netw.2(2), 117–121 (2010).
[CrossRef]

Chen, Y. H.

Chi, S.

Chien, H.

Choi, C.

J. Seo, C. Choi, Y. Kang, Y. Chung, J. Kim, and W. Choi, “SOA-EAM frequency up/down-converters for 60-GHz bi-directional radio-over-fiber systems,” IEEE Trans. Microw. Theory Tech.54(2), 959–966 (2006).
[CrossRef]

Choi, W.

J. Seo, C. Choi, Y. Kang, Y. Chung, J. Kim, and W. Choi, “SOA-EAM frequency up/down-converters for 60-GHz bi-directional radio-over-fiber systems,” IEEE Trans. Microw. Theory Tech.54(2), 959–966 (2006).
[CrossRef]

Chow, C.

L. Xu, C. Chow, and H. Tsang, “Long-reach multicast high split-ratio wired and wireless WDM-PON using SOA for remote upconversion,” IEEE Trans. Microw. Theory Tech.58(11), 3136–3143 (2010).
[CrossRef]

Chowdhury, A.

Chung, Y.

J. Seo, C. Choi, Y. Kang, Y. Chung, J. Kim, and W. Choi, “SOA-EAM frequency up/down-converters for 60-GHz bi-directional radio-over-fiber systems,” IEEE Trans. Microw. Theory Tech.54(2), 959–966 (2006).
[CrossRef]

Cvijetic, N.

Fan, S.

M. Zhu, L. Zhang, S. Fan, C. Su, G. Gu, and G.-K. Chang, “Efficient delivery of integrated wired and wirless services in UDWDM-RoF-PON coherent access network,” IEEE Photon. Technol. Lett.24(13), 1127–1129 (2012).
[CrossRef]

Feng, Y.

C. Chen, C. Zhang, Y. Feng, and K. Qiu, “Bidirectional radio frequency up-converted orthogonal frequency-division multiple access passive optical network with novel source-free optical network units using four-wave mixing in semiconductor optical amplifier,” IEEE Photon. Technol. Lett.24(24), 2206–2209 (2012).
[CrossRef]

C. Zhang, C. Chen, Y. Feng, and K. Qiu, “Experimental demonstration of novel source-free ONUs in bidirectional RF up-converted optical OFDM-PON utilizing polarization multiplexing,” Opt. Express20(6), 6230–6235 (2012).
[CrossRef] [PubMed]

Gomes, J.

Gu, G.

M. Zhu, L. Zhang, S. Fan, C. Su, G. Gu, and G.-K. Chang, “Efficient delivery of integrated wired and wirless services in UDWDM-RoF-PON coherent access network,” IEEE Photon. Technol. Lett.24(13), 1127–1129 (2012).
[CrossRef]

Hsueh, Y.

Hu, J.

Hu, X.

Jia, Z.

Y. Hsueh, Z. Jia, H. Chien, A. Chowdhury, J. Yu, and G. Chang, “Multiband 60-GHz wireless over fiber access system with high dispersion tolerance using frequency tripling technique,” J. Lightwave Technol.29(8), 1105–1111 (2011).
[CrossRef]

Z. Jia, J. Yu, and G. Chang, “A full-duplex radio-over-fiber system based on optical carrier suppression and reuse,” IEEE Photon. Technol. Lett.18(16), 1726–1728 (2006).
[CrossRef]

Jiang, W. J.

Kang, Y.

J. Seo, C. Choi, Y. Kang, Y. Chung, J. Kim, and W. Choi, “SOA-EAM frequency up/down-converters for 60-GHz bi-directional radio-over-fiber systems,” IEEE Trans. Microw. Theory Tech.54(2), 959–966 (2006).
[CrossRef]

Kim, J.

J. Seo, C. Choi, Y. Kang, Y. Chung, J. Kim, and W. Choi, “SOA-EAM frequency up/down-converters for 60-GHz bi-directional radio-over-fiber systems,” IEEE Trans. Microw. Theory Tech.54(2), 959–966 (2006).
[CrossRef]

Lin, C. T.

Nkansah, A.

Qian, D.

Qiu, K.

Seo, J.

J. Seo, C. Choi, Y. Kang, Y. Chung, J. Kim, and W. Choi, “SOA-EAM frequency up/down-converters for 60-GHz bi-directional radio-over-fiber systems,” IEEE Trans. Microw. Theory Tech.54(2), 959–966 (2006).
[CrossRef]

Shih, P. T.

Shu, Q.

Z. Cao, J. Yu, L. Chen, and Q. Shu, “Reversely modulated optical single sideband scheme and its application in a 60-GHz full duplex ROF system,” IEEE Photon. Technol. Lett.24(10), 827–829 (2012).
[CrossRef]

Su, C.

M. Zhu, L. Zhang, S. Fan, C. Su, G. Gu, and G.-K. Chang, “Efficient delivery of integrated wired and wirless services in UDWDM-RoF-PON coherent access network,” IEEE Photon. Technol. Lett.24(13), 1127–1129 (2012).
[CrossRef]

Su, Y.

Tang, Q.

Tsang, H.

L. Xu, C. Chow, and H. Tsang, “Long-reach multicast high split-ratio wired and wireless WDM-PON using SOA for remote upconversion,” IEEE Trans. Microw. Theory Tech.58(11), 3136–3143 (2010).
[CrossRef]

Wake, D.

Wang, J.

Wang, L.

Wang, T.

Wang, W.

Xia, M.

Xu, L.

