Abstract

The eyes and wings of some species of moth are covered with arrays of nanoscale features that dramatically reduce reflection of light. There have been multiple examples where this approach has been adapted for use in antireflection and antiglare technologies with the fabrication of artificial moth-eye surfaces. In this work, the suppression of iridescence caused by the diffraction of light from such artificial regular moth-eye arrays at high angles of incidence is achieved with the use of a new tiled domain design, inspired by the arrangement of features on natural moth-eye surfaces. This bio-mimetic pillar architecture contains high optical rotational symmetry and can achieve high levels of diffraction order power reduction. For example, a tiled design fabricated in silicon and consisting of domains with 9 different orientations of the traditional hexagonal array exhibited a ~96% reduction in the intensity of the −1 diffraction order. It is suggested natural moth-eye surfaces have evolved a tiled domain structure as it confers efficient antireflection whilst avoiding problems with high angle diffraction. This combination of antireflection and stealth properties increases chances of survival by reducing the risk of the insect being spotted by a predator. Furthermore, the tiled domain design could lead to more effective artificial moth-eye arrays for antiglare and stealth applications.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. G. Bernard, “Structural and functional adaptation in a visual system,” Endeavour26, 79–84 (1967).
  2. P. R. Stoddart, P. J. Cadusch, T. M. Boyce, R. M. Erasmus, and J. D. Comins, “Optical properties of chitin: surface-enhanced Raman scattering substrates based on antireflection structures on cicada wings,” Nanotechnology17(3), 680–686 (2006).
    [CrossRef]
  3. A. Yoshida, M. Motoyama, A. Kosaku, and K. Miyamoto, “Antireflective nanoprotuberance array in the transparent wing of a hawkmoth, Cephonodes hylas,” Zoolog. Sci.14(5), 737–741 (1997).
    [CrossRef]
  4. D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Philos. Trans. R. Soc. London, Ser. B273(1587), 661–667 (2006).
    [CrossRef]
  5. S. J. Wilson and M. C. Hutley, “The optical properties of “moth eye” antireflection surfaces,” J. Mod. Opt.29, 993–1009 (1982).
  6. P. Clapham and M. C. Hutley, “Reduction of lens reflexion by the “moth eye” principle,” Nature244(5414), 281–282 (1973).
    [CrossRef]
  7. A. Gombert, K. Rose, A. Heinzel, W. Horbelt, C. Zanke, B. Bläsi, and V. Wittwer, “Antireflective submicrometer surface-relief gratings for solar applications,” Sol. Energy Mater. Sol. Cells54(1-4), 333–342 (1998).
    [CrossRef]
  8. Y. Ono, Y. Kimura, Y. Ohta, and N. Nishida, “Antireflection effect in ultrahigh spatial-frequency holographic relief gratings,” Appl. Opt.26(6), 1142–1146 (1987).
    [CrossRef] [PubMed]
  9. S. J. Wilson and M. C. Hutley, “The optical properties of “moth eye” antireflection surfaces,” Opt. Acta (Lond.)29(7), 993–1009 (1982).
    [CrossRef]
  10. R. C. Enger and S. K. Case, “Optical elements with ultrahigh spatial-frequency surface corrugations,” Appl. Opt.22(20), 3220–3228 (1983).
    [CrossRef] [PubMed]
  11. K. M. Baker, “Highly corrected close-packed microlens arrays and moth-eye structuring on curved surfaces,” Appl. Opt.38(2), 352–356 (1999).
    [CrossRef] [PubMed]
  12. K. Kintaka, J. Nishii, A. Mizutani, H. Kikuta, and H. Nakano, “Antireflection microstructures fabricated upon fluorine-doped SiO(2) films,” Opt. Lett.26(21), 1642–1644 (2001).
    [CrossRef] [PubMed]
  13. H. Toyota, K. Takahara, M. Okano, T. Yotsuya, and H. Kikuta, “Fabrication of microcone array for antireflection structured surface using metal dotted pattern,” Jpn. J. Appl. Phys.40(Part 2, No. 7B), L747–L749 (2001).
    [CrossRef]
  14. J. Nishii, K. Kintaka, Y. Kawamoto, A. Mizutani, and H. Kikuta, “Two dimensional antireflection microstructure on silica glass,” J. Ceram. Soc. Jpn.111(1289), 24–27 (2003).
    [CrossRef]
  15. L. Escoubas, J. J. Simon, M. Loli, G. Berginc, F. Flory, and H. Giovannini, “An antireflective silicon grating working in the resonance domain for the near infrared spectral region,” Opt. Commun.226(1-6), 81–88 (2003).
    [CrossRef]
  16. M. E. Motamedi, W. H. Southwell, and W. J. Gunning, “Antireflection surfaces in silicon using binary optics technology,” Appl. Opt.31(22), 4371–4376 (1992).
    [CrossRef] [PubMed]
  17. Y. Kanamori, M. Sasaki, and K. Hane, “Broadband antireflection gratings fabricated upon silicon substrates,” Opt. Lett.24(20), 1422–1424 (1999).
    [CrossRef] [PubMed]
  18. P. Lalanne and G. M. Morris, “Antireflection behaviour of silicon subwavelength periodic structures for visible light,” Nanotechnology8(2), 53–56 (1997).
    [CrossRef]
  19. D. L. Brundrett, T. K. Gaylord, and E. N. Glytsis, “Polarizing mirror/absorber for visible wavelengths based on a silicon subwavelength grating: design and fabrication,” Appl. Opt.37(13), 2534–2541 (1998).
    [CrossRef] [PubMed]
  20. Y. Kanamori, K. Hane, H. Sai, and H. Yugami, “100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask,” Appl. Phys. Lett.78(2), 142–143 (2001).
    [CrossRef]
  21. K. Hadobás, S. Kirsch, A. Carl, M. Acet, and E. F. Wassermann, “Reflection properties of nanostructure-arrayed silicon surfaces,” Nanotechnology11(3), 161–164 (2000).
    [CrossRef]
  22. S. A. Boden and D. M. Bagnall, “Bio-mimetic subwavelength surfaces for near-zero reflection sunrise to sunset,” in Proceedings of the 4th IEEE World Conference on Photovoltaic Energy Conversion, 1358–1361 (2006)
  23. H. Sai, H. Fujii, Y. Kanamori, K. Arafune, Y. Ohshita, H. Yugami, and M. Yamaguchi, “Numerical analysis and demonstration of submicron antireflective textures for crystalline silicon solar cells,” in Proceedings of the 4th IEEE World Conference on Photovoltaic Energy Conversion, 1, 1191–1194 (2006)
  24. V. Boerner, V. Kübler, B. Bläsi, and A. Gombert, “P-20: Antireflection systems for flat panel displays - an overview,” SID Symposium Digest of Technical Papers 35, 306–309 (2004).
  25. S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett.93(13), 133108 (2008).
    [CrossRef]
  26. X. Chen, Z.-C. Fan, J. Zhang, G.-F. Song, and L.-H. Chen, “Pseudo-rhombus-shaped subwavelength crossed gratings of GaAs for broadband antireflection,” Chin. Phys. Lett.27(12), 124210 (2010).
    [CrossRef]
  27. S. A. Boden and D. M. Bagnall, “Nanostructured biomimetic moth-eye arrays in silicon by nanoimprint lithography,” Proc. SPIE7401, 74010J, 74010J-12 (2009).
    [CrossRef]
  28. A. T. D. Bennett and I. C. Cuthill, “Ultraviolet vision in birds: what is its function?” Vision Res.34(11), 1471–1478 (1994).
    [CrossRef] [PubMed]
  29. A. M. Hynes, H. Ashraf, J. K. Bhardwaj, J. Hopkins, I. Johnston, and J. N. Shepherd, “Recent advances in silicon etching for MEMS using the ASE (TM) process,” Sens. Actuators, A74(1-3), 13–17 (1999).
    [CrossRef]
  30. M. Senechal, Quasicrystals and Geometry (Cambridge University Press, 1996).
  31. G. J. Parker, M. D. B. Charlton, M. E. Zoorob, J. J. Baumberg, M. C. Netti, and T. Lee, “Highly engineered mesoporous structures for optical processing,” Philos. Trans. R. Soc. London, Ser. A364, 189–199 (2006).
  32. A. Gombert, B. Bläsi, C. Bühler, P. Nitz, J. Mick, W. Hoßfeld, and M. Niggemann, “Some application cases and related manufacturing techniques for optically functional microstructures on large areas,” Opt. Eng.43(11), 2525–2533 (2004).
    [CrossRef]
  33. P. I. Stavroulakis, N. Christou, and D. Bagnall, “Improved deposition of large scale ordered nanosphere monolayers via liquid surface self-assembly,” Mater. Sci. Eng. B165(3), 186–189 (2009).
    [CrossRef]
  34. W.-L. Min, B. Jiang, and P. Jiang, “Bioinspired self-cleaning antireflection coatings,” Adv. Mater. (Deerfield Beach Fla.)20(20), 3914–3918 (2008).
    [CrossRef]
  35. C. H. Sun, P. Jiang, and B. Jiang, “Broadband moth-eye antireflection coatings on silicon,” Appl. Phys. Lett.92(6), 061112 (2008).
    [CrossRef]
  36. M. E. Kiziroglou, X. Li, D. C. Gonzalez, C. H. De Groot, A. A. Zhukov, P. A. J. de Groot, and P. N. Bartlett, “Orientation and symmetry control of inverse sphere magnetic nanoarrays by guided self-assembly,” J. Appl. Phys.100(11), 113720 (2006).
    [CrossRef]

