Abstract

Pr3+-doped medium-low phonon energy heavy metal germanium tellurite (NZPGT) glasses have been fabricated and the intense multi-peak red fluorescence emissions of Pr3+ are exhibited. Judd-Ofelt parameters Ω2 = 3.14 × 10−20cm2, Ω4 = 10.67 × 10−20cm2 and Ω6 = 3.95 × 10−20cm2 indicate a high asymmetrical and covalent environment in the optical glasses. The spontaneous emission probabilities Aij corresponding to the 1D23H4, 3P03H6, and 3P03F2 transitions are derived to be 1859.6, 6270.1 and 17276.3s−1, respectively, and the relevant stimulated emission cross-sections σem are 5.20 × 10−21, 14.14 × 10−21 and 126.77 × 10−21cm2, confirming that the effectiveness of the red luminescence in Pr3+-doped NZPGT glasses. Under the commercial blue LED excitation, the radiant flux and the quantum yield for the red fluorescence of Pr3+ are solved to be 219μW and 11.80%, respectively. 85.24% photons of the fluorescence in the visible region are demonstrated to be located in 600−720nm wavelength range, which matches the excitation band of the most photosensitizers (PS), holding great promise for photodynamic therapy (PDT) treatment and clinical trials.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, and J. Golab, “Photodynamic therapy of cancer: an update,” CA Cancer J. Clin.61(4), 250–281 (2011).
    [CrossRef] [PubMed]
  2. S. Brown, “Photodynamic therapy: two photons are better than one,” Nat. Photonics2(7), 394–395 (2008).
    [CrossRef]
  3. S. B. Brown, E. A. Brown, and I. Walker, “The present and future role of photodynamic therapy in cancer treatment,” Lancet Oncol.5(8), 497–508 (2004).
    [CrossRef] [PubMed]
  4. J. Gray and G. Fullarton, “The current role of photodynamic therapy in oesophageal dysplasia and cancer,” Photodiagn. Photodyn. Ther.4(3), 151–159 (2007).
    [CrossRef]
  5. C. A. Morton, C. Whitehurst, J. V. Moore, and R. M. MacKie, “Comparison of red and green light in the treatment of Bowen’s disease by photodynamic therapy,” Br. J. Dermatol.143(4), 767–772 (2000).
    [CrossRef] [PubMed]
  6. K. Uk, D. A. Makarov, L. S. Yup, B. S. Jin, and G. V. Papayan, “Illuminator for photodynamic therapy and fluorescence diagnosis with lightguide output of the radiation,” J. Opt. Technol.75(12), 772–777 (2008).
    [CrossRef]
  7. L. Brancaleon and H. Moseley, “Laser and non-laser light sources for photodynamic therapy,” Lasers Med. Sci.17(3), 173–186 (2002).
    [CrossRef] [PubMed]
  8. S. Mitra and T. H. Foster, “Carbogen breathing significantly enhances the penetration of red light in murine tumours in vivo,” Phys. Med. Biol.49(10), 1891–1904 (2004).
    [CrossRef] [PubMed]
  9. B. J. Chen, L. F. Shen, E. Y. B. Pun, and H. Lin, “Sm3+-doped germanate glass channel waveguide as light source for minimally invasive photodynamic therapy surgery,” Opt. Express20(2), 879–889 (2012).
    [CrossRef] [PubMed]
  10. D. L. Yang, H. Gong, E. Y. B. Pun, X. Zhao, and H. Lin, “Rare-earth ions doped heavy metal germanium tellurite glasses for fiber lighting in minimally invasive surgery,” Opt. Express18(18), 18997–19008 (2010).
    [CrossRef] [PubMed]
  11. B. C. Jamalaiah, J. S. Kumar, A. M. Babu, L. R. Moorthy, K. Jang, H. S. Lee, M. Jayasimhadri, J. H. Jeong, and H. Choi, “Optical absorption, fluorescence and decay properties of Pr3+-doped PbO-H3BO3-TiO2-AlF3 glasses,” J. Lumin.129(9), 1023–1028 (2009).
    [CrossRef]
  12. Y. Inaguma, T. Muronoi, K. Sano, T. Tsuchiya, Y. Mori, T. Katsumata, and D. Mori, “An approach to control of band gap energy and photoluminescence upon band gap excitation in Pr3+-doped perovskites La1/3MO3 (M=Nb, Ta):Pr3+,” Inorg. Chem.50(12), 5389–5395 (2011).
    [CrossRef] [PubMed]
  13. L. L. Zhang, G. P. Dong, M. Y. Peng, and J. R. Qiu, “Comparative investigation on the spectroscopic properties of Pr3+-doped boro-phosphate, boro-germo-silicate and tellurite glasses,” Spectrochim. Acta A Mol. Biomol. Spectrosc.93, 223–227 (2012).
    [CrossRef]
  14. B. Dieudonné, B. Boulard, G. Alombert-Goget, Y. Gao, A. Chiasera, S. Varas, and M. Ferrari, “Pr3+-Yb3+-codoped lanthanum fluorozirconate glasses and waveguides for visible laser emission,” J. Non-Cryst. Solids358(18-19), 2695–2700 (2012).
    [CrossRef]
  15. T. Satyanarayana, M. G. Brik, N. Venkatramaiah, I. V. Kityk, K. J. Plucinski, V. Ravikumar, and N. Veeraiah, “Influence of crystallization on the luminescence characteristics of Pr3+ ions in PbO-Sb2O3-B2O3 glass system,” J. Am. Ceram. Soc.93(7), 2004–2011 (2010).
  16. A. Lecointre, A. Bessiere, A. J. J. Bos, P. Dorenbos, B. Viana, and S. Jacquart, “Designing a red persistent luminescence phosphor: the example of YPO4: Pr3+, Ln3+ (Ln = Nd, Er, Ho, Dy),” J. Phys. Chem. C115(10), 4217–4227 (2011).
    [CrossRef]
  17. Z. Mazurak, S. Bodyl, R. Lisiecki, J. Gabrys-Pisarska, and M. Czaja, “Optical properties of Pr3+, Sm3+ and Er3+ doped P2O5-CaO-SrO-BaO phosphate glass,” Opt. Mater.32(4), 547–553 (2010).
    [CrossRef]
  18. H. Ohashi, K. Hachiya, K. Yoshida, M. Yasuda, and J. Kondoh, “Photoluminescence properties in Pr3+-doped chalcogenide glass,” J. Alloy. Comp.373(1-2), 1–8 (2004).
    [CrossRef]
  19. P. Boutinaud, L. Sarakha, and R. Mahiou, “NaNbO3: Pr3+: a new red phosphor showing persistent luminescence,” J. Phys. Condens. Matter21(2), 025901 (2009).
    [CrossRef] [PubMed]
  20. D. Rajesh, A. Balakrishna, M. Seshadri, and Y. C. Ratnakaram, “Spectroscopic investigations on Pr3+ and Nd3+ doped strontium-lithium-bismuth borate glasses,” Spectrochim. Acta A Mol. Biomol. Spectrosc.97, 963–974 (2012).
    [CrossRef]
  21. P. Boutinaud, E. Pinel, M. Oubaha, R. Mahiou, E. Cavalli, and M. Bettinelli, “Making red emitting phorphors with Pr3+,” Opt. Mater.28(1-2), 9–13 (2006).
    [CrossRef]
  22. P. Solarz, “Pr3+ as a sensitiser of red Eu3+ luminescence in K5Li2GdF10: Pr3+, Eu3+ upon VUV-UV excitation,” Opt. Mater.31(1), 114–116 (2008).
    [CrossRef]
  23. J. Chen, X. H. Gong, Y. F. Lin, Y. J. Chen, Z. D. Luo, and Y. D. Huang, “Synthesis and spectral property of Pr3+-doped tungstate deep red phosphors,” J. Alloy. Comp.492(1-2), 667–670 (2010).
    [CrossRef]
  24. X. M. Zhang, J. H. Zhang, Z. G. Nie, M. Y. Wang, and X. G. Ren, “Enhanced red phosphorescence in nanosized CaTiO3: Pr3+ phosphors,” Appl. Phys. Lett.90(15), 1519111–1519113 (2007).
  25. L. R. Jaroszewicz, A. Majchrowski, M. G. Brik, N. Alzayed, W. Kuznik, I. V. Kityk, and S. Klosowicz, “Specific feature of fluorescence kinetics of Pr3+ doped BiB3O6 glasses,” J. Alloy. Comp.538, 220–223 (2012).
    [CrossRef]
  26. M. E. Rodriguez, V. E. Diz, J. Awruch, and L. E. Dicelio, “Photophysics of zinc (II) phthalocyanine polymer and gel formulation,” Photochem. Photobiol.86(3), 513–519 (2010).
    [CrossRef] [PubMed]
  27. J. T. F. Lau, P. C. Lo, Y. M. Tsang, W. P. Fong, and D. K. P. Ng, “Unsymmetrical β-cyclodextrin-conjugated silicon(IV) phthalocyanines as highly potent photosensitisers for photodynamic therapy,” Chem. Commun. Camb.47(34), 9657–9659 (2011).
    [CrossRef] [PubMed]
  28. B. J. Chen, L. F. Shen, H. Lin, and E. Y. B. Pun, “Signal amplification in rare-earth doped heavy metal germanium tellurite glass fiber,” J. Opt. Soc. Am. B28(10), 2320–2327 (2011).
    [CrossRef]
  29. F. Cornacchia, A. Richter, E. Heumann, G. Huber, D. Parisi, and M. Tonelli, “Visible laser emission of solid state pumped LiLuF4:Pr3+,” Opt. Express15(3), 992–1002 (2007).
    [CrossRef] [PubMed]
  30. H. Liu, O. Vasquez, V. R. Santiago, L. Diaz, F. E. Fernandez, L. Liu, L. Xu, and F. Gan, “Host excitation-induced red emission from Pr3+ in strontium barium niobate thin film,” J. Lumin.108(1-4), 37–41 (2004).
    [CrossRef]
  31. M. Olivier, P. Pirasteh, J. L. Doualan, P. Camy, H. Lhermite, J. L. Adam, and V. Nazabal, “Pr3+-doped ZBLA fluoride glasses for visible laser emission,” Opt. Mater.33(7), 980–984 (2011).
    [CrossRef]
  32. X. Liu, M. Naftaly, and A. Jha, “Spectroscopic evidence for oxide dopant site in GeS2-based glasses using visible photoluminescence from Pr3+ probe ions,” J. Lumin.96(2-4), 227–238 (2002).
    [CrossRef]
  33. V. K. Tikhomirov and S. A. Tikhomirova, “Hypersensitive transition 3P0→3F2 of Pr3+ related to the polarizability and structure of glass host,” J. Non-Cryst. Solids274(1-3), 50–54 (2000).
    [CrossRef]
  34. V. K. Rai, S. B. Rai, and D. K. Rai, “Spectroscopic properties of Pr3+ doped in tellurite glass,” Spectrochim. Acta A Mol. Biomol. Spectrosc.62(1-3), 302–306 (2005).
    [CrossRef]
  35. S. X. Shen, M. Naftaly, and A. Jha, “Tungsten-tellurite-a host glass for broadband EDFA,” Opt. Commun.205(1-3), 101–105 (2002).
    [CrossRef]
  36. A. Jha, B. Richards, G. Jose, T. Teddy-Fernandez, P. Joshi, X. Jiang, and J. Lousteau, “Rare-earth ion doped TeO2 and GeO2 glasses as laser materials,” Prog. Mater. Sci.57(8), 1426–1491 (2012).
    [CrossRef]
  37. B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev.127(3), 750–761 (1962).
    [CrossRef]
  38. G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys.37(3), 511–520 (1962).
    [CrossRef]
  39. W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys.49(10), 4424–4442 (1968).
    [CrossRef]
  40. J. S. Zhang, F. Liu, B. J. Chen, X. J. Wang, and J. H. Zhang, “Parameterizing intensity of 4f2→4f2 electric-dipole transition in Pr3+ doped LiYF4,” Phys. Lett. A375(3), 743–746 (2011).
    [CrossRef]
  41. C. S. Rao, I. V. Kityk, T. Srikumar, G. N. Raju, V. R. Kumar, Y. Gandhi, and N. Veeraiah, “Spectroscopy features of Pr3+ and Er3+ ions in Li2O-ZrO2-SiO2 glass matrices mixed with some sesquioxides,” J. Alloy. Comp.509(37), 9230–9239 (2011).
    [CrossRef]
  42. P. Srivastava, S. B. Rai, and D. K. Rai, “Effect of lead oxide on optical properties of Pr3+ doped some borate based glasses,” J. Alloy. Comp.368(1-2), 1–7 (2004).
    [CrossRef]
  43. T. Miyakawa and D. L. Dexter, “Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids,” Phys. Rev. B1(7), 2961–2969 (1970).
    [CrossRef]
  44. G. S. Samal, A. K. Tripathi, A. K. Biswas, S. Singh, and Y. N. Mohapatra, “Photoluminescence quantum efficiency (PLQE) and PL decay characteristics of polymeric light emitting materials,” Synth. Met.155(2), 344–348 (2005).
    [CrossRef]
  45. L. S. Rohwer and J. E. Martin, “Measuring the absolute quantum efficiency of luminescent materials,” J. Lumin.115(3-4), 77–90 (2005).
    [CrossRef]
  46. S. Tanabe, S. Fujita, S. Yoshihara, A. Sakamoto, and S. Yamamoto, “YAG glass-ceramic phosphor for white LED (II): luminescence characteristics,” Proc. SPIE5941, 594112, 594112-6 (2005).
    [CrossRef]
  47. H. Lin, X. Y. Wang, C. M. Li, X. J. Li, S. Tanabe, and J. Y. Yu, “Spectral power distribution and quantum yields of Sm3+-doped heavy metal tellurite glass under the pumping of blue lighting emitting diode,” Spectrochim. Acta A Mol. Biomol. Spectrosc.67(5), 1417–1420 (2007).
    [CrossRef] [PubMed]

