Abstract

Efficient trapping of the light in a photon absorber or a photodetector can improve its performance and reduce its cost. In this paper we investigate two designs for light-trapping in application to infrared absorption. Our numerical simulations demonstrate that nonabsorptive pyramids either located on top of an absorbing film or having embedded absorbing rods can efficiently enhance the absorption in the absorbing material. A spectrally averaged absorptance of 83% is achieved compared to an average absorptance of 28% for the optimized multilayer structure that has the same amount of absorbing material. This enhancement is explained by the coupled-mode theory. Similar designs can also be applied to solar cells.

© 2012 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. A. Alsema, “Energy pay-back time and CO2 emissions of PV systems,” Prog. Photovoltaics8, 17–25 (2000).
    [CrossRef]
  2. K. Taretto and U. Rau, “Modeling extremely thin absorber solar cells for optimized design,” Prog. Photovoltaics12, 573–591 (2004).
    [CrossRef]
  3. H. Deckman, C. Roxlo, and E. Yablonovitch, “Maximum statistical increase of optical-absorption in textured semiconductor-films,” Opt. Lett.8, 491–493 (1983).
    [CrossRef] [PubMed]
  4. P. Sheng, A. Bloch, and R. Stepleman, “Wavelength-selective absorption enhancement in thin-film solar-cells,” Appl. Phys. Lett.43, 579–581 (1983).
    [CrossRef]
  5. C. Heine and R. H. Morf, “Submicrometer gratings for solar energy applications,” Appl. Opt.34, 2476–2482 (1995).
    [CrossRef] [PubMed]
  6. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9, 205–213 (2010).
    [CrossRef] [PubMed]
  7. L. Hu, X. Chen, and G. Chen, “Surface-plasmon enhanced near-bandgap light absorption in silicon photovoltaics,” J. Comput. Theor. Nanosci.5, 2096–2101 (2008).
    [CrossRef]
  8. L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett.7, 3249–3252 (2007).
    [CrossRef] [PubMed]
  9. S. E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett.10, 1012–1015 (2010).
    [CrossRef] [PubMed]
  10. S. E. Han and G. Chen, “Toward the Lambertian limit of light trapping in thin nanostructured silicon solar cells,” Nano Lett.10, 4692–4696 (2010).
    [CrossRef] [PubMed]
  11. J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical Absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett.9, 279–282 (2009).
    [CrossRef]
  12. M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater.9, 239–244 (2010).
    [CrossRef] [PubMed]
  13. G. Gomard, E. Drouard, X. Letartre, X. Meng, A. Kaminski, A. Fave, M. Lemiti, E. Garcia-Caurel, and C. Seassal, “Two-dimensional photonic crystal for absorption enhancement in hydrogenated amorphous silicon thin film solar cells,” J. Appl. Phys.108, 123102 (2010).
    [CrossRef]
  14. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley, 2007).
  15. G. J. Bauhuis, P. Mulder, E. J. Haverkamp, J. C. C. M. Huijben, and J. J. Schermer, “26.1% thin-film GaAs solar cell using epitaxial lift-off,” Sol. Energy Mater. Sol. Cells93, 1488–1491 (2009).
    [CrossRef]
  16. P. Yu, C.-H. Chang, C.-H. Chiu, C.-S. Yang, J.-C. Yu, H.-C. Kuo, S.-H. Hsu, and Y.-C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolumns,” Adv. Mater.21, 1618–1621 (2009).
    [CrossRef]
  17. L.-K. Yeh, K.-Y. Lai, G.-J. Lin, P.-H. Fu, H.-C. Chang, C.-A. Lin, and J.-H. He, “Giant efficiency enhancement of GaAs solar cells with graded antireflection layers based on syringelike ZnO nanorod arrays,” Adv. Energy Mater.1, 506–510 (2011).
    [CrossRef]
  18. K.-S. Han, J.-H. Shin, W.-Y. Yoon, and H. Lee, “Enhanced performance of solar cells with anti-reflection layer fabricated by nano-imprint lithography,” Sol. Energy Mater. Sol. Cells95, 288–291 (2011).
    [CrossRef]
  19. A. Taflove and S. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method (Artech, 2000).
  20. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181, 687–702 (2010).
    [CrossRef]
  21. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  22. P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys.62, 243–249 (1987).
    [CrossRef]
  23. A. K. Dutta, R. Olah, G. Mizuno, R. Sengupta, J. H. Park, P. Wijewarnasuriya, and N. Dhar, “High efficiency solar cells based on micro-nano scale structures,” Proc. SPIE7683, 768300 (2010)
  24. J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett.10, 1979–1984 (2010).
    [CrossRef]
  25. R. Esteban, M. Laroche, and J. J. Greffet, “Dielectric gratings for wide-angle, broadband absorption by thin film photovoltaic cells,” Appl. Phys. Lett.97, 221111 (2010).
    [CrossRef]
  26. B. M. Kayes, H. A. Atwater, and N. S. Lewis, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells,” J. Appl. Phys.97, 114302 (2005).
    [CrossRef]
  27. H. A. Haus, Waves and Fields in Optoelectronics (Prentice Hall, 1984).
  28. S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A20, 569–572 (2003).
    [CrossRef]
  29. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. USA107, 17491–17496 (2010).
    [CrossRef] [PubMed]
  30. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express18, A366–A380 (2010).
    [CrossRef] [PubMed]
  31. C. Kittel, Introduction to Solid State Physics, 7th ed. (Wiley, 1995).
  32. M. Deubel1, G. von Freymann1, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater.3, 444–447 (2004).
    [CrossRef]
  33. E. Kim, Y. Xia, and G. M. Whitesides, “Polymer microstructures formed by moulding in capillaries,” Nature376, 581–584 (2002).
    [CrossRef]