2010 (1)

X. Chen, Z.-C. Fan, J. Zhang, G.-F. Song, and L.-H. Chen, “Pseudo-rhombus-shaped subwavelength crossed gratings of GaAs for broadband antireflection,” Chin. Phys. Lett.27(12), 124210 (2010).
[CrossRef]

2009 (2)

S. A. Boden and D. M. Bagnall, “Nanostructured biomimetic moth-eye arrays in silicon by nanoimprint lithography,” Proc. SPIE7401, 74010J, 74010J-12 (2009).
[CrossRef]

P. I. Stavroulakis, N. Christou, and D. Bagnall, “Improved deposition of large scale ordered nanosphere monolayers via liquid surface self-assembly,” Mater. Sci. Eng. B165(3), 186–189 (2009).
[CrossRef]

2008 (3)

W.-L. Min, B. Jiang, and P. Jiang, “Bioinspired self-cleaning antireflection coatings,” Adv. Mater. (Deerfield Beach Fla.)20(20), 3914–3918 (2008).
[CrossRef]

C. H. Sun, P. Jiang, and B. Jiang, “Broadband moth-eye antireflection coatings on silicon,” Appl. Phys. Lett.92(6), 061112 (2008).
[CrossRef]

S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett.93(13), 133108 (2008).
[CrossRef]

2006 (4)

P. R. Stoddart, P. J. Cadusch, T. M. Boyce, R. M. Erasmus, and J. D. Comins, “Optical properties of chitin: surface-enhanced Raman scattering substrates based on antireflection structures on cicada wings,” Nanotechnology17(3), 680–686 (2006).
[CrossRef]

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Philos. Trans. R. Soc. London, Ser. B273(1587), 661–667 (2006).
[CrossRef]

M. E. Kiziroglou, X. Li, D. C. Gonzalez, C. H. De Groot, A. A. Zhukov, P. A. J. de Groot, and P. N. Bartlett, “Orientation and symmetry control of inverse sphere magnetic nanoarrays by guided self-assembly,” J. Appl. Phys.100(11), 113720 (2006).
[CrossRef]

G. J. Parker, M. D. B. Charlton, M. E. Zoorob, J. J. Baumberg, M. C. Netti, and T. Lee, “Highly engineered mesoporous structures for optical processing,” Philos. Trans. R. Soc. London, Ser. A364, 189–199 (2006).

2004 (1)

A. Gombert, B. Bläsi, C. Bühler, P. Nitz, J. Mick, W. Hoßfeld, and M. Niggemann, “Some application cases and related manufacturing techniques for optically functional microstructures on large areas,” Opt. Eng.43(11), 2525–2533 (2004).
[CrossRef]

2003 (2)

J. Nishii, K. Kintaka, Y. Kawamoto, A. Mizutani, and H. Kikuta, “Two dimensional antireflection microstructure on silica glass,” J. Ceram. Soc. Jpn.111(1289), 24–27 (2003).
[CrossRef]

L. Escoubas, J. J. Simon, M. Loli, G. Berginc, F. Flory, and H. Giovannini, “An antireflective silicon grating working in the resonance domain for the near infrared spectral region,” Opt. Commun.226(1-6), 81–88 (2003).
[CrossRef]

2001 (3)

Y. Kanamori, K. Hane, H. Sai, and H. Yugami, “100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask,” Appl. Phys. Lett.78(2), 142–143 (2001).
[CrossRef]

H. Toyota, K. Takahara, M. Okano, T. Yotsuya, and H. Kikuta, “Fabrication of microcone array for antireflection structured surface using metal dotted pattern,” Jpn. J. Appl. Phys.40(Part 2, No. 7B), L747–L749 (2001).
[CrossRef]

K. Kintaka, J. Nishii, A. Mizutani, H. Kikuta, and H. Nakano, “Antireflection microstructures fabricated upon fluorine-doped SiO(2) films,” Opt. Lett.26(21), 1642–1644 (2001).
[CrossRef] [PubMed]

2000 (1)

K. Hadobás, S. Kirsch, A. Carl, M. Acet, and E. F. Wassermann, “Reflection properties of nanostructure-arrayed silicon surfaces,” Nanotechnology11(3), 161–164 (2000).
[CrossRef]