2012

L. L. Zhang, G. P. Dong, M. Y. Peng, and J. R. Qiu, “Comparative investigation on the spectroscopic properties of Pr3+-doped boro-phosphate, boro-germo-silicate and tellurite glasses,” Spectrochim. Acta A Mol. Biomol. Spectrosc.93, 223–227 (2012).
[CrossRef]

B. Dieudonné, B. Boulard, G. Alombert-Goget, Y. Gao, A. Chiasera, S. Varas, and M. Ferrari, “Pr3+-Yb3+-codoped lanthanum fluorozirconate glasses and waveguides for visible laser emission,” J. Non-Cryst. Solids358(18-19), 2695–2700 (2012).
[CrossRef]

D. Rajesh, A. Balakrishna, M. Seshadri, and Y. C. Ratnakaram, “Spectroscopic investigations on Pr3+ and Nd3+ doped strontium-lithium-bismuth borate glasses,” Spectrochim. Acta A Mol. Biomol. Spectrosc.97, 963–974 (2012).
[CrossRef]

L. R. Jaroszewicz, A. Majchrowski, M. G. Brik, N. Alzayed, W. Kuznik, I. V. Kityk, and S. Klosowicz, “Specific feature of fluorescence kinetics of Pr3+ doped BiB3O6 glasses,” J. Alloy. Comp.538, 220–223 (2012).
[CrossRef]

A. Jha, B. Richards, G. Jose, T. Teddy-Fernandez, P. Joshi, X. Jiang, and J. Lousteau, “Rare-earth ion doped TeO2 and GeO2 glasses as laser materials,” Prog. Mater. Sci.57(8), 1426–1491 (2012).
[CrossRef]

B. J. Chen, L. F. Shen, E. Y. B. Pun, and H. Lin, “Sm3+-doped germanate glass channel waveguide as light source for minimally invasive photodynamic therapy surgery,” Opt. Express20(2), 879–889 (2012).
[CrossRef] [PubMed]

2011

B. J. Chen, L. F. Shen, H. Lin, and E. Y. B. Pun, “Signal amplification in rare-earth doped heavy metal germanium tellurite glass fiber,” J. Opt. Soc. Am. B28(10), 2320–2327 (2011).
[CrossRef]

P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, and J. Golab, “Photodynamic therapy of cancer: an update,” CA Cancer J. Clin.61(4), 250–281 (2011).
[CrossRef] [PubMed]

M. Olivier, P. Pirasteh, J. L. Doualan, P. Camy, H. Lhermite, J. L. Adam, and V. Nazabal, “Pr3+-doped ZBLA fluoride glasses for visible laser emission,” Opt. Mater.33(7), 980–984 (2011).
[CrossRef]

J. S. Zhang, F. Liu, B. J. Chen, X. J. Wang, and J. H. Zhang, “Parameterizing intensity of 4f2→4f2 electric-dipole transition in Pr3+ doped LiYF4,” Phys. Lett. A375(3), 743–746 (2011).
[CrossRef]

C. S. Rao, I. V. Kityk, T. Srikumar, G. N. Raju, V. R. Kumar, Y. Gandhi, and N. Veeraiah, “Spectroscopy features of Pr3+ and Er3+ ions in Li2O-ZrO2-SiO2 glass matrices mixed with some sesquioxides,” J. Alloy. Comp.509(37), 9230–9239 (2011).
[CrossRef]

J. T. F. Lau, P. C. Lo, Y. M. Tsang, W. P. Fong, and D. K. P. Ng, “Unsymmetrical β-cyclodextrin-conjugated silicon(IV) phthalocyanines as highly potent photosensitisers for photodynamic therapy,” Chem. Commun. Camb.47(34), 9657–9659 (2011).
[CrossRef] [PubMed]

A. Lecointre, A. Bessiere, A. J. J. Bos, P. Dorenbos, B. Viana, and S. Jacquart, “Designing a red persistent luminescence phosphor: the example of YPO4: Pr3+, Ln3+ (Ln = Nd, Er, Ho, Dy),” J. Phys. Chem. C115(10), 4217–4227 (2011).
[CrossRef]

Y. Inaguma, T. Muronoi, K. Sano, T. Tsuchiya, Y. Mori, T. Katsumata, and D. Mori, “An approach to control of band gap energy and photoluminescence upon band gap excitation in Pr3+-doped perovskites La1/3MO3 (M=Nb, Ta):Pr3+,” Inorg. Chem.50(12), 5389–5395 (2011).
[CrossRef] [PubMed]

2010

T. Satyanarayana, M. G. Brik, N. Venkatramaiah, I. V. Kityk, K. J. Plucinski, V. Ravikumar, and N. Veeraiah, “Influence of crystallization on the luminescence characteristics of Pr3+ ions in PbO-Sb2O3-B2O3 glass system,” J. Am. Ceram. Soc.93(7), 2004–2011 (2010).

Z. Mazurak, S. Bodyl, R. Lisiecki, J. Gabrys-Pisarska, and M. Czaja, “Optical properties of Pr3+, Sm3+ and Er3+ doped P2O5-CaO-SrO-BaO phosphate glass,” Opt. Mater.32(4), 547–553 (2010).
[CrossRef]

M. E. Rodriguez, V. E. Diz, J. Awruch, and L. E. Dicelio, “Photophysics of zinc (II) phthalocyanine polymer and gel formulation,” Photochem. Photobiol.86(3), 513–519 (2010).
[CrossRef] [PubMed]

J. Chen, X. H. Gong, Y. F. Lin, Y. J. Chen, Z. D. Luo, and Y. D. Huang, “Synthesis and spectral property of Pr3+-doped tungstate deep red phosphors,” J. Alloy. Comp.492(1-2), 667–670 (2010).
[CrossRef]

D. L. Yang, H. Gong, E. Y. B. Pun, X. Zhao, and H. Lin, “Rare-earth ions doped heavy metal germanium tellurite glasses for fiber lighting in minimally invasive surgery,” Opt. Express18(18), 18997–19008 (2010).
[CrossRef] [PubMed]

2009

P. Boutinaud, L. Sarakha, and R. Mahiou, “NaNbO3: Pr3+: a new red phosphor showing persistent luminescence,” J. Phys. Condens. Matter21(2), 025901 (2009).
[CrossRef] [PubMed]

B. C. Jamalaiah, J. S. Kumar, A. M. Babu, L. R. Moorthy, K. Jang, H. S. Lee, M. Jayasimhadri, J. H. Jeong, and H. Choi, “Optical absorption, fluorescence and decay properties of Pr3+-doped PbO-H3BO3-TiO2-AlF3 glasses,” J. Lumin.129(9), 1023–1028 (2009).
[CrossRef]

2008

P. Solarz, “Pr3+ as a sensitiser of red Eu3+ luminescence in K5Li2GdF10: Pr3+, Eu3+ upon VUV-UV excitation,” Opt. Mater.31(1), 114–116 (2008).
[CrossRef]

S. Brown, “Photodynamic therapy: two photons are better than one,” Nat. Photonics2(7), 394–395 (2008).
[CrossRef]

K. Uk, D. A. Makarov, L. S. Yup, B. S. Jin, and G. V. Papayan, “Illuminator for photodynamic therapy and fluorescence diagnosis with lightguide output of the radiation,” J. Opt. Technol.75(12), 772–777 (2008).
[CrossRef]

2007

F. Cornacchia, A. Richter, E. Heumann, G. Huber, D. Parisi, and M. Tonelli, “Visible laser emission of solid state pumped LiLuF4:Pr3+,” Opt. Express15(3), 992–1002 (2007).
[CrossRef] [PubMed]

J. Gray and G. Fullarton, “The current role of photodynamic therapy in oesophageal dysplasia and cancer,” Photodiagn. Photodyn. Ther.4(3), 151–159 (2007).
[CrossRef]

H. Lin, X. Y. Wang, C. M. Li, X. J. Li, S. Tanabe, and J. Y. Yu, “Spectral power distribution and quantum yields of Sm3+-doped heavy metal tellurite glass under the pumping of blue lighting emitting diode,” Spectrochim. Acta A Mol. Biomol. Spectrosc.67(5), 1417–1420 (2007).
[CrossRef] [PubMed]

X. M. Zhang, J. H. Zhang, Z. G. Nie, M. Y. Wang, and X. G. Ren, “Enhanced red phosphorescence in nanosized CaTiO3: Pr3+ phosphors,” Appl. Phys. Lett.90(15), 1519111–1519113 (2007).

2006

P. Boutinaud, E. Pinel, M. Oubaha, R. Mahiou, E. Cavalli, and M. Bettinelli, “Making red emitting phorphors with Pr3+,” Opt. Mater.28(1-2), 9–13 (2006).
[CrossRef]

2005

G. S. Samal, A. K. Tripathi, A. K. Biswas, S. Singh, and Y. N. Mohapatra, “Photoluminescence quantum efficiency (PLQE) and PL decay characteristics of polymeric light emitting materials,” Synth. Met.155(2), 344–348 (2005).
[CrossRef]

L. S. Rohwer and J. E. Martin, “Measuring the absolute quantum efficiency of luminescent materials,” J. Lumin.115(3-4), 77–90 (2005).
[CrossRef]

S. Tanabe, S. Fujita, S. Yoshihara, A. Sakamoto, and S. Yamamoto, “YAG glass-ceramic phosphor for white LED (II): luminescence characteristics,” Proc. SPIE5941, 594112, 594112-6 (2005).
[CrossRef]

V. K. Rai, S. B. Rai, and D. K. Rai, “Spectroscopic properties of Pr3+ doped in tellurite glass,” Spectrochim. Acta A Mol. Biomol. Spectrosc.62(1-3), 302–306 (2005).
[CrossRef]

2004

P. Srivastava, S. B. Rai, and D. K. Rai, “Effect of lead oxide on optical properties of Pr3+ doped some borate based glasses,” J. Alloy. Comp.368(1-2), 1–7 (2004).
[CrossRef]

S. B. Brown, E. A. Brown, and I. Walker, “The present and future role of photodynamic therapy in cancer treatment,” Lancet Oncol.5(8), 497–508 (2004).
[CrossRef] [PubMed]

H. Ohashi, K. Hachiya, K. Yoshida, M. Yasuda, and J. Kondoh, “Photoluminescence properties in Pr3+-doped chalcogenide glass,” J. Alloy. Comp.373(1-2), 1–8 (2004).
[CrossRef]

H. Liu, O. Vasquez, V. R. Santiago, L. Diaz, F. E. Fernandez, L. Liu, L. Xu, and F. Gan, “Host excitation-induced red emission from Pr3+ in strontium barium niobate thin film,” J. Lumin.108(1-4), 37–41 (2004).
[CrossRef]

S. Mitra and T. H. Foster, “Carbogen breathing significantly enhances the penetration of red light in murine tumours in vivo,” Phys. Med. Biol.49(10), 1891–1904 (2004).
[CrossRef] [PubMed]

2002

L. Brancaleon and H. Moseley, “Laser and non-laser light sources for photodynamic therapy,” Lasers Med. Sci.17(3), 173–186 (2002).
[CrossRef] [PubMed]

S. X. Shen, M. Naftaly, and A. Jha, “Tungsten-tellurite-a host glass for broadband EDFA,” Opt. Commun.205(1-3), 101–105 (2002).
[CrossRef]

X. Liu, M. Naftaly, and A. Jha, “Spectroscopic evidence for oxide dopant site in GeS2-based glasses using visible photoluminescence from Pr3+ probe ions,” J. Lumin.96(2-4), 227–238 (2002).
[CrossRef]

2000

V. K. Tikhomirov and S. A. Tikhomirova, “Hypersensitive transition 3P0→3F2 of Pr3+ related to the polarizability and structure of glass host,” J. Non-Cryst. Solids274(1-3), 50–54 (2000).
[CrossRef]

C. A. Morton, C. Whitehurst, J. V. Moore, and R. M. MacKie, “Comparison of red and green light in the treatment of Bowen’s disease by photodynamic therapy,” Br. J. Dermatol.143(4), 767–772 (2000).
[CrossRef] [PubMed]

1970

T. Miyakawa and D. L. Dexter, “Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids,” Phys. Rev. B1(7), 2961–2969 (1970).
[CrossRef]

1968

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys.49(10), 4424–4442 (1968).
[CrossRef]

1962

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev.127(3), 750–761 (1962).
[CrossRef]

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys.37(3), 511–520 (1962).
[CrossRef]

Adam, J. L.