2011 (2)

L.-K. Yeh, K.-Y. Lai, G.-J. Lin, P.-H. Fu, H.-C. Chang, C.-A. Lin, and J.-H. He, “Giant efficiency enhancement of GaAs solar cells with graded antireflection layers based on syringelike ZnO nanorod arrays,” Adv. Energy Mater.1, 506–510 (2011).
[CrossRef]

K.-S. Han, J.-H. Shin, W.-Y. Yoon, and H. Lee, “Enhanced performance of solar cells with anti-reflection layer fabricated by nano-imprint lithography,” Sol. Energy Mater. Sol. Cells95, 288–291 (2011).
[CrossRef]

2010 (11)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181, 687–702 (2010).
[CrossRef]

A. K. Dutta, R. Olah, G. Mizuno, R. Sengupta, J. H. Park, P. Wijewarnasuriya, and N. Dhar, “High efficiency solar cells based on micro-nano scale structures,” Proc. SPIE7683, 768300 (2010)

J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett.10, 1979–1984 (2010).
[CrossRef]

R. Esteban, M. Laroche, and J. J. Greffet, “Dielectric gratings for wide-angle, broadband absorption by thin film photovoltaic cells,” Appl. Phys. Lett.97, 221111 (2010).
[CrossRef]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9, 205–213 (2010).
[CrossRef] [PubMed]

S. E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett.10, 1012–1015 (2010).
[CrossRef] [PubMed]

S. E. Han and G. Chen, “Toward the Lambertian limit of light trapping in thin nanostructured silicon solar cells,” Nano Lett.10, 4692–4696 (2010).
[CrossRef] [PubMed]

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater.9, 239–244 (2010).
[CrossRef] [PubMed]

G. Gomard, E. Drouard, X. Letartre, X. Meng, A. Kaminski, A. Fave, M. Lemiti, E. Garcia-Caurel, and C. Seassal, “Two-dimensional photonic crystal for absorption enhancement in hydrogenated amorphous silicon thin film solar cells,” J. Appl. Phys.108, 123102 (2010).
[CrossRef]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. USA107, 17491–17496 (2010).
[CrossRef] [PubMed]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express18, A366–A380 (2010).
[CrossRef] [PubMed]

2009 (3)

G. J. Bauhuis, P. Mulder, E. J. Haverkamp, J. C. C. M. Huijben, and J. J. Schermer, “26.1% thin-film GaAs solar cell using epitaxial lift-off,” Sol. Energy Mater. Sol. Cells93, 1488–1491 (2009).
[CrossRef]

