Abstract

A novel of Fresnel-type lens for use as a solar collector has been designed which utilizes double total internal reflection (D-TIR) to optimize collection efficiency for high numerical aperture lenses (in the region of 0.3 to 0.6 NA). Results show that, depending on the numerical aperture and the size of the receiver, a collection efficiency theoretical improvement on the order of 20% can be expected with this new design compared with that of a conventional Fresnel lens.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. A. Aničin, V. M. Babovič, and D. M. Davidovič, “Fresnel lenses,” Am. J. Phys.57, 312–316 (1989).
  2. R. M. Swanson, Handbook of Photovoltaic Science and Engineering A. Luque, S. Hegedus eds. (Wiley, 2003), Chap 11.
  3. R. Leutz and A. Suzuki, Nonimaging Fresnel Lenses: Design and Performance of Solar Concentrators (Springer Verlag, 2001).
  4. R. Leutz, A. Suzuki, A. Akisawa, and T. Kashiwagi, “Design of a nonimaging Fresnel lens for solar concentrators,” Sol. Energy65, 379–387 (1999).
  5. R. Leutz, A. Suzuki, A. Akisawa, and T. Kashiwagi, “Flux densities in optimum nonimaging Fresnel lens concentrators for space,” in Proceedings of 28th IEEE Photovoltaic Specialists Conference (IEEE Electron Devices Soc., 2000), 1146–1149.
  6. M. O’Neill, “Solar concentrator and energy collection system,” US Patent 4,069,812 (1978).
  7. M. O’Neill, “Inflatable Fresnel lens solar concentrator for space power,” US Patent 6,111,190 (2000).
  8. J. M. Bennett, “Polarization,” in Handbook of Optics, Third Edition, Volume I, (McGraw-Hill, 2010), Chap 12.
  9. R. Leutz and L. Fu, “Dispersion in tailored Fresnel lens concentrators,” in Proceedings of the ISES World Congress 2007 (I-V), D.Y. Goswami, ed. (Springer, 2007), 1366–1370.
  10. W. A. Parkyn and D. G. Pelka, “Compact nonimaging lens with totally internally reflecting facets,” Proc. SPIE1528, 70–81 (1991).
  11. W. A. Parkyn, P. L. Gleckman, and D. G. Pelka, “Converging TIR lens for nonimaging concentration of light from compact incoherent sources,” Proc. SPIE2016, 78–86 (1993).
  12. W. A. Parkyn, D. G. Pelka, and J. M. Popovich, “Faceted totally internally reflecting lens with individually curved faces on facets,” US Patent 5,404,869 (1995).
  13. J. C. Nelson and D. F. Vanderwerf, “Catadioptric Fresnel lens,” US Patent 5,446,594 (1995).
  14. E. Brinksmeier, A. Gessenharter, D. Pérez, J. Blen, P. Benitez, V. Díaz, and J. Alonso, “Design and manufacture of aspheric lenses for novel high efficient photovoltaic concentrator modules,” in Proceedings of the ASPE 19th Annual Meeting, (American Society for Precision Engineering, 2004), 582–585. http://www.aspe.net/publications/Annual_2004/POSTERS/5PROC/2MACH/1575.PDF
  15. Y. Huang, “Total internal reflection Fresnel lens devices,” US Patent 7,230,758 B2 (2007).
  16. C. M. Wang, H. I. Huang, J. W. Pan, H. Z. Kuo, H. F. Hong, H. Y. Shin, and J. Y. Chang, “Single stage transmission type broadband solar concentrator,” Opt. Express18(Suppl 2), A118–A125 (2010).
    [PubMed]
  17. http://www.radiantzemax.com/
  18. http://rredc.nrel.gov/solar/spectra/am1.5/

2010 (1)

1999 (1)

R. Leutz, A. Suzuki, A. Akisawa, and T. Kashiwagi, “Design of a nonimaging Fresnel lens for solar concentrators,” Sol. Energy65, 379–387 (1999).

1993 (1)

W. A. Parkyn, P. L. Gleckman, and D. G. Pelka, “Converging TIR lens for nonimaging concentration of light from compact incoherent sources,” Proc. SPIE2016, 78–86 (1993).

1991 (1)

W. A. Parkyn and D. G. Pelka, “Compact nonimaging lens with totally internally reflecting facets,” Proc. SPIE1528, 70–81 (1991).

1989 (1)

B. A. Aničin, V. M. Babovič, and D. M. Davidovič, “Fresnel lenses,” Am. J. Phys.57, 312–316 (1989).

Akisawa, A.

R. Leutz, A. Suzuki, A. Akisawa, and T. Kashiwagi, “Design of a nonimaging Fresnel lens for solar concentrators,” Sol. Energy65, 379–387 (1999).

Anicin, B. A.

B. A. Aničin, V. M. Babovič, and D. M. Davidovič, “Fresnel lenses,” Am. J. Phys.57, 312–316 (1989).

Babovic, V. M.

B. A. Aničin, V. M. Babovič, and D. M. Davidovič, “Fresnel lenses,” Am. J. Phys.57, 312–316 (1989).

Chang, J. Y.

Davidovic, D. M.

B. A. Aničin, V. M. Babovič, and D. M. Davidovič, “Fresnel lenses,” Am. J. Phys.57, 312–316 (1989).

Gleckman, P. L.

W. A. Parkyn, P. L. Gleckman, and D. G. Pelka, “Converging TIR lens for nonimaging concentration of light from compact incoherent sources,” Proc. SPIE2016, 78–86 (1993).

Hong, H. F.

Huang, H. I.

Kashiwagi, T.