M. Olivier, P. Pirasteh, J. L. Doualan, P. Camy, H. Lhermite, J. L. Adam, and V. Nazabal, “Pr3+-doped ZBLA fluoride glasses for visible laser emission,” Opt. Mater.33(7), 980–984 (2011).
[CrossRef]

Agostinis, P.

P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, and J. Golab, “Photodynamic therapy of cancer: an update,” CA Cancer J. Clin.61(4), 250–281 (2011).
[CrossRef] [PubMed]

Alombert-Goget, G.

B. Dieudonné, B. Boulard, G. Alombert-Goget, Y. Gao, A. Chiasera, S. Varas, and M. Ferrari, “Pr3+-Yb3+-codoped lanthanum fluorozirconate glasses and waveguides for visible laser emission,” J. Non-Cryst. Solids358(18-19), 2695–2700 (2012).
[CrossRef]

Alzayed, N.

L. R. Jaroszewicz, A. Majchrowski, M. G. Brik, N. Alzayed, W. Kuznik, I. V. Kityk, and S. Klosowicz, “Specific feature of fluorescence kinetics of Pr3+ doped BiB3O6 glasses,” J. Alloy. Comp.538, 220–223 (2012).
[CrossRef]

Awruch, J.

M. E. Rodriguez, V. E. Diz, J. Awruch, and L. E. Dicelio, “Photophysics of zinc (II) phthalocyanine polymer and gel formulation,” Photochem. Photobiol.86(3), 513–519 (2010).
[CrossRef] [PubMed]

Babu, A. M.

B. C. Jamalaiah, J. S. Kumar, A. M. Babu, L. R. Moorthy, K. Jang, H. S. Lee, M. Jayasimhadri, J. H. Jeong, and H. Choi, “Optical absorption, fluorescence and decay properties of Pr3+-doped PbO-H3BO3-TiO2-AlF3 glasses,” J. Lumin.129(9), 1023–1028 (2009).
[CrossRef]

Balakrishna, A.

D. Rajesh, A. Balakrishna, M. Seshadri, and Y. C. Ratnakaram, “Spectroscopic investigations on Pr3+ and Nd3+ doped strontium-lithium-bismuth borate glasses,” Spectrochim. Acta A Mol. Biomol. Spectrosc.97, 963–974 (2012).
[CrossRef]

Berg, K.

P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, and J. Golab, “Photodynamic therapy of cancer: an update,” CA Cancer J. Clin.61(4), 250–281 (2011).
[CrossRef] [PubMed]

Bessiere, A.

A. Lecointre, A. Bessiere, A. J. J. Bos, P. Dorenbos, B. Viana, and S. Jacquart, “Designing a red persistent luminescence phosphor: the example of YPO4: Pr3+, Ln3+ (Ln = Nd, Er, Ho, Dy),” J. Phys. Chem. C115(10), 4217–4227 (2011).
[CrossRef]

Bettinelli, M.

P. Boutinaud, E. Pinel, M. Oubaha, R. Mahiou, E. Cavalli, and M. Bettinelli, “Making red emitting phorphors with Pr3+,” Opt. Mater.28(1-2), 9–13 (2006).
[CrossRef]

Biswas, A. K.

G. S. Samal, A. K. Tripathi, A. K. Biswas, S. Singh, and Y. N. Mohapatra, “Photoluminescence quantum efficiency (PLQE) and PL decay characteristics of polymeric light emitting materials,” Synth. Met.155(2), 344–348 (2005).
[CrossRef]

Bodyl, S.

Z. Mazurak, S. Bodyl, R. Lisiecki, J. Gabrys-Pisarska, and M. Czaja, “Optical properties of Pr3+, Sm3+ and Er3+ doped P2O5-CaO-SrO-BaO phosphate glass,” Opt. Mater.32(4), 547–553 (2010).
[CrossRef]

Bos, A. J. J.

A. Lecointre, A. Bessiere, A. J. J. Bos, P. Dorenbos, B. Viana, and S. Jacquart, “Designing a red persistent luminescence phosphor: the example of YPO4: Pr3+, Ln3+ (Ln = Nd, Er, Ho, Dy),” J. Phys. Chem. C115(10), 4217–4227 (2011).
[CrossRef]

Boulard, B.

B. Dieudonné, B. Boulard, G. Alombert-Goget, Y. Gao, A. Chiasera, S. Varas, and M. Ferrari, “Pr3+-Yb3+-codoped lanthanum fluorozirconate glasses and waveguides for visible laser emission,” J. Non-Cryst. Solids358(18-19), 2695–2700 (2012).
[CrossRef]

Boutinaud, P.

P. Boutinaud, L. Sarakha, and R. Mahiou, “NaNbO3: Pr3+: a new red phosphor showing persistent luminescence,” J. Phys. Condens. Matter21(2), 025901 (2009).
[CrossRef] [PubMed]

P. Boutinaud, E. Pinel, M. Oubaha, R. Mahiou, E. Cavalli, and M. Bettinelli, “Making red emitting phorphors with Pr3+,” Opt. Mater.28(1-2), 9–13 (2006).
[CrossRef]

Brancaleon, L.

L. Brancaleon and H. Moseley, “Laser and non-laser light sources for photodynamic therapy,” Lasers Med. Sci.17(3), 173–186 (2002).
[CrossRef] [PubMed]

Brik, M. G.

L. R. Jaroszewicz, A. Majchrowski, M. G. Brik, N. Alzayed, W. Kuznik, I. V. Kityk, and S. Klosowicz, “Specific feature of fluorescence kinetics of Pr3+ doped BiB3O6 glasses,” J. Alloy. Comp.538, 220–223 (2012).
[CrossRef]

T. Satyanarayana, M. G. Brik, N. Venkatramaiah, I. V. Kityk, K. J. Plucinski, V. Ravikumar, and N. Veeraiah, “Influence of crystallization on the luminescence characteristics of Pr3+ ions in PbO-Sb2O3-B2O3 glass system,” J. Am. Ceram. Soc.93(7), 2004–2011 (2010).

Brown, E. A.

S. B. Brown, E. A. Brown, and I. Walker, “The present and future role of photodynamic therapy in cancer treatment,” Lancet Oncol.5(8), 497–508 (2004).
[CrossRef] [PubMed]

Brown, S.

S. Brown, “Photodynamic therapy: two photons are better than one,” Nat. Photonics2(7), 394–395 (2008).
[CrossRef]

Brown, S. B.

S. B. Brown, E. A. Brown, and I. Walker, “The present and future role of photodynamic therapy in cancer treatment,” Lancet Oncol.5(8), 497–508 (2004).
[CrossRef] [PubMed]

Camy, P.

M. Olivier, P. Pirasteh, J. L. Doualan, P. Camy, H. Lhermite, J. L. Adam, and V. Nazabal, “Pr3+-doped ZBLA fluoride glasses for visible laser emission,” Opt. Mater.33(7), 980–984 (2011).
[CrossRef]

Carnall, W. T.

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys.49(10), 4424–4442 (1968).
[CrossRef]

Cavalli, E.

P. Boutinaud, E. Pinel, M. Oubaha, R. Mahiou, E. Cavalli, and M. Bettinelli, “Making red emitting phorphors with Pr3+,” Opt. Mater.28(1-2), 9–13 (2006).
[CrossRef]

Cengel, K. A.

P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, and J. Golab, “Photodynamic therapy of cancer: an update,” CA Cancer J. Clin.61(4), 250–281 (2011).
[CrossRef] [PubMed]

Chen, B. J.

Chen, J.

J. Chen, X. H. Gong, Y. F. Lin, Y. J. Chen, Z. D. Luo, and Y. D. Huang, “Synthesis and spectral property of Pr3+-doped tungstate deep red phosphors,” J. Alloy. Comp.492(1-2), 667–670 (2010).
[CrossRef]

Chen, Y. J.

J. Chen, X. H. Gong, Y. F. Lin, Y. J. Chen, Z. D. Luo, and Y. D. Huang, “Synthesis and spectral property of Pr3+-doped tungstate deep red phosphors,” J. Alloy. Comp.492(1-2), 667–670 (2010).
[CrossRef]

Chiasera, A.

B. Dieudonné, B. Boulard, G. Alombert-Goget, Y. Gao, A. Chiasera, S. Varas, and M. Ferrari, “Pr3+-Yb3+-codoped lanthanum fluorozirconate glasses and waveguides for visible laser emission,” J. Non-Cryst. Solids358(18-19), 2695–2700 (2012).
[CrossRef]

Choi, H.

B. C. Jamalaiah, J. S. Kumar, A. M. Babu, L. R. Moorthy, K. Jang, H. S. Lee, M. Jayasimhadri, J. H. Jeong, and H. Choi, “Optical absorption, fluorescence and decay properties of Pr3+-doped PbO-H3BO3-TiO2-AlF3 glasses,” J. Lumin.129(9), 1023–1028 (2009).
[CrossRef]

Cornacchia, F.

Czaja, M.

Z. Mazurak, S. Bodyl, R. Lisiecki, J. Gabrys-Pisarska, and M. Czaja, “Optical properties of Pr3+, Sm3+ and Er3+ doped P2O5-CaO-SrO-BaO phosphate glass,” Opt. Mater.32(4), 547–553 (2010).
[CrossRef]

Dexter, D. L.

T. Miyakawa and D. L. Dexter, “Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids,” Phys. Rev. B1(7), 2961–2969 (1970).
[CrossRef]

Diaz, L.

H. Liu, O. Vasquez, V. R. Santiago, L. Diaz, F. E. Fernandez, L. Liu, L. Xu, and F. Gan, “Host excitation-induced red emission from Pr3+ in strontium barium niobate thin film,” J. Lumin.108(1-4), 37–41 (2004).
[CrossRef]

Dicelio, L. E.

M. E. Rodriguez, V. E. Diz, J. Awruch, and L. E. Dicelio, “Photophysics of zinc (II) phthalocyanine polymer and gel formulation,” Photochem. Photobiol.86(3), 513–519 (2010).
[CrossRef] [PubMed]

Dieudonné, B.

B. Dieudonné, B. Boulard, G. Alombert-Goget, Y. Gao, A. Chiasera, S. Varas, and M. Ferrari, “Pr3+-Yb3+-codoped lanthanum fluorozirconate glasses and waveguides for visible laser emission,” J. Non-Cryst. Solids358(18-19), 2695–2700 (2012).
[CrossRef]

Diz, V. E.

M. E. Rodriguez, V. E. Diz, J. Awruch, and L. E. Dicelio, “Photophysics of zinc (II) phthalocyanine polymer and gel formulation,” Photochem. Photobiol.86(3), 513–519 (2010).
[CrossRef] [PubMed]

Dong, G. P.

L. L. Zhang, G. P. Dong, M. Y. Peng, and J. R. Qiu, “Comparative investigation on the spectroscopic properties of Pr3+-doped boro-phosphate, boro-germo-silicate and tellurite glasses,” Spectrochim. Acta A Mol. Biomol. Spectrosc.93, 223–227 (2012).
[CrossRef]

Dorenbos, P.