P. Yu, C.-H. Chang, C.-H. Chiu, C.-S. Yang, J.-C. Yu, H.-C. Kuo, S.-H. Hsu, and Y.-C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolumns,” Adv. Mater.21, 1618–1621 (2009).
[CrossRef]

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical Absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett.9, 279–282 (2009).
[CrossRef]

2008 (1)

L. Hu, X. Chen, and G. Chen, “Surface-plasmon enhanced near-bandgap light absorption in silicon photovoltaics,” J. Comput. Theor. Nanosci.5, 2096–2101 (2008).
[CrossRef]

2007 (1)

L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett.7, 3249–3252 (2007).
[CrossRef] [PubMed]

2005 (1)

B. M. Kayes, H. A. Atwater, and N. S. Lewis, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells,” J. Appl. Phys.97, 114302 (2005).
[CrossRef]

2004 (2)

M. Deubel1, G. von Freymann1, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater.3, 444–447 (2004).
[CrossRef]

K. Taretto and U. Rau, “Modeling extremely thin absorber solar cells for optimized design,” Prog. Photovoltaics12, 573–591 (2004).
[CrossRef]

2003 (1)

2002 (1)

E. Kim, Y. Xia, and G. M. Whitesides, “Polymer microstructures formed by moulding in capillaries,” Nature376, 581–584 (2002).
[CrossRef]

2000 (1)

E. A. Alsema, “Energy pay-back time and CO2 emissions of PV systems,” Prog. Photovoltaics8, 17–25 (2000).
[CrossRef]

1995 (1)

1987 (1)

P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys.62, 243–249 (1987).
[CrossRef]

1983 (2)

P. Sheng, A. Bloch, and R. Stepleman, “Wavelength-selective absorption enhancement in thin-film solar-cells,” Appl. Phys. Lett.43, 579–581 (1983).
[CrossRef]

H. Deckman, C. Roxlo, and E. Yablonovitch, “Maximum statistical increase of optical-absorption in textured semiconductor-films,” Opt. Lett.8, 491–493 (1983).
[CrossRef] [PubMed]

Alsema, E. A.

E. A. Alsema, “Energy pay-back time and CO2 emissions of PV systems,” Prog. Photovoltaics8, 17–25 (2000).
[CrossRef]

Atwater, H. A.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater.9, 239–244 (2010).
[CrossRef] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9, 205–213 (2010).
[CrossRef] [PubMed]

B. M. Kayes, H. A. Atwater, and N. S. Lewis, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells,” J. Appl. Phys.97, 114302 (2005).
[CrossRef]

Bauhuis, G. J.

G. J. Bauhuis, P. Mulder, E. J. Haverkamp, J. C. C. M. Huijben, and J. J. Schermer, “26.1% thin-film GaAs solar cell using epitaxial lift-off,” Sol. Energy Mater. Sol. Cells93, 1488–1491 (2009).
[CrossRef]

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181, 687–702 (2010).
[CrossRef]

Bloch, A.

P. Sheng, A. Bloch, and R. Stepleman, “Wavelength-selective absorption enhancement in thin-film solar-cells,” Appl. Phys. Lett.43, 579–581 (1983).
[CrossRef]

Boettcher, S. W.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater.9, 239–244 (2010).
[CrossRef] [PubMed]

Briggs, R. M.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater.9, 239–244 (2010).
[CrossRef] [PubMed]

Burkhard, G. F.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical Absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett.9, 279–282 (2009).
[CrossRef]

Busch, K.

M. Deubel1, G. von Freymann1, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater.3, 444–447 (2004).
[CrossRef]

Campbell, P.

P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys.62, 243–249 (1987).
[CrossRef]

Chang, C.-H.

P. Yu, C.-H. Chang, C.-H. Chiu, C.-S. Yang, J.-C. Yu, H.-C. Kuo, S.-H. Hsu, and Y.-C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolumns,” Adv. Mater.21, 1618–1621 (2009).
[CrossRef]

Chang, H.-C.

L.-K. Yeh, K.-Y. Lai, G.-J. Lin, P.-H. Fu, H.-C. Chang, C.-A. Lin, and J.-H. He, “Giant efficiency enhancement of GaAs solar cells with graded antireflection layers based on syringelike ZnO nanorod arrays,” Adv. Energy Mater.1, 506–510 (2011).
[CrossRef]

Chang, Y.-C.