1999 (3)

1998 (2)

D. L. Brundrett, T. K. Gaylord, and E. N. Glytsis, “Polarizing mirror/absorber for visible wavelengths based on a silicon subwavelength grating: design and fabrication,” Appl. Opt.37(13), 2534–2541 (1998).
[CrossRef] [PubMed]

A. Gombert, K. Rose, A. Heinzel, W. Horbelt, C. Zanke, B. Bläsi, and V. Wittwer, “Antireflective submicrometer surface-relief gratings for solar applications,” Sol. Energy Mater. Sol. Cells54(1-4), 333–342 (1998).
[CrossRef]

1997 (2)

A. Yoshida, M. Motoyama, A. Kosaku, and K. Miyamoto, “Antireflective nanoprotuberance array in the transparent wing of a hawkmoth, Cephonodes hylas,” Zoolog. Sci.14(5), 737–741 (1997).
[CrossRef]

P. Lalanne and G. M. Morris, “Antireflection behaviour of silicon subwavelength periodic structures for visible light,” Nanotechnology8(2), 53–56 (1997).
[CrossRef]

1994 (1)

A. T. D. Bennett and I. C. Cuthill, “Ultraviolet vision in birds: what is its function?” Vision Res.34(11), 1471–1478 (1994).
[CrossRef] [PubMed]

1992 (1)

1987 (1)

1983 (1)

1982 (2)

S. J. Wilson and M. C. Hutley, “The optical properties of “moth eye” antireflection surfaces,” J. Mod. Opt.29, 993–1009 (1982).

S. J. Wilson and M. C. Hutley, “The optical properties of “moth eye” antireflection surfaces,” Opt. Acta (Lond.)29(7), 993–1009 (1982).
[CrossRef]

1973 (1)

P. Clapham and M. C. Hutley, “Reduction of lens reflexion by the “moth eye” principle,” Nature244(5414), 281–282 (1973).
[CrossRef]

1967 (1)

C. G. Bernard, “Structural and functional adaptation in a visual system,” Endeavour26, 79–84 (1967).

Acet, M.

K. Hadobás, S. Kirsch, A. Carl, M. Acet, and E. F. Wassermann, “Reflection properties of nanostructure-arrayed silicon surfaces,” Nanotechnology11(3), 161–164 (2000).
[CrossRef]

Arikawa, K.

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Philos. Trans. R. Soc. London, Ser. B273(1587), 661–667 (2006).
[CrossRef]

Ashraf, H.

A. M. Hynes, H. Ashraf, J. K. Bhardwaj, J. Hopkins, I. Johnston, and J. N. Shepherd, “Recent advances in silicon etching for MEMS using the ASE (TM) process,” Sens. Actuators, A74(1-3), 13–17 (1999).
[CrossRef]

Bagnall, D.

P. I. Stavroulakis, N. Christou, and D. Bagnall, “Improved deposition of large scale ordered nanosphere monolayers via liquid surface self-assembly,” Mater. Sci. Eng. B165(3), 186–189 (2009).
[CrossRef]

Bagnall, D. M.

S. A. Boden and D. M. Bagnall, “Nanostructured biomimetic moth-eye arrays in silicon by nanoimprint lithography,” Proc. SPIE7401, 74010J, 74010J-12 (2009).
[CrossRef]

S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett.93(13), 133108 (2008).
[CrossRef]

Baker, K. M.

Bartlett, P. N.

M. E. Kiziroglou, X. Li, D. C. Gonzalez, C. H. De Groot, A. A. Zhukov, P. A. J. de Groot, and P. N. Bartlett, “Orientation and symmetry control of inverse sphere magnetic nanoarrays by guided self-assembly,” J. Appl. Phys.100(11), 113720 (2006).
[CrossRef]

Baumberg, J. J.

G. J. Parker, M. D. B. Charlton, M. E. Zoorob, J. J. Baumberg, M. C. Netti, and T. Lee, “Highly engineered mesoporous structures for optical processing,” Philos. Trans. R. Soc. London, Ser. A364, 189–199 (2006).

Bennett, A. T. D.

A. T. D. Bennett and I. C. Cuthill, “Ultraviolet vision in birds: what is its function?” Vision Res.34(11), 1471–1478 (1994).
[CrossRef] [PubMed]

Berginc, G.

L. Escoubas, J. J. Simon, M. Loli, G. Berginc, F. Flory, and H. Giovannini, “An antireflective silicon grating working in the resonance domain for the near infrared spectral region,” Opt. Commun.226(1-6), 81–88 (2003).
[CrossRef]

Bernard, C. G.

C. G. Bernard, “Structural and functional adaptation in a visual system,” Endeavour26, 79–84 (1967).

Bhardwaj, J. K.

A. M. Hynes, H. Ashraf, J. K. Bhardwaj, J. Hopkins, I. Johnston, and J. N. Shepherd, “Recent advances in silicon etching for MEMS using the ASE (TM) process,” Sens. Actuators, A74(1-3), 13–17 (1999).
[CrossRef]

Bläsi, B.

A. Gombert, B. Bläsi, C. Bühler, P. Nitz, J. Mick, W. Hoßfeld, and M. Niggemann, “Some application cases and related manufacturing techniques for optically functional microstructures on large areas,” Opt. Eng.43(11), 2525–2533 (2004).
[CrossRef]

A. Gombert, K. Rose, A. Heinzel, W. Horbelt, C. Zanke, B. Bläsi, and V. Wittwer, “Antireflective submicrometer surface-relief gratings for solar applications,” Sol. Energy Mater. Sol. Cells54(1-4), 333–342 (1998).
[CrossRef]

Boden, S. A.

S. A. Boden and D. M. Bagnall, “Nanostructured biomimetic moth-eye arrays in silicon by nanoimprint lithography,” Proc. SPIE7401, 74010J, 74010J-12 (2009).
[CrossRef]

S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett.93(13), 133108 (2008).
[CrossRef]

Boyce, T. M.

P. R. Stoddart, P. J. Cadusch, T. M. Boyce, R. M. Erasmus, and J. D. Comins, “Optical properties of chitin: surface-enhanced Raman scattering substrates based on antireflection structures on cicada wings,” Nanotechnology17(3), 680–686 (2006).
[CrossRef]

Brundrett, D. L.

Bühler, C.

A. Gombert, B. Bläsi, C. Bühler, P. Nitz, J. Mick, W. Hoßfeld, and M. Niggemann, “Some application cases and related manufacturing techniques for optically functional microstructures on large areas,” Opt. Eng.43(11), 2525–2533 (2004).
[CrossRef]

Cadusch, P. J.

P. R. Stoddart, P. J. Cadusch, T. M. Boyce, R. M. Erasmus, and J. D. Comins, “Optical properties of chitin: surface-enhanced Raman scattering substrates based on antireflection structures on cicada wings,” Nanotechnology17(3), 680–686 (2006).
[CrossRef]

Carl, A.