A. Lecointre, A. Bessiere, A. J. J. Bos, P. Dorenbos, B. Viana, and S. Jacquart, “Designing a red persistent luminescence phosphor: the example of YPO4: Pr3+, Ln3+ (Ln = Nd, Er, Ho, Dy),” J. Phys. Chem. C115(10), 4217–4227 (2011).
[CrossRef]

Doualan, J. L.

M. Olivier, P. Pirasteh, J. L. Doualan, P. Camy, H. Lhermite, J. L. Adam, and V. Nazabal, “Pr3+-doped ZBLA fluoride glasses for visible laser emission,” Opt. Mater.33(7), 980–984 (2011).
[CrossRef]

Fernandez, F. E.

H. Liu, O. Vasquez, V. R. Santiago, L. Diaz, F. E. Fernandez, L. Liu, L. Xu, and F. Gan, “Host excitation-induced red emission from Pr3+ in strontium barium niobate thin film,” J. Lumin.108(1-4), 37–41 (2004).
[CrossRef]

Ferrari, M.

B. Dieudonné, B. Boulard, G. Alombert-Goget, Y. Gao, A. Chiasera, S. Varas, and M. Ferrari, “Pr3+-Yb3+-codoped lanthanum fluorozirconate glasses and waveguides for visible laser emission,” J. Non-Cryst. Solids358(18-19), 2695–2700 (2012).
[CrossRef]

Fields, P. R.

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys.49(10), 4424–4442 (1968).
[CrossRef]

Fong, W. P.

J. T. F. Lau, P. C. Lo, Y. M. Tsang, W. P. Fong, and D. K. P. Ng, “Unsymmetrical β-cyclodextrin-conjugated silicon(IV) phthalocyanines as highly potent photosensitisers for photodynamic therapy,” Chem. Commun. Camb.47(34), 9657–9659 (2011).
[CrossRef] [PubMed]

Foster, T. H.

P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, and J. Golab, “Photodynamic therapy of cancer: an update,” CA Cancer J. Clin.61(4), 250–281 (2011).
[CrossRef] [PubMed]

S. Mitra and T. H. Foster, “Carbogen breathing significantly enhances the penetration of red light in murine tumours in vivo,” Phys. Med. Biol.49(10), 1891–1904 (2004).
[CrossRef] [PubMed]

Fujita, S.

S. Tanabe, S. Fujita, S. Yoshihara, A. Sakamoto, and S. Yamamoto, “YAG glass-ceramic phosphor for white LED (II): luminescence characteristics,” Proc. SPIE5941, 594112, 594112-6 (2005).
[CrossRef]

Fullarton, G.

J. Gray and G. Fullarton, “The current role of photodynamic therapy in oesophageal dysplasia and cancer,” Photodiagn. Photodyn. Ther.4(3), 151–159 (2007).
[CrossRef]

Gabrys-Pisarska, J.

Z. Mazurak, S. Bodyl, R. Lisiecki, J. Gabrys-Pisarska, and M. Czaja, “Optical properties of Pr3+, Sm3+ and Er3+ doped P2O5-CaO-SrO-BaO phosphate glass,” Opt. Mater.32(4), 547–553 (2010).
[CrossRef]

Gan, F.

H. Liu, O. Vasquez, V. R. Santiago, L. Diaz, F. E. Fernandez, L. Liu, L. Xu, and F. Gan, “Host excitation-induced red emission from Pr3+ in strontium barium niobate thin film,” J. Lumin.108(1-4), 37–41 (2004).
[CrossRef]

Gandhi, Y.

C. S. Rao, I. V. Kityk, T. Srikumar, G. N. Raju, V. R. Kumar, Y. Gandhi, and N. Veeraiah, “Spectroscopy features of Pr3+ and Er3+ ions in Li2O-ZrO2-SiO2 glass matrices mixed with some sesquioxides,” J. Alloy. Comp.509(37), 9230–9239 (2011).
[CrossRef]

Gao, Y.

B. Dieudonné, B. Boulard, G. Alombert-Goget, Y. Gao, A. Chiasera, S. Varas, and M. Ferrari, “Pr3+-Yb3+-codoped lanthanum fluorozirconate glasses and waveguides for visible laser emission,” J. Non-Cryst. Solids358(18-19), 2695–2700 (2012).
[CrossRef]

Girotti, A. W.

P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, and J. Golab, “Photodynamic therapy of cancer: an update,” CA Cancer J. Clin.61(4), 250–281 (2011).
[CrossRef] [PubMed]

Golab, J.

P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, and J. Golab, “Photodynamic therapy of cancer: an update,” CA Cancer J. Clin.61(4), 250–281 (2011).
[CrossRef] [PubMed]

Gollnick, S. O.

P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, and J. Golab, “Photodynamic therapy of cancer: an update,” CA Cancer J. Clin.61(4), 250–281 (2011).
[CrossRef] [PubMed]

Gong, H.

Gong, X. H.

J. Chen, X. H. Gong, Y. F. Lin, Y. J. Chen, Z. D. Luo, and Y. D. Huang, “Synthesis and spectral property of Pr3+-doped tungstate deep red phosphors,” J. Alloy. Comp.492(1-2), 667–670 (2010).
[CrossRef]

Gray, J.

J. Gray and G. Fullarton, “The current role of photodynamic therapy in oesophageal dysplasia and cancer,” Photodiagn. Photodyn. Ther.4(3), 151–159 (2007).
[CrossRef]

Hachiya, K.

H. Ohashi, K. Hachiya, K. Yoshida, M. Yasuda, and J. Kondoh, “Photoluminescence properties in Pr3+-doped chalcogenide glass,” J. Alloy. Comp.373(1-2), 1–8 (2004).
[CrossRef]

Hahn, S. M.

P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, and J. Golab, “Photodynamic therapy of cancer: an update,” CA Cancer J. Clin.61(4), 250–281 (2011).
[CrossRef] [PubMed]

Hamblin, M. R.

P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, and J. Golab, “Photodynamic therapy of cancer: an update,” CA Cancer J. Clin.61(4), 250–281 (2011).
[CrossRef] [PubMed]

Heumann, E.

Huang, Y. D.

J. Chen, X. H. Gong, Y. F. Lin, Y. J. Chen, Z. D. Luo, and Y. D. Huang, “Synthesis and spectral property of Pr3+-doped tungstate deep red phosphors,” J. Alloy. Comp.492(1-2), 667–670 (2010).
[CrossRef]

Huber, G.

Inaguma, Y.

Y. Inaguma, T. Muronoi, K. Sano, T. Tsuchiya, Y. Mori, T. Katsumata, and D. Mori, “An approach to control of band gap energy and photoluminescence upon band gap excitation in Pr3+-doped perovskites La1/3MO3 (M=Nb, Ta):Pr3+,” Inorg. Chem.50(12), 5389–5395 (2011).
[CrossRef] [PubMed]

Jacquart, S.

A. Lecointre, A. Bessiere, A. J. J. Bos, P. Dorenbos, B. Viana, and S. Jacquart, “Designing a red persistent luminescence phosphor: the example of YPO4: Pr3+, Ln3+ (Ln = Nd, Er, Ho, Dy),” J. Phys. Chem. C115(10), 4217–4227 (2011).
[CrossRef]

Jamalaiah, B. C.

B. C. Jamalaiah, J. S. Kumar, A. M. Babu, L. R. Moorthy, K. Jang, H. S. Lee, M. Jayasimhadri, J. H. Jeong, and H. Choi, “Optical absorption, fluorescence and decay properties of Pr3+-doped PbO-H3BO3-TiO2-AlF3 glasses,” J. Lumin.129(9), 1023–1028 (2009).
[CrossRef]

Jang, K.

B. C. Jamalaiah, J. S. Kumar, A. M. Babu, L. R. Moorthy, K. Jang, H. S. Lee, M. Jayasimhadri, J. H. Jeong, and H. Choi, “Optical absorption, fluorescence and decay properties of Pr3+-doped PbO-H3BO3-TiO2-AlF3 glasses,” J. Lumin.129(9), 1023–1028 (2009).
[CrossRef]

Jaroszewicz, L. R.

L. R. Jaroszewicz, A. Majchrowski, M. G. Brik, N. Alzayed, W. Kuznik, I. V. Kityk, and S. Klosowicz, “Specific feature of fluorescence kinetics of Pr3+ doped BiB3O6 glasses,” J. Alloy. Comp.538, 220–223 (2012).
[CrossRef]

Jayasimhadri, M.

B. C. Jamalaiah, J. S. Kumar, A. M. Babu, L. R. Moorthy, K. Jang, H. S. Lee, M. Jayasimhadri, J. H. Jeong, and H. Choi, “Optical absorption, fluorescence and decay properties of Pr3+-doped PbO-H3BO3-TiO2-AlF3 glasses,” J. Lumin.129(9), 1023–1028 (2009).
[CrossRef]

Jeong, J. H.

B. C. Jamalaiah, J. S. Kumar, A. M. Babu, L. R. Moorthy, K. Jang, H. S. Lee, M. Jayasimhadri, J. H. Jeong, and H. Choi, “Optical absorption, fluorescence and decay properties of Pr3+-doped PbO-H3BO3-TiO2-AlF3 glasses,” J. Lumin.129(9), 1023–1028 (2009).
[CrossRef]

Jha, A.

A. Jha, B. Richards, G. Jose, T. Teddy-Fernandez, P. Joshi, X. Jiang, and J. Lousteau, “Rare-earth ion doped TeO2 and GeO2 glasses as laser materials,” Prog. Mater. Sci.57(8), 1426–1491 (2012).
[CrossRef]

X. Liu, M. Naftaly, and A. Jha, “Spectroscopic evidence for oxide dopant site in GeS2-based glasses using visible photoluminescence from Pr3+ probe ions,” J. Lumin.96(2-4), 227–238 (2002).
[CrossRef]

S. X. Shen, M. Naftaly, and A. Jha, “Tungsten-tellurite-a host glass for broadband EDFA,” Opt. Commun.205(1-3), 101–105 (2002).
[CrossRef]

Jiang, X.

A. Jha, B. Richards, G. Jose, T. Teddy-Fernandez, P. Joshi, X. Jiang, and J. Lousteau, “Rare-earth ion doped TeO2 and GeO2 glasses as laser materials,” Prog. Mater. Sci.57(8), 1426–1491 (2012).
[CrossRef]

Jin, B. S.

Jose, G.

A. Jha, B. Richards, G. Jose, T. Teddy-Fernandez, P. Joshi, X. Jiang, and J. Lousteau, “Rare-earth ion doped TeO2 and GeO2 glasses as laser materials,” Prog. Mater. Sci.57(8), 1426–1491 (2012).
[CrossRef]

Joshi, P.

A. Jha, B. Richards, G. Jose, T. Teddy-Fernandez, P. Joshi, X. Jiang, and J. Lousteau, “Rare-earth ion doped TeO2 and GeO2 glasses as laser materials,” Prog. Mater. Sci.57(8), 1426–1491 (2012).
[CrossRef]

Judd, B. R.

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev.127(3), 750–761 (1962).
[CrossRef]

Juzeniene, A.

P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, and J. Golab, “Photodynamic therapy of cancer: an update,” CA Cancer J. Clin.61(4), 250–281 (2011).
[CrossRef] [PubMed]

Katsumata, T.

Y. Inaguma, T. Muronoi, K. Sano, T. Tsuchiya, Y. Mori, T. Katsumata, and D. Mori, “An approach to control of band gap energy and photoluminescence upon band gap excitation in Pr3+-doped perovskites La1/3MO3 (M=Nb, Ta):Pr3+,” Inorg. Chem.50(12), 5389–5395 (2011).
[CrossRef] [PubMed]

Kessel, D.

P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, and J. Golab, “Photodynamic therapy of cancer: an update,” CA Cancer J. Clin.61(4), 250–281 (2011).
[CrossRef] [PubMed]

Kityk, I. V.

L. R. Jaroszewicz, A. Majchrowski, M. G. Brik, N. Alzayed, W. Kuznik, I. V. Kityk, and S. Klosowicz, “Specific feature of fluorescence kinetics of Pr3+ doped BiB3O6 glasses,” J. Alloy. Comp.538, 220–223 (2012).
[CrossRef]

C. S. Rao, I. V. Kityk, T. Srikumar, G. N. Raju, V. R. Kumar, Y. Gandhi, and N. Veeraiah, “Spectroscopy features of Pr3+ and Er3+ ions in Li2O-ZrO2-SiO2 glass matrices mixed with some sesquioxides,” J. Alloy. Comp.509(37), 9230–9239 (2011).
[CrossRef]

T. Satyanarayana, M. G. Brik, N. Venkatramaiah, I. V. Kityk, K. J. Plucinski, V. Ravikumar, and N. Veeraiah, “Influence of crystallization on the luminescence characteristics of Pr3+ ions in PbO-Sb2O3-B2O3 glass system,” J. Am. Ceram. Soc.93(7), 2004–2011 (2010).