P. Yu, C.-H. Chang, C.-H. Chiu, C.-S. Yang, J.-C. Yu, H.-C. Kuo, S.-H. Hsu, and Y.-C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolumns,” Adv. Mater.21, 1618–1621 (2009).
[CrossRef]

Chen, G.

S. E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett.10, 1012–1015 (2010).
[CrossRef] [PubMed]

S. E. Han and G. Chen, “Toward the Lambertian limit of light trapping in thin nanostructured silicon solar cells,” Nano Lett.10, 4692–4696 (2010).
[CrossRef] [PubMed]

L. Hu, X. Chen, and G. Chen, “Surface-plasmon enhanced near-bandgap light absorption in silicon photovoltaics,” J. Comput. Theor. Nanosci.5, 2096–2101 (2008).
[CrossRef]

L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett.7, 3249–3252 (2007).
[CrossRef] [PubMed]

Chen, X.

L. Hu, X. Chen, and G. Chen, “Surface-plasmon enhanced near-bandgap light absorption in silicon photovoltaics,” J. Comput. Theor. Nanosci.5, 2096–2101 (2008).
[CrossRef]

Chiu, C.-H.

P. Yu, C.-H. Chang, C.-H. Chiu, C.-S. Yang, J.-C. Yu, H.-C. Kuo, S.-H. Hsu, and Y.-C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolumns,” Adv. Mater.21, 1618–1621 (2009).
[CrossRef]

Connor, S. T.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical Absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett.9, 279–282 (2009).
[CrossRef]

Cui, Y.

J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett.10, 1979–1984 (2010).
[CrossRef]

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical Absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett.9, 279–282 (2009).
[CrossRef]

Deckman, H.

Deubel1, M.

M. Deubel1, G. von Freymann1, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater.3, 444–447 (2004).
[CrossRef]

Dhar, N.

A. K. Dutta, R. Olah, G. Mizuno, R. Sengupta, J. H. Park, P. Wijewarnasuriya, and N. Dhar, “High efficiency solar cells based on micro-nano scale structures,” Proc. SPIE7683, 768300 (2010)

Drouard, E.

G. Gomard, E. Drouard, X. Letartre, X. Meng, A. Kaminski, A. Fave, M. Lemiti, E. Garcia-Caurel, and C. Seassal, “Two-dimensional photonic crystal for absorption enhancement in hydrogenated amorphous silicon thin film solar cells,” J. Appl. Phys.108, 123102 (2010).
[CrossRef]

Dutta, A. K.

A. K. Dutta, R. Olah, G. Mizuno, R. Sengupta, J. H. Park, P. Wijewarnasuriya, and N. Dhar, “High efficiency solar cells based on micro-nano scale structures,” Proc. SPIE7683, 768300 (2010)

Esteban, R.

R. Esteban, M. Laroche, and J. J. Greffet, “Dielectric gratings for wide-angle, broadband absorption by thin film photovoltaic cells,” Appl. Phys. Lett.97, 221111 (2010).
[CrossRef]

Fan, S.

J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett.10, 1979–1984 (2010).
[CrossRef]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. USA107, 17491–17496 (2010).
[CrossRef] [PubMed]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express18, A366–A380 (2010).
[CrossRef] [PubMed]

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical Absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett.9, 279–282 (2009).
[CrossRef]

S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A20, 569–572 (2003).
[CrossRef]

Fave, A.

G. Gomard, E. Drouard, X. Letartre, X. Meng, A. Kaminski, A. Fave, M. Lemiti, E. Garcia-Caurel, and C. Seassal, “Two-dimensional photonic crystal for absorption enhancement in hydrogenated amorphous silicon thin film solar cells,” J. Appl. Phys.108, 123102 (2010).
[CrossRef]

Fu, P.-H.

L.-K. Yeh, K.-Y. Lai, G.-J. Lin, P.-H. Fu, H.-C. Chang, C.-A. Lin, and J.-H. He, “Giant efficiency enhancement of GaAs solar cells with graded antireflection layers based on syringelike ZnO nanorod arrays,” Adv. Energy Mater.1, 506–510 (2011).
[CrossRef]

Garcia-Caurel, E.