K. Hadobás, S. Kirsch, A. Carl, M. Acet, and E. F. Wassermann, “Reflection properties of nanostructure-arrayed silicon surfaces,” Nanotechnology11(3), 161–164 (2000).
[CrossRef]

Case, S. K.

Charlton, M. D. B.

G. J. Parker, M. D. B. Charlton, M. E. Zoorob, J. J. Baumberg, M. C. Netti, and T. Lee, “Highly engineered mesoporous structures for optical processing,” Philos. Trans. R. Soc. London, Ser. A364, 189–199 (2006).

Chen, L.-H.

X. Chen, Z.-C. Fan, J. Zhang, G.-F. Song, and L.-H. Chen, “Pseudo-rhombus-shaped subwavelength crossed gratings of GaAs for broadband antireflection,” Chin. Phys. Lett.27(12), 124210 (2010).
[CrossRef]

Chen, X.

X. Chen, Z.-C. Fan, J. Zhang, G.-F. Song, and L.-H. Chen, “Pseudo-rhombus-shaped subwavelength crossed gratings of GaAs for broadband antireflection,” Chin. Phys. Lett.27(12), 124210 (2010).
[CrossRef]

Christou, N.

P. I. Stavroulakis, N. Christou, and D. Bagnall, “Improved deposition of large scale ordered nanosphere monolayers via liquid surface self-assembly,” Mater. Sci. Eng. B165(3), 186–189 (2009).
[CrossRef]

Clapham, P.

P. Clapham and M. C. Hutley, “Reduction of lens reflexion by the “moth eye” principle,” Nature244(5414), 281–282 (1973).
[CrossRef]

Comins, J. D.

P. R. Stoddart, P. J. Cadusch, T. M. Boyce, R. M. Erasmus, and J. D. Comins, “Optical properties of chitin: surface-enhanced Raman scattering substrates based on antireflection structures on cicada wings,” Nanotechnology17(3), 680–686 (2006).
[CrossRef]

Cuthill, I. C.

A. T. D. Bennett and I. C. Cuthill, “Ultraviolet vision in birds: what is its function?” Vision Res.34(11), 1471–1478 (1994).
[CrossRef] [PubMed]

De Groot, C. H.

M. E. Kiziroglou, X. Li, D. C. Gonzalez, C. H. De Groot, A. A. Zhukov, P. A. J. de Groot, and P. N. Bartlett, “Orientation and symmetry control of inverse sphere magnetic nanoarrays by guided self-assembly,” J. Appl. Phys.100(11), 113720 (2006).
[CrossRef]

de Groot, P. A. J.

M. E. Kiziroglou, X. Li, D. C. Gonzalez, C. H. De Groot, A. A. Zhukov, P. A. J. de Groot, and P. N. Bartlett, “Orientation and symmetry control of inverse sphere magnetic nanoarrays by guided self-assembly,” J. Appl. Phys.100(11), 113720 (2006).
[CrossRef]

Enger, R. C.

Erasmus, R. M.

P. R. Stoddart, P. J. Cadusch, T. M. Boyce, R. M. Erasmus, and J. D. Comins, “Optical properties of chitin: surface-enhanced Raman scattering substrates based on antireflection structures on cicada wings,” Nanotechnology17(3), 680–686 (2006).
[CrossRef]

Escoubas, L.

L. Escoubas, J. J. Simon, M. Loli, G. Berginc, F. Flory, and H. Giovannini, “An antireflective silicon grating working in the resonance domain for the near infrared spectral region,” Opt. Commun.226(1-6), 81–88 (2003).
[CrossRef]

Fan, Z.-C.

X. Chen, Z.-C. Fan, J. Zhang, G.-F. Song, and L.-H. Chen, “Pseudo-rhombus-shaped subwavelength crossed gratings of GaAs for broadband antireflection,” Chin. Phys. Lett.27(12), 124210 (2010).
[CrossRef]

Flory, F.

L. Escoubas, J. J. Simon, M. Loli, G. Berginc, F. Flory, and H. Giovannini, “An antireflective silicon grating working in the resonance domain for the near infrared spectral region,” Opt. Commun.226(1-6), 81–88 (2003).
[CrossRef]

Foletti, S.

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Philos. Trans. R. Soc. London, Ser. B273(1587), 661–667 (2006).
[CrossRef]

Gaylord, T. K.

Giovannini, H.

L. Escoubas, J. J. Simon, M. Loli, G. Berginc, F. Flory, and H. Giovannini, “An antireflective silicon grating working in the resonance domain for the near infrared spectral region,” Opt. Commun.226(1-6), 81–88 (2003).
[CrossRef]

Glytsis, E. N.

Gombert, A.

A. Gombert, B. Bläsi, C. Bühler, P. Nitz, J. Mick, W. Hoßfeld, and M. Niggemann, “Some application cases and related manufacturing techniques for optically functional microstructures on large areas,” Opt. Eng.43(11), 2525–2533 (2004).
[CrossRef]

A. Gombert, K. Rose, A. Heinzel, W. Horbelt, C. Zanke, B. Bläsi, and V. Wittwer, “Antireflective submicrometer surface-relief gratings for solar applications,” Sol. Energy Mater. Sol. Cells54(1-4), 333–342 (1998).
[CrossRef]

Gonzalez, D. C.

M. E. Kiziroglou, X. Li, D. C. Gonzalez, C. H. De Groot, A. A. Zhukov, P. A. J. de Groot, and P. N. Bartlett, “Orientation and symmetry control of inverse sphere magnetic nanoarrays by guided self-assembly,” J. Appl. Phys.100(11), 113720 (2006).
[CrossRef]

Gunning, W. J.

Hadobás, K.

K. Hadobás, S. Kirsch, A. Carl, M. Acet, and E. F. Wassermann, “Reflection properties of nanostructure-arrayed silicon surfaces,” Nanotechnology11(3), 161–164 (2000).
[CrossRef]

Hane, K.

Y. Kanamori, K. Hane, H. Sai, and H. Yugami, “100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask,” Appl. Phys. Lett.78(2), 142–143 (2001).
[CrossRef]

Y. Kanamori, M. Sasaki, and K. Hane, “Broadband antireflection gratings fabricated upon silicon substrates,” Opt. Lett.24(20), 1422–1424 (1999).
[CrossRef] [PubMed]

Heinzel, A.

A. Gombert, K. Rose, A. Heinzel, W. Horbelt, C. Zanke, B. Bläsi, and V. Wittwer, “Antireflective submicrometer surface-relief gratings for solar applications,” Sol. Energy Mater. Sol. Cells54(1-4), 333–342 (1998).
[CrossRef]

Hopkins, J.