Klosowicz, S.

L. R. Jaroszewicz, A. Majchrowski, M. G. Brik, N. Alzayed, W. Kuznik, I. V. Kityk, and S. Klosowicz, “Specific feature of fluorescence kinetics of Pr3+ doped BiB3O6 glasses,” J. Alloy. Comp.538, 220–223 (2012).
[CrossRef]

Kondoh, J.

H. Ohashi, K. Hachiya, K. Yoshida, M. Yasuda, and J. Kondoh, “Photoluminescence properties in Pr3+-doped chalcogenide glass,” J. Alloy. Comp.373(1-2), 1–8 (2004).
[CrossRef]

Korbelik, M.

P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, and J. Golab, “Photodynamic therapy of cancer: an update,” CA Cancer J. Clin.61(4), 250–281 (2011).
[CrossRef] [PubMed]

Kumar, J. S.

B. C. Jamalaiah, J. S. Kumar, A. M. Babu, L. R. Moorthy, K. Jang, H. S. Lee, M. Jayasimhadri, J. H. Jeong, and H. Choi, “Optical absorption, fluorescence and decay properties of Pr3+-doped PbO-H3BO3-TiO2-AlF3 glasses,” J. Lumin.129(9), 1023–1028 (2009).
[CrossRef]

Kumar, V. R.

C. S. Rao, I. V. Kityk, T. Srikumar, G. N. Raju, V. R. Kumar, Y. Gandhi, and N. Veeraiah, “Spectroscopy features of Pr3+ and Er3+ ions in Li2O-ZrO2-SiO2 glass matrices mixed with some sesquioxides,” J. Alloy. Comp.509(37), 9230–9239 (2011).
[CrossRef]

Kuznik, W.

L. R. Jaroszewicz, A. Majchrowski, M. G. Brik, N. Alzayed, W. Kuznik, I. V. Kityk, and S. Klosowicz, “Specific feature of fluorescence kinetics of Pr3+ doped BiB3O6 glasses,” J. Alloy. Comp.538, 220–223 (2012).
[CrossRef]

Lau, J. T. F.

J. T. F. Lau, P. C. Lo, Y. M. Tsang, W. P. Fong, and D. K. P. Ng, “Unsymmetrical β-cyclodextrin-conjugated silicon(IV) phthalocyanines as highly potent photosensitisers for photodynamic therapy,” Chem. Commun. Camb.47(34), 9657–9659 (2011).
[CrossRef] [PubMed]

Lecointre, A.

A. Lecointre, A. Bessiere, A. J. J. Bos, P. Dorenbos, B. Viana, and S. Jacquart, “Designing a red persistent luminescence phosphor: the example of YPO4: Pr3+, Ln3+ (Ln = Nd, Er, Ho, Dy),” J. Phys. Chem. C115(10), 4217–4227 (2011).
[CrossRef]

Lee, H. S.

B. C. Jamalaiah, J. S. Kumar, A. M. Babu, L. R. Moorthy, K. Jang, H. S. Lee, M. Jayasimhadri, J. H. Jeong, and H. Choi, “Optical absorption, fluorescence and decay properties of Pr3+-doped PbO-H3BO3-TiO2-AlF3 glasses,” J. Lumin.129(9), 1023–1028 (2009).
[CrossRef]

Lhermite, H.

M. Olivier, P. Pirasteh, J. L. Doualan, P. Camy, H. Lhermite, J. L. Adam, and V. Nazabal, “Pr3+-doped ZBLA fluoride glasses for visible laser emission,” Opt. Mater.33(7), 980–984 (2011).
[CrossRef]

Li, C. M.

H. Lin, X. Y. Wang, C. M. Li, X. J. Li, S. Tanabe, and J. Y. Yu, “Spectral power distribution and quantum yields of Sm3+-doped heavy metal tellurite glass under the pumping of blue lighting emitting diode,” Spectrochim. Acta A Mol. Biomol. Spectrosc.67(5), 1417–1420 (2007).
[CrossRef] [PubMed]

Li, X. J.

H. Lin, X. Y. Wang, C. M. Li, X. J. Li, S. Tanabe, and J. Y. Yu, “Spectral power distribution and quantum yields of Sm3+-doped heavy metal tellurite glass under the pumping of blue lighting emitting diode,” Spectrochim. Acta A Mol. Biomol. Spectrosc.67(5), 1417–1420 (2007).
[CrossRef] [PubMed]

Lin, H.

Lin, Y. F.

J. Chen, X. H. Gong, Y. F. Lin, Y. J. Chen, Z. D. Luo, and Y. D. Huang, “Synthesis and spectral property of Pr3+-doped tungstate deep red phosphors,” J. Alloy. Comp.492(1-2), 667–670 (2010).
[CrossRef]

Lisiecki, R.

Z. Mazurak, S. Bodyl, R. Lisiecki, J. Gabrys-Pisarska, and M. Czaja, “Optical properties of Pr3+, Sm3+ and Er3+ doped P2O5-CaO-SrO-BaO phosphate glass,” Opt. Mater.32(4), 547–553 (2010).
[CrossRef]

Liu, F.

J. S. Zhang, F. Liu, B. J. Chen, X. J. Wang, and J. H. Zhang, “Parameterizing intensity of 4f2→4f2 electric-dipole transition in Pr3+ doped LiYF4,” Phys. Lett. A375(3), 743–746 (2011).
[CrossRef]

Liu, H.

H. Liu, O. Vasquez, V. R. Santiago, L. Diaz, F. E. Fernandez, L. Liu, L. Xu, and F. Gan, “Host excitation-induced red emission from Pr3+ in strontium barium niobate thin film,” J. Lumin.108(1-4), 37–41 (2004).
[CrossRef]

Liu, L.

H. Liu, O. Vasquez, V. R. Santiago, L. Diaz, F. E. Fernandez, L. Liu, L. Xu, and F. Gan, “Host excitation-induced red emission from Pr3+ in strontium barium niobate thin film,” J. Lumin.108(1-4), 37–41 (2004).
[CrossRef]

Liu, X.

X. Liu, M. Naftaly, and A. Jha, “Spectroscopic evidence for oxide dopant site in GeS2-based glasses using visible photoluminescence from Pr3+ probe ions,” J. Lumin.96(2-4), 227–238 (2002).
[CrossRef]

Lo, P. C.

J. T. F. Lau, P. C. Lo, Y. M. Tsang, W. P. Fong, and D. K. P. Ng, “Unsymmetrical β-cyclodextrin-conjugated silicon(IV) phthalocyanines as highly potent photosensitisers for photodynamic therapy,” Chem. Commun. Camb.47(34), 9657–9659 (2011).
[CrossRef] [PubMed]

Lousteau, J.

A. Jha, B. Richards, G. Jose, T. Teddy-Fernandez, P. Joshi, X. Jiang, and J. Lousteau, “Rare-earth ion doped TeO2 and GeO2 glasses as laser materials,” Prog. Mater. Sci.57(8), 1426–1491 (2012).
[CrossRef]

Luo, Z. D.

J. Chen, X. H. Gong, Y. F. Lin, Y. J. Chen, Z. D. Luo, and Y. D. Huang, “Synthesis and spectral property of Pr3+-doped tungstate deep red phosphors,” J. Alloy. Comp.492(1-2), 667–670 (2010).
[CrossRef]

MacKie, R. M.

C. A. Morton, C. Whitehurst, J. V. Moore, and R. M. MacKie, “Comparison of red and green light in the treatment of Bowen’s disease by photodynamic therapy,” Br. J. Dermatol.143(4), 767–772 (2000).
[CrossRef] [PubMed]

Mahiou, R.

P. Boutinaud, L. Sarakha, and R. Mahiou, “NaNbO3: Pr3+: a new red phosphor showing persistent luminescence,” J. Phys. Condens. Matter21(2), 025901 (2009).
[CrossRef] [PubMed]

P. Boutinaud, E. Pinel, M. Oubaha, R. Mahiou, E. Cavalli, and M. Bettinelli, “Making red emitting phorphors with Pr3+,” Opt. Mater.28(1-2), 9–13 (2006).
[CrossRef]

Majchrowski, A.

L. R. Jaroszewicz, A. Majchrowski, M. G. Brik, N. Alzayed, W. Kuznik, I. V. Kityk, and S. Klosowicz, “Specific feature of fluorescence kinetics of Pr3+ doped BiB3O6 glasses,” J. Alloy. Comp.538, 220–223 (2012).
[CrossRef]

Makarov, D. A.

Martin, J. E.

L. S. Rohwer and J. E. Martin, “Measuring the absolute quantum efficiency of luminescent materials,” J. Lumin.115(3-4), 77–90 (2005).
[CrossRef]

Mazurak, Z.

Z. Mazurak, S. Bodyl, R. Lisiecki, J. Gabrys-Pisarska, and M. Czaja, “Optical properties of Pr3+, Sm3+ and Er3+ doped P2O5-CaO-SrO-BaO phosphate glass,” Opt. Mater.32(4), 547–553 (2010).
[CrossRef]

Mitra, S.

S. Mitra and T. H. Foster, “Carbogen breathing significantly enhances the penetration of red light in murine tumours in vivo,” Phys. Med. Biol.49(10), 1891–1904 (2004).
[CrossRef] [PubMed]

Miyakawa, T.

T. Miyakawa and D. L. Dexter, “Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids,” Phys. Rev. B1(7), 2961–2969 (1970).
[CrossRef]

Moan, J.

P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, and J. Golab, “Photodynamic therapy of cancer: an update,” CA Cancer J. Clin.61(4), 250–281 (2011).
[CrossRef] [PubMed]

Mohapatra, Y. N.

G. S. Samal, A. K. Tripathi, A. K. Biswas, S. Singh, and Y. N. Mohapatra, “Photoluminescence quantum efficiency (PLQE) and PL decay characteristics of polymeric light emitting materials,” Synth. Met.155(2), 344–348 (2005).
[CrossRef]

Moore, J. V.

C. A. Morton, C. Whitehurst, J. V. Moore, and R. M. MacKie, “Comparison of red and green light in the treatment of Bowen’s disease by photodynamic therapy,” Br. J. Dermatol.143(4), 767–772 (2000).
[CrossRef] [PubMed]

Moorthy, L. R.

B. C. Jamalaiah, J. S. Kumar, A. M. Babu, L. R. Moorthy, K. Jang, H. S. Lee, M. Jayasimhadri, J. H. Jeong, and H. Choi, “Optical absorption, fluorescence and decay properties of Pr3+-doped PbO-H3BO3-TiO2-AlF3 glasses,” J. Lumin.129(9), 1023–1028 (2009).
[CrossRef]

Mori, D.

Y. Inaguma, T. Muronoi, K. Sano, T. Tsuchiya, Y. Mori, T. Katsumata, and D. Mori, “An approach to control of band gap energy and photoluminescence upon band gap excitation in Pr3+-doped perovskites La1/3MO3 (M=Nb, Ta):Pr3+,” Inorg. Chem.50(12), 5389–5395 (2011).
[CrossRef] [PubMed]

Mori, Y.

Y. Inaguma, T. Muronoi, K. Sano, T. Tsuchiya, Y. Mori, T. Katsumata, and D. Mori, “An approach to control of band gap energy and photoluminescence upon band gap excitation in Pr3+-doped perovskites La1/3MO3 (M=Nb, Ta):Pr3+,” Inorg. Chem.50(12), 5389–5395 (2011).
[CrossRef] [PubMed]

Morton, C. A.

C. A. Morton, C. Whitehurst, J. V. Moore, and R. M. MacKie, “Comparison of red and green light in the treatment of Bowen’s disease by photodynamic therapy,” Br. J. Dermatol.143(4), 767–772 (2000).
[CrossRef] [PubMed]

Moseley, H.

L. Brancaleon and H. Moseley, “Laser and non-laser light sources for photodynamic therapy,” Lasers Med. Sci.17(3), 173–186 (2002).
[CrossRef] [PubMed]

Mroz, P.

P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, and J. Golab, “Photodynamic therapy of cancer: an update,” CA Cancer J. Clin.61(4), 250–281 (2011).
[CrossRef] [PubMed]

Muronoi, T.