L. Xu, C. Chow, and H. Tsang, “Long-reach multicast high split-ratio wired and wireless WDM-PON using SOA for remote upconversion,” IEEE Trans. Microw. Theory Tech.58(11), 3136–3143 (2010).
[CrossRef]

Yu, J.

Z. Cao, J. Yu, L. Chen, and Q. Shu, “Reversely modulated optical single sideband scheme and its application in a 60-GHz full duplex ROF system,” IEEE Photon. Technol. Lett.24(10), 827–829 (2012).
[CrossRef]

Y. Hsueh, Z. Jia, H. Chien, A. Chowdhury, J. Yu, and G. Chang, “Multiband 60-GHz wireless over fiber access system with high dispersion tolerance using frequency tripling technique,” J. Lightwave Technol.29(8), 1105–1111 (2011).
[CrossRef]

Z. Cao, J. Yu, H. Zhou, W. Wang, M. Xia, J. Wang, Q. Tang, and L. Chen, “WDM-RoF-PON architecture for flexible wireless and wire-line layout,” J. Opt. Commun. Netw.2(2), 117–121 (2010).
[CrossRef]

Z. Jia, J. Yu, and G. Chang, “A full-duplex radio-over-fiber system based on optical carrier suppression and reuse,” IEEE Photon. Technol. Lett.18(16), 1726–1728 (2006).
[CrossRef]

Zhang, C.

Zhang, L.

L. Zhang, X. Hu, P. Cao, Q. Chang, and Y. Su, “Simultaneous generation of independent wired and 60-GHz wireless signals in an integrated WDM-PON-RoF system based on frequency-sextupling and OCS-DPSK modulation,” Opt. Express20(13), 14648–14655 (2012).
[CrossRef] [PubMed]

M. Zhu, L. Zhang, S. Fan, C. Su, G. Gu, and G.-K. Chang, “Efficient delivery of integrated wired and wirless services in UDWDM-RoF-PON coherent access network,” IEEE Photon. Technol. Lett.24(13), 1127–1129 (2012).
[CrossRef]

Zhou, H.

Zhu, M.

M. Zhu, L. Zhang, S. Fan, C. Su, G. Gu, and G.-K. Chang, “Efficient delivery of integrated wired and wirless services in UDWDM-RoF-PON coherent access network,” IEEE Photon. Technol. Lett.24(13), 1127–1129 (2012).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

Z. Jia, J. Yu, and G. Chang, “A full-duplex radio-over-fiber system based on optical carrier suppression and reuse,” IEEE Photon. Technol. Lett.18(16), 1726–1728 (2006).
[CrossRef]

Z. Cao, J. Yu, L. Chen, and Q. Shu, “Reversely modulated optical single sideband scheme and its application in a 60-GHz full duplex ROF system,” IEEE Photon. Technol. Lett.24(10), 827–829 (2012).
[CrossRef]

M. Zhu, L. Zhang, S. Fan, C. Su, G. Gu, and G.-K. Chang, “Efficient delivery of integrated wired and wirless services in UDWDM-RoF-PON coherent access network,” IEEE Photon. Technol. Lett.24(13), 1127–1129 (2012).
[CrossRef]

C. Chen, C. Zhang, Y. Feng, and K. Qiu, “Bidirectional radio frequency up-converted orthogonal frequency-division multiple access passive optical network with novel source-free optical network units using four-wave mixing in semiconductor optical amplifier,” IEEE Photon. Technol. Lett.24(24), 2206–2209 (2012).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (2)

L. Xu, C. Chow, and H. Tsang, “Long-reach multicast high split-ratio wired and wireless WDM-PON using SOA for remote upconversion,” IEEE Trans. Microw. Theory Tech.58(11), 3136–3143 (2010).
[CrossRef]

J. Seo, C. Choi, Y. Kang, Y. Chung, J. Kim, and W. Choi, “SOA-EAM frequency up/down-converters for 60-GHz bi-directional radio-over-fiber systems,” IEEE Trans. Microw. Theory Tech.54(2), 959–966 (2006).
[CrossRef]

J. Lightwave Technol. (3)

J. Opt. Commun. Netw. (1)

Opt. Express (4)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Principle of the proposed wired/wireless access integrated RoF-PON system with scalable generation of multi-frequency MMWs.

Fig. 2
Fig. 2

Simulation setup of the proposed wireless/wired integrated RoF-PON. The insets show the spectra at different stages.

Fig. 3
Fig. 3

Optical SNR performance of the generated wireless bands in Pol-X and the power difference (Pdiff) between the generated wireless bands and the high-order noise bands versus the initial power difference (P0) between the wired band and the wireless bands for different SOA currents.

Fig. 4
Fig. 4

The relationship of (a) SNR versus SOA currents for different P0 and (b) Pdiff versus SOA currents for different P0.

Fig. 5
Fig. 5

Corresponding spectra of (a) SOA input signal and (b) SOA output signal.

Fig. 6
Fig. 6

BER performance for wired access after B2B and 20km SSMF and corresponding eye diagrams.

Fig. 7
Fig. 7

BER performance for 58 and 62 GHz wireless access after B2B and 20km SSMF and corresponding eye diagrams.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E Left (t)=Acos{[ ω 0 2π(30i f 1 )]t+ ϕ 0 },
E Right (t)=Acos{[ ω 0 +2π(30+j f 1 )]t+ ϕ 0 },
I(t)=R | E Left (t)+ E Right (t) | 2 =2R A 2 cos{[ ω 0 +2π(30+j f 1 )]t[ ω 0 2π(30i f 1 )]t+ ϕ 0 ϕ 0 } =2R A 2 cos{2π[60+(ji) f 1 ]t},

Metrics