A. M. Hynes, H. Ashraf, J. K. Bhardwaj, J. Hopkins, I. Johnston, and J. N. Shepherd, “Recent advances in silicon etching for MEMS using the ASE (TM) process,” Sens. Actuators, A74(1-3), 13–17 (1999).
[CrossRef]

Horbelt, W.

A. Gombert, K. Rose, A. Heinzel, W. Horbelt, C. Zanke, B. Bläsi, and V. Wittwer, “Antireflective submicrometer surface-relief gratings for solar applications,” Sol. Energy Mater. Sol. Cells54(1-4), 333–342 (1998).
[CrossRef]

Hoßfeld, W.

A. Gombert, B. Bläsi, C. Bühler, P. Nitz, J. Mick, W. Hoßfeld, and M. Niggemann, “Some application cases and related manufacturing techniques for optically functional microstructures on large areas,” Opt. Eng.43(11), 2525–2533 (2004).
[CrossRef]

Hutley, M. C.

S. J. Wilson and M. C. Hutley, “The optical properties of “moth eye” antireflection surfaces,” J. Mod. Opt.29, 993–1009 (1982).

S. J. Wilson and M. C. Hutley, “The optical properties of “moth eye” antireflection surfaces,” Opt. Acta (Lond.)29(7), 993–1009 (1982).
[CrossRef]

P. Clapham and M. C. Hutley, “Reduction of lens reflexion by the “moth eye” principle,” Nature244(5414), 281–282 (1973).
[CrossRef]

Hynes, A. M.

A. M. Hynes, H. Ashraf, J. K. Bhardwaj, J. Hopkins, I. Johnston, and J. N. Shepherd, “Recent advances in silicon etching for MEMS using the ASE (TM) process,” Sens. Actuators, A74(1-3), 13–17 (1999).
[CrossRef]

Jiang, B.

C. H. Sun, P. Jiang, and B. Jiang, “Broadband moth-eye antireflection coatings on silicon,” Appl. Phys. Lett.92(6), 061112 (2008).
[CrossRef]

W.-L. Min, B. Jiang, and P. Jiang, “Bioinspired self-cleaning antireflection coatings,” Adv. Mater. (Deerfield Beach Fla.)20(20), 3914–3918 (2008).
[CrossRef]

Jiang, P.

W.-L. Min, B. Jiang, and P. Jiang, “Bioinspired self-cleaning antireflection coatings,” Adv. Mater. (Deerfield Beach Fla.)20(20), 3914–3918 (2008).
[CrossRef]

C. H. Sun, P. Jiang, and B. Jiang, “Broadband moth-eye antireflection coatings on silicon,” Appl. Phys. Lett.92(6), 061112 (2008).
[CrossRef]

Johnston, I.

A. M. Hynes, H. Ashraf, J. K. Bhardwaj, J. Hopkins, I. Johnston, and J. N. Shepherd, “Recent advances in silicon etching for MEMS using the ASE (TM) process,” Sens. Actuators, A74(1-3), 13–17 (1999).
[CrossRef]

Kanamori, Y.

Y. Kanamori, K. Hane, H. Sai, and H. Yugami, “100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask,” Appl. Phys. Lett.78(2), 142–143 (2001).
[CrossRef]

Y. Kanamori, M. Sasaki, and K. Hane, “Broadband antireflection gratings fabricated upon silicon substrates,” Opt. Lett.24(20), 1422–1424 (1999).
[CrossRef] [PubMed]

Kawamoto, Y.

J. Nishii, K. Kintaka, Y. Kawamoto, A. Mizutani, and H. Kikuta, “Two dimensional antireflection microstructure on silica glass,” J. Ceram. Soc. Jpn.111(1289), 24–27 (2003).
[CrossRef]

Kikuta, H.

J. Nishii, K. Kintaka, Y. Kawamoto, A. Mizutani, and H. Kikuta, “Two dimensional antireflection microstructure on silica glass,” J. Ceram. Soc. Jpn.111(1289), 24–27 (2003).
[CrossRef]

H. Toyota, K. Takahara, M. Okano, T. Yotsuya, and H. Kikuta, “Fabrication of microcone array for antireflection structured surface using metal dotted pattern,” Jpn. J. Appl. Phys.40(Part 2, No. 7B), L747–L749 (2001).
[CrossRef]

K. Kintaka, J. Nishii, A. Mizutani, H. Kikuta, and H. Nakano, “Antireflection microstructures fabricated upon fluorine-doped SiO(2) films,” Opt. Lett.26(21), 1642–1644 (2001).
[CrossRef] [PubMed]

Kimura, Y.

Kintaka, K.

J. Nishii, K. Kintaka, Y. Kawamoto, A. Mizutani, and H. Kikuta, “Two dimensional antireflection microstructure on silica glass,” J. Ceram. Soc. Jpn.111(1289), 24–27 (2003).
[CrossRef]

K. Kintaka, J. Nishii, A. Mizutani, H. Kikuta, and H. Nakano, “Antireflection microstructures fabricated upon fluorine-doped SiO(2) films,” Opt. Lett.26(21), 1642–1644 (2001).
[CrossRef] [PubMed]

Kirsch, S.

K. Hadobás, S. Kirsch, A. Carl, M. Acet, and E. F. Wassermann, “Reflection properties of nanostructure-arrayed silicon surfaces,” Nanotechnology11(3), 161–164 (2000).
[CrossRef]

Kiziroglou, M. E.

M. E. Kiziroglou, X. Li, D. C. Gonzalez, C. H. De Groot, A. A. Zhukov, P. A. J. de Groot, and P. N. Bartlett, “Orientation and symmetry control of inverse sphere magnetic nanoarrays by guided self-assembly,” J. Appl. Phys.100(11), 113720 (2006).
[CrossRef]

Kosaku, A.

A. Yoshida, M. Motoyama, A. Kosaku, and K. Miyamoto, “Antireflective nanoprotuberance array in the transparent wing of a hawkmoth, Cephonodes hylas,” Zoolog. Sci.14(5), 737–741 (1997).
[CrossRef]

Lalanne, P.

P. Lalanne and G. M. Morris, “Antireflection behaviour of silicon subwavelength periodic structures for visible light,” Nanotechnology8(2), 53–56 (1997).
[CrossRef]

Lee, T.

G. J. Parker, M. D. B. Charlton, M. E. Zoorob, J. J. Baumberg, M. C. Netti, and T. Lee, “Highly engineered mesoporous structures for optical processing,” Philos. Trans. R. Soc. London, Ser. A364, 189–199 (2006).

Li, X.

M. E. Kiziroglou, X. Li, D. C. Gonzalez, C. H. De Groot, A. A. Zhukov, P. A. J. de Groot, and P. N. Bartlett, “Orientation and symmetry control of inverse sphere magnetic nanoarrays by guided self-assembly,” J. Appl. Phys.100(11), 113720 (2006).
[CrossRef]

Loli, M.