Y. Inaguma, T. Muronoi, K. Sano, T. Tsuchiya, Y. Mori, T. Katsumata, and D. Mori, “An approach to control of band gap energy and photoluminescence upon band gap excitation in Pr3+-doped perovskites La1/3MO3 (M=Nb, Ta):Pr3+,” Inorg. Chem.50(12), 5389–5395 (2011).
[CrossRef] [PubMed]

Naftaly, M.

X. Liu, M. Naftaly, and A. Jha, “Spectroscopic evidence for oxide dopant site in GeS2-based glasses using visible photoluminescence from Pr3+ probe ions,” J. Lumin.96(2-4), 227–238 (2002).
[CrossRef]

S. X. Shen, M. Naftaly, and A. Jha, “Tungsten-tellurite-a host glass for broadband EDFA,” Opt. Commun.205(1-3), 101–105 (2002).
[CrossRef]

Nazabal, V.

M. Olivier, P. Pirasteh, J. L. Doualan, P. Camy, H. Lhermite, J. L. Adam, and V. Nazabal, “Pr3+-doped ZBLA fluoride glasses for visible laser emission,” Opt. Mater.33(7), 980–984 (2011).
[CrossRef]

Ng, D. K. P.

J. T. F. Lau, P. C. Lo, Y. M. Tsang, W. P. Fong, and D. K. P. Ng, “Unsymmetrical β-cyclodextrin-conjugated silicon(IV) phthalocyanines as highly potent photosensitisers for photodynamic therapy,” Chem. Commun. Camb.47(34), 9657–9659 (2011).
[CrossRef] [PubMed]

Nie, Z. G.

X. M. Zhang, J. H. Zhang, Z. G. Nie, M. Y. Wang, and X. G. Ren, “Enhanced red phosphorescence in nanosized CaTiO3: Pr3+ phosphors,” Appl. Phys. Lett.90(15), 1519111–1519113 (2007).

Nowis, D.

P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, and J. Golab, “Photodynamic therapy of cancer: an update,” CA Cancer J. Clin.61(4), 250–281 (2011).
[CrossRef] [PubMed]

Ofelt, G. S.

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys.37(3), 511–520 (1962).
[CrossRef]

Ohashi, H.

H. Ohashi, K. Hachiya, K. Yoshida, M. Yasuda, and J. Kondoh, “Photoluminescence properties in Pr3+-doped chalcogenide glass,” J. Alloy. Comp.373(1-2), 1–8 (2004).
[CrossRef]

Olivier, M.

M. Olivier, P. Pirasteh, J. L. Doualan, P. Camy, H. Lhermite, J. L. Adam, and V. Nazabal, “Pr3+-doped ZBLA fluoride glasses for visible laser emission,” Opt. Mater.33(7), 980–984 (2011).
[CrossRef]

Oubaha, M.

P. Boutinaud, E. Pinel, M. Oubaha, R. Mahiou, E. Cavalli, and M. Bettinelli, “Making red emitting phorphors with Pr3+,” Opt. Mater.28(1-2), 9–13 (2006).
[CrossRef]

Papayan, G. V.

Parisi, D.

Peng, M. Y.

L. L. Zhang, G. P. Dong, M. Y. Peng, and J. R. Qiu, “Comparative investigation on the spectroscopic properties of Pr3+-doped boro-phosphate, boro-germo-silicate and tellurite glasses,” Spectrochim. Acta A Mol. Biomol. Spectrosc.93, 223–227 (2012).
[CrossRef]

Piette, J.

P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, and J. Golab, “Photodynamic therapy of cancer: an update,” CA Cancer J. Clin.61(4), 250–281 (2011).
[CrossRef] [PubMed]

Pinel, E.

P. Boutinaud, E. Pinel, M. Oubaha, R. Mahiou, E. Cavalli, and M. Bettinelli, “Making red emitting phorphors with Pr3+,” Opt. Mater.28(1-2), 9–13 (2006).
[CrossRef]

Pirasteh, P.

M. Olivier, P. Pirasteh, J. L. Doualan, P. Camy, H. Lhermite, J. L. Adam, and V. Nazabal, “Pr3+-doped ZBLA fluoride glasses for visible laser emission,” Opt. Mater.33(7), 980–984 (2011).
[CrossRef]

Plucinski, K. J.

T. Satyanarayana, M. G. Brik, N. Venkatramaiah, I. V. Kityk, K. J. Plucinski, V. Ravikumar, and N. Veeraiah, “Influence of crystallization on the luminescence characteristics of Pr3+ ions in PbO-Sb2O3-B2O3 glass system,” J. Am. Ceram. Soc.93(7), 2004–2011 (2010).

Pun, E. Y. B.

Qiu, J. R.

L. L. Zhang, G. P. Dong, M. Y. Peng, and J. R. Qiu, “Comparative investigation on the spectroscopic properties of Pr3+-doped boro-phosphate, boro-germo-silicate and tellurite glasses,” Spectrochim. Acta A Mol. Biomol. Spectrosc.93, 223–227 (2012).
[CrossRef]

Rai, D. K.

V. K. Rai, S. B. Rai, and D. K. Rai, “Spectroscopic properties of Pr3+ doped in tellurite glass,” Spectrochim. Acta A Mol. Biomol. Spectrosc.62(1-3), 302–306 (2005).
[CrossRef]

P. Srivastava, S. B. Rai, and D. K. Rai, “Effect of lead oxide on optical properties of Pr3+ doped some borate based glasses,” J. Alloy. Comp.368(1-2), 1–7 (2004).
[CrossRef]

Rai, S. B.

V. K. Rai, S. B. Rai, and D. K. Rai, “Spectroscopic properties of Pr3+ doped in tellurite glass,” Spectrochim. Acta A Mol. Biomol. Spectrosc.62(1-3), 302–306 (2005).
[CrossRef]

P. Srivastava, S. B. Rai, and D. K. Rai, “Effect of lead oxide on optical properties of Pr3+ doped some borate based glasses,” J. Alloy. Comp.368(1-2), 1–7 (2004).
[CrossRef]

Rai, V. K.

V. K. Rai, S. B. Rai, and D. K. Rai, “Spectroscopic properties of Pr3+ doped in tellurite glass,” Spectrochim. Acta A Mol. Biomol. Spectrosc.62(1-3), 302–306 (2005).
[CrossRef]

Rajesh, D.

D. Rajesh, A. Balakrishna, M. Seshadri, and Y. C. Ratnakaram, “Spectroscopic investigations on Pr3+ and Nd3+ doped strontium-lithium-bismuth borate glasses,” Spectrochim. Acta A Mol. Biomol. Spectrosc.97, 963–974 (2012).
[CrossRef]

Rajnak, K.

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys.49(10), 4424–4442 (1968).
[CrossRef]

Raju, G. N.

C. S. Rao, I. V. Kityk, T. Srikumar, G. N. Raju, V. R. Kumar, Y. Gandhi, and N. Veeraiah, “Spectroscopy features of Pr3+ and Er3+ ions in Li2O-ZrO2-SiO2 glass matrices mixed with some sesquioxides,” J. Alloy. Comp.509(37), 9230–9239 (2011).
[CrossRef]

Rao, C. S.

C. S. Rao, I. V. Kityk, T. Srikumar, G. N. Raju, V. R. Kumar, Y. Gandhi, and N. Veeraiah, “Spectroscopy features of Pr3+ and Er3+ ions in Li2O-ZrO2-SiO2 glass matrices mixed with some sesquioxides,” J. Alloy. Comp.509(37), 9230–9239 (2011).
[CrossRef]

Ratnakaram, Y. C.

D. Rajesh, A. Balakrishna, M. Seshadri, and Y. C. Ratnakaram, “Spectroscopic investigations on Pr3+ and Nd3+ doped strontium-lithium-bismuth borate glasses,” Spectrochim. Acta A Mol. Biomol. Spectrosc.97, 963–974 (2012).
[CrossRef]

Ravikumar, V.

T. Satyanarayana, M. G. Brik, N. Venkatramaiah, I. V. Kityk, K. J. Plucinski, V. Ravikumar, and N. Veeraiah, “Influence of crystallization on the luminescence characteristics of Pr3+ ions in PbO-Sb2O3-B2O3 glass system,” J. Am. Ceram. Soc.93(7), 2004–2011 (2010).

Ren, X. G.

X. M. Zhang, J. H. Zhang, Z. G. Nie, M. Y. Wang, and X. G. Ren, “Enhanced red phosphorescence in nanosized CaTiO3: Pr3+ phosphors,” Appl. Phys. Lett.90(15), 1519111–1519113 (2007).

Richards, B.

A. Jha, B. Richards, G. Jose, T. Teddy-Fernandez, P. Joshi, X. Jiang, and J. Lousteau, “Rare-earth ion doped TeO2 and GeO2 glasses as laser materials,” Prog. Mater. Sci.57(8), 1426–1491 (2012).
[CrossRef]

Richter, A.

Rodriguez, M. E.

M. E. Rodriguez, V. E. Diz, J. Awruch, and L. E. Dicelio, “Photophysics of zinc (II) phthalocyanine polymer and gel formulation,” Photochem. Photobiol.86(3), 513–519 (2010).
[CrossRef] [PubMed]

Rohwer, L. S.

L. S. Rohwer and J. E. Martin, “Measuring the absolute quantum efficiency of luminescent materials,” J. Lumin.115(3-4), 77–90 (2005).
[CrossRef]

Sakamoto, A.

S. Tanabe, S. Fujita, S. Yoshihara, A. Sakamoto, and S. Yamamoto, “YAG glass-ceramic phosphor for white LED (II): luminescence characteristics,” Proc. SPIE5941, 594112, 594112-6 (2005).
[CrossRef]

Samal, G. S.

G. S. Samal, A. K. Tripathi, A. K. Biswas, S. Singh, and Y. N. Mohapatra, “Photoluminescence quantum efficiency (PLQE) and PL decay characteristics of polymeric light emitting materials,” Synth. Met.155(2), 344–348 (2005).
[CrossRef]

Sano, K.

Y. Inaguma, T. Muronoi, K. Sano, T. Tsuchiya, Y. Mori, T. Katsumata, and D. Mori, “An approach to control of band gap energy and photoluminescence upon band gap excitation in Pr3+-doped perovskites La1/3MO3 (M=Nb, Ta):Pr3+,” Inorg. Chem.50(12), 5389–5395 (2011).
[CrossRef] [PubMed]

Santiago, V. R.

H. Liu, O. Vasquez, V. R. Santiago, L. Diaz, F. E. Fernandez, L. Liu, L. Xu, and F. Gan, “Host excitation-induced red emission from Pr3+ in strontium barium niobate thin film,” J. Lumin.108(1-4), 37–41 (2004).
[CrossRef]

Sarakha, L.

P. Boutinaud, L. Sarakha, and R. Mahiou, “NaNbO3: Pr3+: a new red phosphor showing persistent luminescence,” J. Phys. Condens. Matter21(2), 025901 (2009).
[CrossRef] [PubMed]

Satyanarayana, T.

T. Satyanarayana, M. G. Brik, N. Venkatramaiah, I. V. Kityk, K. J. Plucinski, V. Ravikumar, and N. Veeraiah, “Influence of crystallization on the luminescence characteristics of Pr3+ ions in PbO-Sb2O3-B2O3 glass system,” J. Am. Ceram. Soc.93(7), 2004–2011 (2010).

Seshadri, M.

D. Rajesh, A. Balakrishna, M. Seshadri, and Y. C. Ratnakaram, “Spectroscopic investigations on Pr3+ and Nd3+ doped strontium-lithium-bismuth borate glasses,” Spectrochim. Acta A Mol. Biomol. Spectrosc.97, 963–974 (2012).
[CrossRef]

Shen, L. F.

Shen, S. X.

S. X. Shen, M. Naftaly, and A. Jha, “Tungsten-tellurite-a host glass for broadband EDFA,” Opt. Commun.205(1-3), 101–105 (2002).
[CrossRef]

Singh, S.

G. S. Samal, A. K. Tripathi, A. K. Biswas, S. Singh, and Y. N. Mohapatra, “Photoluminescence quantum efficiency (PLQE) and PL decay characteristics of polymeric light emitting materials,” Synth. Met.155(2), 344–348 (2005).
[CrossRef]

Solarz, P.

P. Solarz, “Pr3+ as a sensitiser of red Eu3+ luminescence in K5Li2GdF10: Pr3+, Eu3+ upon VUV-UV excitation,” Opt. Mater.31(1), 114–116 (2008).
[CrossRef]

Srikumar, T.