R. Leutz, A. Suzuki, A. Akisawa, and T. Kashiwagi, “Design of a nonimaging Fresnel lens for solar concentrators,” Sol. Energy65, 379–387 (1999).

Kuo, H. Z.

Leutz, R.

R. Leutz, A. Suzuki, A. Akisawa, and T. Kashiwagi, “Design of a nonimaging Fresnel lens for solar concentrators,” Sol. Energy65, 379–387 (1999).

Pan, J. W.

Parkyn, W. A.

W. A. Parkyn, P. L. Gleckman, and D. G. Pelka, “Converging TIR lens for nonimaging concentration of light from compact incoherent sources,” Proc. SPIE2016, 78–86 (1993).

W. A. Parkyn and D. G. Pelka, “Compact nonimaging lens with totally internally reflecting facets,” Proc. SPIE1528, 70–81 (1991).

Pelka, D. G.

W. A. Parkyn, P. L. Gleckman, and D. G. Pelka, “Converging TIR lens for nonimaging concentration of light from compact incoherent sources,” Proc. SPIE2016, 78–86 (1993).

W. A. Parkyn and D. G. Pelka, “Compact nonimaging lens with totally internally reflecting facets,” Proc. SPIE1528, 70–81 (1991).

Shin, H. Y.

Suzuki, A.

R. Leutz, A. Suzuki, A. Akisawa, and T. Kashiwagi, “Design of a nonimaging Fresnel lens for solar concentrators,” Sol. Energy65, 379–387 (1999).

Wang, C. M.

Am. J. Phys. (1)

B. A. Aničin, V. M. Babovič, and D. M. Davidovič, “Fresnel lenses,” Am. J. Phys.57, 312–316 (1989).

Opt. Express (1)

Proc. SPIE (2)

W. A. Parkyn and D. G. Pelka, “Compact nonimaging lens with totally internally reflecting facets,” Proc. SPIE1528, 70–81 (1991).

W. A. Parkyn, P. L. Gleckman, and D. G. Pelka, “Converging TIR lens for nonimaging concentration of light from compact incoherent sources,” Proc. SPIE2016, 78–86 (1993).

Sol. Energy (1)

R. Leutz, A. Suzuki, A. Akisawa, and T. Kashiwagi, “Design of a nonimaging Fresnel lens for solar concentrators,” Sol. Energy65, 379–387 (1999).

Other (13)

R. Leutz, A. Suzuki, A. Akisawa, and T. Kashiwagi, “Flux densities in optimum nonimaging Fresnel lens concentrators for space,” in Proceedings of 28th IEEE Photovoltaic Specialists Conference (IEEE Electron Devices Soc., 2000), 1146–1149.

M. O’Neill, “Solar concentrator and energy collection system,” US Patent 4,069,812 (1978).

M. O’Neill, “Inflatable Fresnel lens solar concentrator for space power,” US Patent 6,111,190 (2000).

J. M. Bennett, “Polarization,” in Handbook of Optics, Third Edition, Volume I, (McGraw-Hill, 2010), Chap 12.

R. Leutz and L. Fu, “Dispersion in tailored Fresnel lens concentrators,” in Proceedings of the ISES World Congress 2007 (I-V), D.Y. Goswami, ed. (Springer, 2007), 1366–1370.

W. A. Parkyn, D. G. Pelka, and J. M. Popovich, “Faceted totally internally reflecting lens with individually curved faces on facets,” US Patent 5,404,869 (1995).

J. C. Nelson and D. F. Vanderwerf, “Catadioptric Fresnel lens,” US Patent 5,446,594 (1995).

E. Brinksmeier, A. Gessenharter, D. Pérez, J. Blen, P. Benitez, V. Díaz, and J. Alonso, “Design and manufacture of aspheric lenses for novel high efficient photovoltaic concentrator modules,” in Proceedings of the ASPE 19th Annual Meeting, (American Society for Precision Engineering, 2004), 582–585. http://www.aspe.net/publications/Annual_2004/POSTERS/5PROC/2MACH/1575.PDF

Y. Huang, “Total internal reflection Fresnel lens devices,” US Patent 7,230,758 B2 (2007).

http://www.radiantzemax.com/

http://rredc.nrel.gov/solar/spectra/am1.5/

R. M. Swanson, Handbook of Photovoltaic Science and Engineering A. Luque, S. Hegedus eds. (Wiley, 2003), Chap 11.

R. Leutz and A. Suzuki, Nonimaging Fresnel Lenses: Design and Performance of Solar Concentrators (Springer Verlag, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Reflectance as light passes a refractive index boundary between nPMMA = 1.49 and nair = 1. (a) As light enters PMMA from air (b) As light exits PMMA into air.

Fig. 2
Fig. 2

Fresnel lens showing refraction of a ray at the second surface

Fig. 3
Fig. 3

Transmission efficiency as a result of reflection losses of a conventional Fresnel lens and two TIR lenses. (Material: PMMA, n = 1.49)

Fig. 4
Fig. 4

Sources of geometric losses which are a function of refraction angle. (a) Chromatic dispersion. (b) Effects of angle of incidence variation.

Fig. 5
Fig. 5

Three methods of deflecting a ray by an angle, α. (a) By refraction as in a conventional Fresnel lens. (b) Using single TIR. (c) Using double TIR.

Fig. 6
Fig. 6

Design of a hybrid lens (conventional Fresnel and double TIR)

Fig. 7
Fig. 7

Irradiance at the focus of (a) a conventional Fresnel lens and (b) a hybrid Fresnel/D-TIR lens when illuminated with the full solar spectrum (300nm to 2.4µm).

Fig. 8
Fig. 8

Encircled energy analysis of the plots in Fig. 7.

Metrics