L. Escoubas, J. J. Simon, M. Loli, G. Berginc, F. Flory, and H. Giovannini, “An antireflective silicon grating working in the resonance domain for the near infrared spectral region,” Opt. Commun.226(1-6), 81–88 (2003).
[CrossRef]

Mick, J.

A. Gombert, B. Bläsi, C. Bühler, P. Nitz, J. Mick, W. Hoßfeld, and M. Niggemann, “Some application cases and related manufacturing techniques for optically functional microstructures on large areas,” Opt. Eng.43(11), 2525–2533 (2004).
[CrossRef]

Min, W.-L.

W.-L. Min, B. Jiang, and P. Jiang, “Bioinspired self-cleaning antireflection coatings,” Adv. Mater. (Deerfield Beach Fla.)20(20), 3914–3918 (2008).
[CrossRef]

Miyamoto, K.

A. Yoshida, M. Motoyama, A. Kosaku, and K. Miyamoto, “Antireflective nanoprotuberance array in the transparent wing of a hawkmoth, Cephonodes hylas,” Zoolog. Sci.14(5), 737–741 (1997).
[CrossRef]

Mizutani, A.

J. Nishii, K. Kintaka, Y. Kawamoto, A. Mizutani, and H. Kikuta, “Two dimensional antireflection microstructure on silica glass,” J. Ceram. Soc. Jpn.111(1289), 24–27 (2003).
[CrossRef]

K. Kintaka, J. Nishii, A. Mizutani, H. Kikuta, and H. Nakano, “Antireflection microstructures fabricated upon fluorine-doped SiO(2) films,” Opt. Lett.26(21), 1642–1644 (2001).
[CrossRef] [PubMed]

Morris, G. M.

P. Lalanne and G. M. Morris, “Antireflection behaviour of silicon subwavelength periodic structures for visible light,” Nanotechnology8(2), 53–56 (1997).
[CrossRef]

Motamedi, M. E.

Motoyama, M.

A. Yoshida, M. Motoyama, A. Kosaku, and K. Miyamoto, “Antireflective nanoprotuberance array in the transparent wing of a hawkmoth, Cephonodes hylas,” Zoolog. Sci.14(5), 737–741 (1997).
[CrossRef]

Nakano, H.

Netti, M. C.

G. J. Parker, M. D. B. Charlton, M. E. Zoorob, J. J. Baumberg, M. C. Netti, and T. Lee, “Highly engineered mesoporous structures for optical processing,” Philos. Trans. R. Soc. London, Ser. A364, 189–199 (2006).

Niggemann, M.

A. Gombert, B. Bläsi, C. Bühler, P. Nitz, J. Mick, W. Hoßfeld, and M. Niggemann, “Some application cases and related manufacturing techniques for optically functional microstructures on large areas,” Opt. Eng.43(11), 2525–2533 (2004).
[CrossRef]

Nishida, N.

Nishii, J.

J. Nishii, K. Kintaka, Y. Kawamoto, A. Mizutani, and H. Kikuta, “Two dimensional antireflection microstructure on silica glass,” J. Ceram. Soc. Jpn.111(1289), 24–27 (2003).
[CrossRef]

K. Kintaka, J. Nishii, A. Mizutani, H. Kikuta, and H. Nakano, “Antireflection microstructures fabricated upon fluorine-doped SiO(2) films,” Opt. Lett.26(21), 1642–1644 (2001).
[CrossRef] [PubMed]

Nitz, P.

A. Gombert, B. Bläsi, C. Bühler, P. Nitz, J. Mick, W. Hoßfeld, and M. Niggemann, “Some application cases and related manufacturing techniques for optically functional microstructures on large areas,” Opt. Eng.43(11), 2525–2533 (2004).
[CrossRef]

Ohta, Y.

Okano, M.

H. Toyota, K. Takahara, M. Okano, T. Yotsuya, and H. Kikuta, “Fabrication of microcone array for antireflection structured surface using metal dotted pattern,” Jpn. J. Appl. Phys.40(Part 2, No. 7B), L747–L749 (2001).
[CrossRef]

Ono, Y.

Palasantzas, G.

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Philos. Trans. R. Soc. London, Ser. B273(1587), 661–667 (2006).
[CrossRef]

Parker, G. J.

G. J. Parker, M. D. B. Charlton, M. E. Zoorob, J. J. Baumberg, M. C. Netti, and T. Lee, “Highly engineered mesoporous structures for optical processing,” Philos. Trans. R. Soc. London, Ser. A364, 189–199 (2006).

Rose, K.

A. Gombert, K. Rose, A. Heinzel, W. Horbelt, C. Zanke, B. Bläsi, and V. Wittwer, “Antireflective submicrometer surface-relief gratings for solar applications,” Sol. Energy Mater. Sol. Cells54(1-4), 333–342 (1998).
[CrossRef]

Sai, H.

Y. Kanamori, K. Hane, H. Sai, and H. Yugami, “100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask,” Appl. Phys. Lett.78(2), 142–143 (2001).
[CrossRef]

Sasaki, M.

Shepherd, J. N.

A. M. Hynes, H. Ashraf, J. K. Bhardwaj, J. Hopkins, I. Johnston, and J. N. Shepherd, “Recent advances in silicon etching for MEMS using the ASE (TM) process,” Sens. Actuators, A74(1-3), 13–17 (1999).
[CrossRef]

Simon, J. J.

L. Escoubas, J. J. Simon, M. Loli, G. Berginc, F. Flory, and H. Giovannini, “An antireflective silicon grating working in the resonance domain for the near infrared spectral region,” Opt. Commun.226(1-6), 81–88 (2003).
[CrossRef]

Song, G.-F.

X. Chen, Z.-C. Fan, J. Zhang, G.-F. Song, and L.-H. Chen, “Pseudo-rhombus-shaped subwavelength crossed gratings of GaAs for broadband antireflection,” Chin. Phys. Lett.27(12), 124210 (2010).
[CrossRef]

Southwell, W. H.

Stavenga, D. G.

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Philos. Trans. R. Soc. London, Ser. B273(1587), 661–667 (2006).
[CrossRef]

Stavroulakis, P. I.

P. I. Stavroulakis, N. Christou, and D. Bagnall, “Improved deposition of large scale ordered nanosphere monolayers via liquid surface self-assembly,” Mater. Sci. Eng. B165(3), 186–189 (2009).
[CrossRef]

Stoddart, P. R.

P. R. Stoddart, P. J. Cadusch, T. M. Boyce, R. M. Erasmus, and J. D. Comins, “Optical properties of chitin: surface-enhanced Raman scattering substrates based on antireflection structures on cicada wings,” Nanotechnology17(3), 680–686 (2006).
[CrossRef]

Sun, C. H.

C. H. Sun, P. Jiang, and B. Jiang, “Broadband moth-eye antireflection coatings on silicon,” Appl. Phys. Lett.92(6), 061112 (2008).
[CrossRef]

Takahara, K.