C. S. Rao, I. V. Kityk, T. Srikumar, G. N. Raju, V. R. Kumar, Y. Gandhi, and N. Veeraiah, “Spectroscopy features of Pr3+ and Er3+ ions in Li2O-ZrO2-SiO2 glass matrices mixed with some sesquioxides,” J. Alloy. Comp.509(37), 9230–9239 (2011).
[CrossRef]

Srivastava, P.

P. Srivastava, S. B. Rai, and D. K. Rai, “Effect of lead oxide on optical properties of Pr3+ doped some borate based glasses,” J. Alloy. Comp.368(1-2), 1–7 (2004).
[CrossRef]

Tanabe, S.

H. Lin, X. Y. Wang, C. M. Li, X. J. Li, S. Tanabe, and J. Y. Yu, “Spectral power distribution and quantum yields of Sm3+-doped heavy metal tellurite glass under the pumping of blue lighting emitting diode,” Spectrochim. Acta A Mol. Biomol. Spectrosc.67(5), 1417–1420 (2007).
[CrossRef] [PubMed]

S. Tanabe, S. Fujita, S. Yoshihara, A. Sakamoto, and S. Yamamoto, “YAG glass-ceramic phosphor for white LED (II): luminescence characteristics,” Proc. SPIE5941, 594112, 594112-6 (2005).
[CrossRef]

Teddy-Fernandez, T.

A. Jha, B. Richards, G. Jose, T. Teddy-Fernandez, P. Joshi, X. Jiang, and J. Lousteau, “Rare-earth ion doped TeO2 and GeO2 glasses as laser materials,” Prog. Mater. Sci.57(8), 1426–1491 (2012).
[CrossRef]

Tikhomirov, V. K.

V. K. Tikhomirov and S. A. Tikhomirova, “Hypersensitive transition 3P0→3F2 of Pr3+ related to the polarizability and structure of glass host,” J. Non-Cryst. Solids274(1-3), 50–54 (2000).
[CrossRef]

Tikhomirova, S. A.

V. K. Tikhomirov and S. A. Tikhomirova, “Hypersensitive transition 3P0→3F2 of Pr3+ related to the polarizability and structure of glass host,” J. Non-Cryst. Solids274(1-3), 50–54 (2000).
[CrossRef]

Tonelli, M.

Tripathi, A. K.

G. S. Samal, A. K. Tripathi, A. K. Biswas, S. Singh, and Y. N. Mohapatra, “Photoluminescence quantum efficiency (PLQE) and PL decay characteristics of polymeric light emitting materials,” Synth. Met.155(2), 344–348 (2005).
[CrossRef]

Tsang, Y. M.

J. T. F. Lau, P. C. Lo, Y. M. Tsang, W. P. Fong, and D. K. P. Ng, “Unsymmetrical β-cyclodextrin-conjugated silicon(IV) phthalocyanines as highly potent photosensitisers for photodynamic therapy,” Chem. Commun. Camb.47(34), 9657–9659 (2011).
[CrossRef] [PubMed]

Tsuchiya, T.

Y. Inaguma, T. Muronoi, K. Sano, T. Tsuchiya, Y. Mori, T. Katsumata, and D. Mori, “An approach to control of band gap energy and photoluminescence upon band gap excitation in Pr3+-doped perovskites La1/3MO3 (M=Nb, Ta):Pr3+,” Inorg. Chem.50(12), 5389–5395 (2011).
[CrossRef] [PubMed]

Uk, K.

Varas, S.

B. Dieudonné, B. Boulard, G. Alombert-Goget, Y. Gao, A. Chiasera, S. Varas, and M. Ferrari, “Pr3+-Yb3+-codoped lanthanum fluorozirconate glasses and waveguides for visible laser emission,” J. Non-Cryst. Solids358(18-19), 2695–2700 (2012).
[CrossRef]

Vasquez, O.

H. Liu, O. Vasquez, V. R. Santiago, L. Diaz, F. E. Fernandez, L. Liu, L. Xu, and F. Gan, “Host excitation-induced red emission from Pr3+ in strontium barium niobate thin film,” J. Lumin.108(1-4), 37–41 (2004).
[CrossRef]

Veeraiah, N.

C. S. Rao, I. V. Kityk, T. Srikumar, G. N. Raju, V. R. Kumar, Y. Gandhi, and N. Veeraiah, “Spectroscopy features of Pr3+ and Er3+ ions in Li2O-ZrO2-SiO2 glass matrices mixed with some sesquioxides,” J. Alloy. Comp.509(37), 9230–9239 (2011).
[CrossRef]

T. Satyanarayana, M. G. Brik, N. Venkatramaiah, I. V. Kityk, K. J. Plucinski, V. Ravikumar, and N. Veeraiah, “Influence of crystallization on the luminescence characteristics of Pr3+ ions in PbO-Sb2O3-B2O3 glass system,” J. Am. Ceram. Soc.93(7), 2004–2011 (2010).

Venkatramaiah, N.

T. Satyanarayana, M. G. Brik, N. Venkatramaiah, I. V. Kityk, K. J. Plucinski, V. Ravikumar, and N. Veeraiah, “Influence of crystallization on the luminescence characteristics of Pr3+ ions in PbO-Sb2O3-B2O3 glass system,” J. Am. Ceram. Soc.93(7), 2004–2011 (2010).

Viana, B.

A. Lecointre, A. Bessiere, A. J. J. Bos, P. Dorenbos, B. Viana, and S. Jacquart, “Designing a red persistent luminescence phosphor: the example of YPO4: Pr3+, Ln3+ (Ln = Nd, Er, Ho, Dy),” J. Phys. Chem. C115(10), 4217–4227 (2011).
[CrossRef]

Walker, I.

S. B. Brown, E. A. Brown, and I. Walker, “The present and future role of photodynamic therapy in cancer treatment,” Lancet Oncol.5(8), 497–508 (2004).
[CrossRef] [PubMed]

Wang, M. Y.

X. M. Zhang, J. H. Zhang, Z. G. Nie, M. Y. Wang, and X. G. Ren, “Enhanced red phosphorescence in nanosized CaTiO3: Pr3+ phosphors,” Appl. Phys. Lett.90(15), 1519111–1519113 (2007).

Wang, X. J.

J. S. Zhang, F. Liu, B. J. Chen, X. J. Wang, and J. H. Zhang, “Parameterizing intensity of 4f2→4f2 electric-dipole transition in Pr3+ doped LiYF4,” Phys. Lett. A375(3), 743–746 (2011).
[CrossRef]

Wang, X. Y.

H. Lin, X. Y. Wang, C. M. Li, X. J. Li, S. Tanabe, and J. Y. Yu, “Spectral power distribution and quantum yields of Sm3+-doped heavy metal tellurite glass under the pumping of blue lighting emitting diode,” Spectrochim. Acta A Mol. Biomol. Spectrosc.67(5), 1417–1420 (2007).
[CrossRef] [PubMed]

Whitehurst, C.

C. A. Morton, C. Whitehurst, J. V. Moore, and R. M. MacKie, “Comparison of red and green light in the treatment of Bowen’s disease by photodynamic therapy,” Br. J. Dermatol.143(4), 767–772 (2000).
[CrossRef] [PubMed]

Wilson, B. C.

P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, and J. Golab, “Photodynamic therapy of cancer: an update,” CA Cancer J. Clin.61(4), 250–281 (2011).
[CrossRef] [PubMed]

Xu, L.

H. Liu, O. Vasquez, V. R. Santiago, L. Diaz, F. E. Fernandez, L. Liu, L. Xu, and F. Gan, “Host excitation-induced red emission from Pr3+ in strontium barium niobate thin film,” J. Lumin.108(1-4), 37–41 (2004).
[CrossRef]

Yamamoto, S.

S. Tanabe, S. Fujita, S. Yoshihara, A. Sakamoto, and S. Yamamoto, “YAG glass-ceramic phosphor for white LED (II): luminescence characteristics,” Proc. SPIE5941, 594112, 594112-6 (2005).
[CrossRef]

Yang, D. L.

Yasuda, M.

H. Ohashi, K. Hachiya, K. Yoshida, M. Yasuda, and J. Kondoh, “Photoluminescence properties in Pr3+-doped chalcogenide glass,” J. Alloy. Comp.373(1-2), 1–8 (2004).
[CrossRef]

Yoshida, K.

H. Ohashi, K. Hachiya, K. Yoshida, M. Yasuda, and J. Kondoh, “Photoluminescence properties in Pr3+-doped chalcogenide glass,” J. Alloy. Comp.373(1-2), 1–8 (2004).
[CrossRef]

Yoshihara, S.

S. Tanabe, S. Fujita, S. Yoshihara, A. Sakamoto, and S. Yamamoto, “YAG glass-ceramic phosphor for white LED (II): luminescence characteristics,” Proc. SPIE5941, 594112, 594112-6 (2005).
[CrossRef]

Yu, J. Y.

H. Lin, X. Y. Wang, C. M. Li, X. J. Li, S. Tanabe, and J. Y. Yu, “Spectral power distribution and quantum yields of Sm3+-doped heavy metal tellurite glass under the pumping of blue lighting emitting diode,” Spectrochim. Acta A Mol. Biomol. Spectrosc.67(5), 1417–1420 (2007).
[CrossRef] [PubMed]

Yup, L. S.

Zhang, J. H.

J. S. Zhang, F. Liu, B. J. Chen, X. J. Wang, and J. H. Zhang, “Parameterizing intensity of 4f2→4f2 electric-dipole transition in Pr3+ doped LiYF4,” Phys. Lett. A375(3), 743–746 (2011).
[CrossRef]

X. M. Zhang, J. H. Zhang, Z. G. Nie, M. Y. Wang, and X. G. Ren, “Enhanced red phosphorescence in nanosized CaTiO3: Pr3+ phosphors,” Appl. Phys. Lett.90(15), 1519111–1519113 (2007).

Zhang, J. S.

J. S. Zhang, F. Liu, B. J. Chen, X. J. Wang, and J. H. Zhang, “Parameterizing intensity of 4f2→4f2 electric-dipole transition in Pr3+ doped LiYF4,” Phys. Lett. A375(3), 743–746 (2011).
[CrossRef]

Zhang, L. L.

L. L. Zhang, G. P. Dong, M. Y. Peng, and J. R. Qiu, “Comparative investigation on the spectroscopic properties of Pr3+-doped boro-phosphate, boro-germo-silicate and tellurite glasses,” Spectrochim. Acta A Mol. Biomol. Spectrosc.93, 223–227 (2012).
[CrossRef]

Zhang, X. M.

X. M. Zhang, J. H. Zhang, Z. G. Nie, M. Y. Wang, and X. G. Ren, “Enhanced red phosphorescence in nanosized CaTiO3: Pr3+ phosphors,” Appl. Phys. Lett.90(15), 1519111–1519113 (2007).

Zhao, X.

Appl. Phys. Lett.

X. M. Zhang, J. H. Zhang, Z. G. Nie, M. Y. Wang, and X. G. Ren, “Enhanced red phosphorescence in nanosized CaTiO3: Pr3+ phosphors,” Appl. Phys. Lett.90(15), 1519111–1519113 (2007).

Br. J. Dermatol.

C. A. Morton, C. Whitehurst, J. V. Moore, and R. M. MacKie, “Comparison of red and green light in the treatment of Bowen’s disease by photodynamic therapy,” Br. J. Dermatol.143(4), 767–772 (2000).
[CrossRef] [PubMed]

CA Cancer J. Clin.

P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, and J. Golab, “Photodynamic therapy of cancer: an update,” CA Cancer J. Clin.61(4), 250–281 (2011).
[CrossRef] [PubMed]

Chem. Commun. Camb.

J. T. F. Lau, P. C. Lo, Y. M. Tsang, W. P. Fong, and D. K. P. Ng, “Unsymmetrical β-cyclodextrin-conjugated silicon(IV) phthalocyanines as highly potent photosensitisers for photodynamic therapy,” Chem. Commun. Camb.47(34), 9657–9659 (2011).
[CrossRef] [PubMed]

Inorg. Chem.

Y. Inaguma, T. Muronoi, K. Sano, T. Tsuchiya, Y. Mori, T. Katsumata, and D. Mori, “An approach to control of band gap energy and photoluminescence upon band gap excitation in Pr3+-doped perovskites La1/3MO3 (M=Nb, Ta):Pr3+,” Inorg. Chem.50(12), 5389–5395 (2011).
[CrossRef] [PubMed]

J. Alloy. Comp.

H. Ohashi, K. Hachiya, K. Yoshida, M. Yasuda, and J. Kondoh, “Photoluminescence properties in Pr3+-doped chalcogenide glass,” J. Alloy. Comp.373(1-2), 1–8 (2004).
[CrossRef]

L. R. Jaroszewicz, A. Majchrowski, M. G. Brik, N. Alzayed, W. Kuznik, I. V. Kityk, and S. Klosowicz, “Specific feature of fluorescence kinetics of Pr3+ doped BiB3O6 glasses,” J. Alloy. Comp.538, 220–223 (2012).
[CrossRef]

J. Chen, X. H. Gong, Y. F. Lin, Y. J. Chen, Z. D. Luo, and Y. D. Huang, “Synthesis and spectral property of Pr3+-doped tungstate deep red phosphors,” J. Alloy. Comp.492(1-2), 667–670 (2010).
[CrossRef]

C. S. Rao, I. V. Kityk, T. Srikumar, G. N. Raju, V. R. Kumar, Y. Gandhi, and N. Veeraiah, “Spectroscopy features of Pr3+ and Er3+ ions in Li2O-ZrO2-SiO2 glass matrices mixed with some sesquioxides,” J. Alloy. Comp.509(37), 9230–9239 (2011).
[CrossRef]

P. Srivastava, S. B. Rai, and D. K. Rai, “Effect of lead oxide on optical properties of Pr3+ doped some borate based glasses,” J. Alloy. Comp.368(1-2), 1–7 (2004).
[CrossRef]

J. Am. Ceram. Soc.

T. Satyanarayana, M. G. Brik, N. Venkatramaiah, I. V. Kityk, K. J. Plucinski, V. Ravikumar, and N. Veeraiah, “Influence of crystallization on the luminescence characteristics of Pr3+ ions in PbO-Sb2O3-B2O3 glass system,” J. Am. Ceram. Soc.93(7), 2004–2011 (2010).

J. Chem. Phys.

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys.37(3), 511–520 (1962).
[CrossRef]

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys.49(10), 4424–4442 (1968).
[CrossRef]

J. Lumin.

L. S. Rohwer and J. E. Martin, “Measuring the absolute quantum efficiency of luminescent materials,” J. Lumin.115(3-4), 77–90 (2005).
[CrossRef]

B. C. Jamalaiah, J. S. Kumar, A. M. Babu, L. R. Moorthy, K. Jang, H. S. Lee, M. Jayasimhadri, J. H. Jeong, and H. Choi, “Optical absorption, fluorescence and decay properties of Pr3+-doped PbO-H3BO3-TiO2-AlF3 glasses,” J. Lumin.129(9), 1023–1028 (2009).
[CrossRef]

H. Liu, O. Vasquez, V. R. Santiago, L. Diaz, F. E. Fernandez, L. Liu, L. Xu, and F. Gan, “Host excitation-induced red emission from Pr3+ in strontium barium niobate thin film,” J. Lumin.108(1-4), 37–41 (2004).
[CrossRef]

X. Liu, M. Naftaly, and A. Jha, “Spectroscopic evidence for oxide dopant site in GeS2-based glasses using visible photoluminescence from Pr3+ probe ions,” J. Lumin.96(2-4), 227–238 (2002).
[CrossRef]

J. Non-Cryst. Solids

V. K. Tikhomirov and S. A. Tikhomirova, “Hypersensitive transition 3P0→3F2 of Pr3+ related to the polarizability and structure of glass host,” J. Non-Cryst. Solids274(1-3), 50–54 (2000).
[CrossRef]

B. Dieudonné, B. Boulard, G. Alombert-Goget, Y. Gao, A. Chiasera, S. Varas, and M. Ferrari, “Pr3+-Yb3+-codoped lanthanum fluorozirconate glasses and waveguides for visible laser emission,” J. Non-Cryst. Solids358(18-19), 2695–2700 (2012).
[CrossRef]

J. Opt. Soc. Am. B

J. Opt. Technol.

J. Phys. Chem. C

A. Lecointre, A. Bessiere, A. J. J. Bos, P. Dorenbos, B. Viana, and S. Jacquart, “Designing a red persistent luminescence phosphor: the example of YPO4: Pr3+, Ln3+ (Ln = Nd, Er, Ho, Dy),” J. Phys. Chem. C115(10), 4217–4227 (2011).
[CrossRef]

J. Phys. Condens. Matter

P. Boutinaud, L. Sarakha, and R. Mahiou, “NaNbO3: Pr3+: a new red phosphor showing persistent luminescence,” J. Phys. Condens. Matter21(2), 025901 (2009).
[CrossRef] [PubMed]

Lancet Oncol.

S. B. Brown, E. A. Brown, and I. Walker, “The present and future role of photodynamic therapy in cancer treatment,” Lancet Oncol.5(8), 497–508 (2004).
[CrossRef] [PubMed]

Lasers Med. Sci.

L. Brancaleon and H. Moseley, “Laser and non-laser light sources for photodynamic therapy,” Lasers Med. Sci.17(3), 173–186 (2002).
[CrossRef] [PubMed]

Nat. Photonics

S. Brown, “Photodynamic therapy: two photons are better than one,” Nat. Photonics2(7), 394–395 (2008).
[CrossRef]

Opt. Commun.

S. X. Shen, M. Naftaly, and A. Jha, “Tungsten-tellurite-a host glass for broadband EDFA,” Opt. Commun.205(1-3), 101–105 (2002).
[CrossRef]

Opt. Express

Opt. Mater.

Z. Mazurak, S. Bodyl, R. Lisiecki, J. Gabrys-Pisarska, and M. Czaja, “Optical properties of Pr3+, Sm3+ and Er3+ doped P2O5-CaO-SrO-BaO phosphate glass,” Opt. Mater.32(4), 547–553 (2010).
[CrossRef]

M. Olivier, P. Pirasteh, J. L. Doualan, P. Camy, H. Lhermite, J. L. Adam, and V. Nazabal, “Pr3+-doped ZBLA fluoride glasses for visible laser emission,” Opt. Mater.33(7), 980–984 (2011).
[CrossRef]

P. Boutinaud, E. Pinel, M. Oubaha, R. Mahiou, E. Cavalli, and M. Bettinelli, “Making red emitting phorphors with Pr3+,” Opt. Mater.28(1-2), 9–13 (2006).
[CrossRef]

P. Solarz, “Pr3+ as a sensitiser of red Eu3+ luminescence in K5Li2GdF10: Pr3+, Eu3+ upon VUV-UV excitation,” Opt. Mater.31(1), 114–116 (2008).
[CrossRef]

Photochem. Photobiol.

M. E. Rodriguez, V. E. Diz, J. Awruch, and L. E. Dicelio, “Photophysics of zinc (II) phthalocyanine polymer and gel formulation,” Photochem. Photobiol.86(3), 513–519 (2010).
[CrossRef] [PubMed]

Photodiagn. Photodyn. Ther.

J. Gray and G. Fullarton, “The current role of photodynamic therapy in oesophageal dysplasia and cancer,” Photodiagn. Photodyn. Ther.4(3), 151–159 (2007).
[CrossRef]

Phys. Lett. A

J. S. Zhang, F. Liu, B. J. Chen, X. J. Wang, and J. H. Zhang, “Parameterizing intensity of 4f2→4f2 electric-dipole transition in Pr3+ doped LiYF4,” Phys. Lett. A375(3), 743–746 (2011).
[CrossRef]

Phys. Med. Biol.

S. Mitra and T. H. Foster, “Carbogen breathing significantly enhances the penetration of red light in murine tumours in vivo,” Phys. Med. Biol.49(10), 1891–1904 (2004).
[CrossRef] [PubMed]

Phys. Rev.

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev.127(3), 750–761 (1962).
[CrossRef]

Phys. Rev. B

T. Miyakawa and D. L. Dexter, “Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids,” Phys. Rev. B1(7), 2961–2969 (1970).
[CrossRef]

Proc. SPIE

S. Tanabe, S. Fujita, S. Yoshihara, A. Sakamoto, and S. Yamamoto, “YAG glass-ceramic phosphor for white LED (II): luminescence characteristics,” Proc. SPIE5941, 594112, 594112-6 (2005).
[CrossRef]

Prog. Mater. Sci.

A. Jha, B. Richards, G. Jose, T. Teddy-Fernandez, P. Joshi, X. Jiang, and J. Lousteau, “Rare-earth ion doped TeO2 and GeO2 glasses as laser materials,” Prog. Mater. Sci.57(8), 1426–1491 (2012).
[CrossRef]

Spectrochim. Acta A Mol. Biomol. Spectrosc.

H. Lin, X. Y. Wang, C. M. Li, X. J. Li, S. Tanabe, and J. Y. Yu, “Spectral power distribution and quantum yields of Sm3+-doped heavy metal tellurite glass under the pumping of blue lighting emitting diode,” Spectrochim. Acta A Mol. Biomol. Spectrosc.67(5), 1417–1420 (2007).
[CrossRef] [PubMed]

V. K. Rai, S. B. Rai, and D. K. Rai, “Spectroscopic properties of Pr3+ doped in tellurite glass,” Spectrochim. Acta A Mol. Biomol. Spectrosc.62(1-3), 302–306 (2005).
[CrossRef]

D. Rajesh, A. Balakrishna, M. Seshadri, and Y. C. Ratnakaram, “Spectroscopic investigations on Pr3+ and Nd3+ doped strontium-lithium-bismuth borate glasses,” Spectrochim. Acta A Mol. Biomol. Spectrosc.97, 963–974 (2012).
[CrossRef]

L. L. Zhang, G. P. Dong, M. Y. Peng, and J. R. Qiu, “Comparative investigation on the spectroscopic properties of Pr3+-doped boro-phosphate, boro-germo-silicate and tellurite glasses,” Spectrochim. Acta A Mol. Biomol. Spectrosc.93, 223–227 (2012).
[CrossRef]

Synth. Met.

G. S. Samal, A. K. Tripathi, A. K. Biswas, S. Singh, and Y. N. Mohapatra, “Photoluminescence quantum efficiency (PLQE) and PL decay characteristics of polymeric light emitting materials,” Synth. Met.155(2), 344–348 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Emission spectrum of 0.2wt% Pr6O11 doped NZPGT glasses under 488nm wavelength excitation. Inserted photo: fluorescence of 0.2wt% Pr6O11 doped NZPGT glasses under the excitation of 488nm wavelength laser pumping.

Fig. 2
Fig. 2

Excitation spectra of Pr3+-doped NZPGT glasses monitored at the wavelength of (a) 645 and (b) 613nm. Emission cross-section profiles of Pr3+ for (c) 3P03F2 and (d) 3P03H6 and 1D23H4 transition emissions in 0.2wt% Pr6O11 doped NZPGT glasses.

Fig. 3
Fig. 3

DTA curves of 1.0wt% Pr6O11 doped NZPGT core (a) and cladding (b) glasses.

Fig. 4
Fig. 4

(a) Absorption spectrum of 1.0wt% Pr3+-doped NZPGT glasses. (b) Energy level diagram of Pr3+ ion in NZPGT glasses.

Fig. 5
Fig. 5

(a) Spectral power distribution (curve 1, sample on the top of LED; curve 2, sample on the side of LED) of luminescence in Pr3+-doped NZPGT glasses under the excitation of blue LED. Inset: detail of spectral power distribution in the spectrum region of 510−780nm. (b) Photon distribution of luminescence (curve 1, sample on the top of LED; curve 2, sample on the side of LED) in Pr3+-doped NZPGT glasses under the excitation of blue LED. Inset: detail of photon distribution in the spectral region of 19700−13300cm−1.

Fig. 6
Fig. 6

(a) Net emission and absorption photon distribution in Pr3+-doped NZPGT glasses under the excitation of blue LED. Inset: fluorescence photograph of the Pr3+-doped NZPGT glass sample under the excitation of blue LED in an integrating sphere. (b) Histogram of photon percentage of the photon numbers in each wavelength interval to that in the whole wavelength region of 570−720nm.

Tables (1)

Tables Icon

Table 1 Predicted emission probabilities, fluorescence branching ratios and radiative lifetimes of Pr3+ in NZPGT glasses

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

σ em = A i β ij 8πc n 2 × λ ij 5 I( λ ij ) λ ij I( λ ij )dλ = A ij 8πc n 2 × λ ij 5 I( λ ij ) λ ij I( λ ij )dλ ,
W MP = W 0 exp(αΔE/ω),
Φ E = 380nm 780nm P(λ)dλ .
N( ν ¯ )= λ 3 hc P(λ),
QY=emitted photons/absorbed photons=( E on E side )/( L side L on ),

Metrics