H. Toyota, K. Takahara, M. Okano, T. Yotsuya, and H. Kikuta, “Fabrication of microcone array for antireflection structured surface using metal dotted pattern,” Jpn. J. Appl. Phys.40(Part 2, No. 7B), L747–L749 (2001).
[CrossRef]

Toyota, H.

H. Toyota, K. Takahara, M. Okano, T. Yotsuya, and H. Kikuta, “Fabrication of microcone array for antireflection structured surface using metal dotted pattern,” Jpn. J. Appl. Phys.40(Part 2, No. 7B), L747–L749 (2001).
[CrossRef]

Wassermann, E. F.

K. Hadobás, S. Kirsch, A. Carl, M. Acet, and E. F. Wassermann, “Reflection properties of nanostructure-arrayed silicon surfaces,” Nanotechnology11(3), 161–164 (2000).
[CrossRef]

Wilson, S. J.

S. J. Wilson and M. C. Hutley, “The optical properties of “moth eye” antireflection surfaces,” Opt. Acta (Lond.)29(7), 993–1009 (1982).
[CrossRef]

S. J. Wilson and M. C. Hutley, “The optical properties of “moth eye” antireflection surfaces,” J. Mod. Opt.29, 993–1009 (1982).

Wittwer, V.

A. Gombert, K. Rose, A. Heinzel, W. Horbelt, C. Zanke, B. Bläsi, and V. Wittwer, “Antireflective submicrometer surface-relief gratings for solar applications,” Sol. Energy Mater. Sol. Cells54(1-4), 333–342 (1998).
[CrossRef]

Yoshida, A.

A. Yoshida, M. Motoyama, A. Kosaku, and K. Miyamoto, “Antireflective nanoprotuberance array in the transparent wing of a hawkmoth, Cephonodes hylas,” Zoolog. Sci.14(5), 737–741 (1997).
[CrossRef]

Yotsuya, T.

H. Toyota, K. Takahara, M. Okano, T. Yotsuya, and H. Kikuta, “Fabrication of microcone array for antireflection structured surface using metal dotted pattern,” Jpn. J. Appl. Phys.40(Part 2, No. 7B), L747–L749 (2001).
[CrossRef]

Yugami, H.

Y. Kanamori, K. Hane, H. Sai, and H. Yugami, “100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask,” Appl. Phys. Lett.78(2), 142–143 (2001).
[CrossRef]

Zanke, C.

A. Gombert, K. Rose, A. Heinzel, W. Horbelt, C. Zanke, B. Bläsi, and V. Wittwer, “Antireflective submicrometer surface-relief gratings for solar applications,” Sol. Energy Mater. Sol. Cells54(1-4), 333–342 (1998).
[CrossRef]

Zhang, J.

X. Chen, Z.-C. Fan, J. Zhang, G.-F. Song, and L.-H. Chen, “Pseudo-rhombus-shaped subwavelength crossed gratings of GaAs for broadband antireflection,” Chin. Phys. Lett.27(12), 124210 (2010).
[CrossRef]

Zhukov, A. A.

M. E. Kiziroglou, X. Li, D. C. Gonzalez, C. H. De Groot, A. A. Zhukov, P. A. J. de Groot, and P. N. Bartlett, “Orientation and symmetry control of inverse sphere magnetic nanoarrays by guided self-assembly,” J. Appl. Phys.100(11), 113720 (2006).
[CrossRef]

Zoorob, M. E.

G. J. Parker, M. D. B. Charlton, M. E. Zoorob, J. J. Baumberg, M. C. Netti, and T. Lee, “Highly engineered mesoporous structures for optical processing,” Philos. Trans. R. Soc. London, Ser. A364, 189–199 (2006).

Adv. Mater. (Deerfield Beach Fla.) (1)

W.-L. Min, B. Jiang, and P. Jiang, “Bioinspired self-cleaning antireflection coatings,” Adv. Mater. (Deerfield Beach Fla.)20(20), 3914–3918 (2008).
[CrossRef]

Appl. Opt. (5)

Appl. Phys. Lett. (3)

C. H. Sun, P. Jiang, and B. Jiang, “Broadband moth-eye antireflection coatings on silicon,” Appl. Phys. Lett.92(6), 061112 (2008).
[CrossRef]

Y. Kanamori, K. Hane, H. Sai, and H. Yugami, “100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask,” Appl. Phys. Lett.78(2), 142–143 (2001).
[CrossRef]

S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett.93(13), 133108 (2008).
[CrossRef]

Chin. Phys. Lett. (1)

X. Chen, Z.-C. Fan, J. Zhang, G.-F. Song, and L.-H. Chen, “Pseudo-rhombus-shaped subwavelength crossed gratings of GaAs for broadband antireflection,” Chin. Phys. Lett.27(12), 124210 (2010).
[CrossRef]

Endeavour (1)

C. G. Bernard, “Structural and functional adaptation in a visual system,” Endeavour26, 79–84 (1967).

J. Appl. Phys. (1)

M. E. Kiziroglou, X. Li, D. C. Gonzalez, C. H. De Groot, A. A. Zhukov, P. A. J. de Groot, and P. N. Bartlett, “Orientation and symmetry control of inverse sphere magnetic nanoarrays by guided self-assembly,” J. Appl. Phys.100(11), 113720 (2006).
[CrossRef]

J. Ceram. Soc. Jpn. (1)

J. Nishii, K. Kintaka, Y. Kawamoto, A. Mizutani, and H. Kikuta, “Two dimensional antireflection microstructure on silica glass,” J. Ceram. Soc. Jpn.111(1289), 24–27 (2003).
[CrossRef]

J. Mod. Opt. (1)

S. J. Wilson and M. C. Hutley, “The optical properties of “moth eye” antireflection surfaces,” J. Mod. Opt.29, 993–1009 (1982).

Jpn. J. Appl. Phys. (1)

H. Toyota, K. Takahara, M. Okano, T. Yotsuya, and H. Kikuta, “Fabrication of microcone array for antireflection structured surface using metal dotted pattern,” Jpn. J. Appl. Phys.40(Part 2, No. 7B), L747–L749 (2001).
[CrossRef]

Mater. Sci. Eng. B (1)

P. I. Stavroulakis, N. Christou, and D. Bagnall, “Improved deposition of large scale ordered nanosphere monolayers via liquid surface self-assembly,” Mater. Sci. Eng. B165(3), 186–189 (2009).
[CrossRef]

Nanotechnology (3)

P. Lalanne and G. M. Morris, “Antireflection behaviour of silicon subwavelength periodic structures for visible light,” Nanotechnology8(2), 53–56 (1997).
[CrossRef]

P. R. Stoddart, P. J. Cadusch, T. M. Boyce, R. M. Erasmus, and J. D. Comins, “Optical properties of chitin: surface-enhanced Raman scattering substrates based on antireflection structures on cicada wings,” Nanotechnology17(3), 680–686 (2006).
[CrossRef]

K. Hadobás, S. Kirsch, A. Carl, M. Acet, and E. F. Wassermann, “Reflection properties of nanostructure-arrayed silicon surfaces,” Nanotechnology11(3), 161–164 (2000).
[CrossRef]

Nature (1)

P. Clapham and M. C. Hutley, “Reduction of lens reflexion by the “moth eye” principle,” Nature244(5414), 281–282 (1973).
[CrossRef]

Opt. Acta (Lond.) (1)

S. J. Wilson and M. C. Hutley, “The optical properties of “moth eye” antireflection surfaces,” Opt. Acta (Lond.)29(7), 993–1009 (1982).
[CrossRef]

Opt. Commun. (1)

L. Escoubas, J. J. Simon, M. Loli, G. Berginc, F. Flory, and H. Giovannini, “An antireflective silicon grating working in the resonance domain for the near infrared spectral region,” Opt. Commun.226(1-6), 81–88 (2003).
[CrossRef]

Opt. Eng. (1)

A. Gombert, B. Bläsi, C. Bühler, P. Nitz, J. Mick, W. Hoßfeld, and M. Niggemann, “Some application cases and related manufacturing techniques for optically functional microstructures on large areas,” Opt. Eng.43(11), 2525–2533 (2004).
[CrossRef]

Opt. Lett. (2)

Philos. Trans. R. Soc. London, Ser. A (1)

G. J. Parker, M. D. B. Charlton, M. E. Zoorob, J. J. Baumberg, M. C. Netti, and T. Lee, “Highly engineered mesoporous structures for optical processing,” Philos. Trans. R. Soc. London, Ser. A364, 189–199 (2006).

Philos. Trans. R. Soc. London, Ser. B (1)

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Philos. Trans. R. Soc. London, Ser. B273(1587), 661–667 (2006).
[CrossRef]

Proc. SPIE (1)

S. A. Boden and D. M. Bagnall, “Nanostructured biomimetic moth-eye arrays in silicon by nanoimprint lithography,” Proc. SPIE7401, 74010J, 74010J-12 (2009).
[CrossRef]

Sens. Actuators, A (1)

A. M. Hynes, H. Ashraf, J. K. Bhardwaj, J. Hopkins, I. Johnston, and J. N. Shepherd, “Recent advances in silicon etching for MEMS using the ASE (TM) process,” Sens. Actuators, A74(1-3), 13–17 (1999).
[CrossRef]

Sol. Energy Mater. Sol. Cells (1)

A. Gombert, K. Rose, A. Heinzel, W. Horbelt, C. Zanke, B. Bläsi, and V. Wittwer, “Antireflective submicrometer surface-relief gratings for solar applications,” Sol. Energy Mater. Sol. Cells54(1-4), 333–342 (1998).
[CrossRef]

Vision Res. (1)

A. T. D. Bennett and I. C. Cuthill, “Ultraviolet vision in birds: what is its function?” Vision Res.34(11), 1471–1478 (1994).
[CrossRef] [PubMed]

Zoolog. Sci. (1)

A. Yoshida, M. Motoyama, A. Kosaku, and K. Miyamoto, “Antireflective nanoprotuberance array in the transparent wing of a hawkmoth, Cephonodes hylas,” Zoolog. Sci.14(5), 737–741 (1997).
[CrossRef]

Other (4)

S. A. Boden and D. M. Bagnall, “Bio-mimetic subwavelength surfaces for near-zero reflection sunrise to sunset,” in Proceedings of the 4th IEEE World Conference on Photovoltaic Energy Conversion, 1358–1361 (2006)

H. Sai, H. Fujii, Y. Kanamori, K. Arafune, Y. Ohshita, H. Yugami, and M. Yamaguchi, “Numerical analysis and demonstration of submicron antireflective textures for crystalline silicon solar cells,” in Proceedings of the 4th IEEE World Conference on Photovoltaic Energy Conversion, 1, 1191–1194 (2006)

V. Boerner, V. Kübler, B. Bläsi, and A. Gombert, “P-20: Antireflection systems for flat panel displays - an overview,” SID Symposium Digest of Technical Papers 35, 306–309 (2004).

M. Senechal, Quasicrystals and Geometry (Cambridge University Press, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Helium ion microscope image of nanoscale pillar arrays on the surface of transparent sections of the wings of Cephanodes hylas (sample tilted by 45 degrees)

Fig. 2
Fig. 2

(a) Diagram of the hexagonal arrangement of pillars viewed from above, showing diffraction planes for specific azimuth angles; (b) diagram viewing in the plane of the sample and showing the incident and diffracted light at an azimuth angle for which the light is incident perpendicular to one of the close packed directions; (c) Plot showing the angle and wavelength parameter space, based on the one-dimensional grating equation, in which the −1 diffraction order exists for a hexagonally arranged moth-eye array with an inter-pillar spacing, s, of 250 nm (d = 216.5 nm), illuminated with white light.

Fig. 3
Fig. 3

Helium ion microscope images of moth-eye structures on the surface of transparent wing sections of Cephanodes hylas, taken over a range of magnifications. Corresponding Fourier spectra are included below each image.

Fig. 4
Fig. 4

Fourier transforms of different combinations of the hexagonal close packed pattern at various orientations: a) only 0 degrees b) 0 and 30 degrees c) 0,30 and 45 degrees d) 0, 15, 30 and 45 degrees e) 0 and 90 degrees f) 0 and 60 degrees.

Fig. 5
Fig. 5

(a) Unit cells, (b) SEM Images and (c) FFTs of SEM images of moth-eye samples on silicon fabricated in 3 designs based on a hexagonal array: (i) single orientation, (ii) tiled domains with 4 orientations, (iii) tiled domains with 9 orientations.

Fig. 6
Fig. 6

Apparatus for characterizing silicon moth-eye samples. Inset shows orientation of moth-eye array with respect to incident light beam.

Fig. 7
Fig. 7

(a) The variation of the intensity of the light of λ = 418 nm with azimuth angle, for a hexagonal moth-eye array of (i) single orientation, (ii) 4 orientations (tiled domains) and (iii) 9 orientations (tiled domains). The samples were illuminated with white light and θi and θm were fixed to collect the −1 diffracted order at λ = 418 nm (b) Plot showing the angle and wavelength of −1 diffraction orders produced using white light to illuminate a hexagonally arranged moth-eye array in silicon, with an inter-pillar spacing of 250 nm, at various angles of incidence. The lines show the theoretical results based on the one-dimensional grating equation. The points mark the measurements made with the apparatus in Fig. 6.

Fig. 8
Fig. 8

Alternative patterns for reducing diffraction caused by domain-to-domain periodicity: (a) increased randomness in the size and shape of domains within a unit cell; (b) ‘sunflower’ pattern; (c) Conway ‘pinwheel’ pattern.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

sin θ m sin θ i = mλ d
d< λ 2
d= 3 2 s

Metrics