G. Gomard, E. Drouard, X. Letartre, X. Meng, A. Kaminski, A. Fave, M. Lemiti, E. Garcia-Caurel, and C. Seassal, “Two-dimensional photonic crystal for absorption enhancement in hydrogenated amorphous silicon thin film solar cells,” J. Appl. Phys.108, 123102 (2010).
[CrossRef]

Gomard, G.

G. Gomard, E. Drouard, X. Letartre, X. Meng, A. Kaminski, A. Fave, M. Lemiti, E. Garcia-Caurel, and C. Seassal, “Two-dimensional photonic crystal for absorption enhancement in hydrogenated amorphous silicon thin film solar cells,” J. Appl. Phys.108, 123102 (2010).
[CrossRef]

Green, M. A.

P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys.62, 243–249 (1987).
[CrossRef]

Greffet, J. J.

R. Esteban, M. Laroche, and J. J. Greffet, “Dielectric gratings for wide-angle, broadband absorption by thin film photovoltaic cells,” Appl. Phys. Lett.97, 221111 (2010).
[CrossRef]

Hagness, S.

A. Taflove and S. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method (Artech, 2000).

Han, K.-S.

K.-S. Han, J.-H. Shin, W.-Y. Yoon, and H. Lee, “Enhanced performance of solar cells with anti-reflection layer fabricated by nano-imprint lithography,” Sol. Energy Mater. Sol. Cells95, 288–291 (2011).
[CrossRef]

Han, S. E.

S. E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett.10, 1012–1015 (2010).
[CrossRef] [PubMed]

S. E. Han and G. Chen, “Toward the Lambertian limit of light trapping in thin nanostructured silicon solar cells,” Nano Lett.10, 4692–4696 (2010).
[CrossRef] [PubMed]

Haus, H. A.

H. A. Haus, Waves and Fields in Optoelectronics (Prentice Hall, 1984).

Haverkamp, E. J.

G. J. Bauhuis, P. Mulder, E. J. Haverkamp, J. C. C. M. Huijben, and J. J. Schermer, “26.1% thin-film GaAs solar cell using epitaxial lift-off,” Sol. Energy Mater. Sol. Cells93, 1488–1491 (2009).
[CrossRef]

He, J.-H.

L.-K. Yeh, K.-Y. Lai, G.-J. Lin, P.-H. Fu, H.-C. Chang, C.-A. Lin, and J.-H. He, “Giant efficiency enhancement of GaAs solar cells with graded antireflection layers based on syringelike ZnO nanorod arrays,” Adv. Energy Mater.1, 506–510 (2011).
[CrossRef]

Heine, C.

Hsu, C.-M.

J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett.10, 1979–1984 (2010).
[CrossRef]

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical Absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett.9, 279–282 (2009).
[CrossRef]

Hsu, S.-H.

P. Yu, C.-H. Chang, C.-H. Chiu, C.-S. Yang, J.-C. Yu, H.-C. Kuo, S.-H. Hsu, and Y.-C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolumns,” Adv. Mater.21, 1618–1621 (2009).
[CrossRef]

Hu, L.

L. Hu, X. Chen, and G. Chen, “Surface-plasmon enhanced near-bandgap light absorption in silicon photovoltaics,” J. Comput. Theor. Nanosci.5, 2096–2101 (2008).
[CrossRef]

L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett.7, 3249–3252 (2007).
[CrossRef] [PubMed]

Huijben, J. C. C. M.

G. J. Bauhuis, P. Mulder, E. J. Haverkamp, J. C. C. M. Huijben, and J. J. Schermer, “26.1% thin-film GaAs solar cell using epitaxial lift-off,” Sol. Energy Mater. Sol. Cells93, 1488–1491 (2009).
[CrossRef]

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181, 687–702 (2010).
[CrossRef]

Joannopoulos, J. D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181, 687–702 (2010).
[CrossRef]

S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A20, 569–572 (2003).
[CrossRef]

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181, 687–702 (2010).
[CrossRef]

Kaminski, A.

G. Gomard, E. Drouard, X. Letartre, X. Meng, A. Kaminski, A. Fave, M. Lemiti, E. Garcia-Caurel, and C. Seassal, “Two-dimensional photonic crystal for absorption enhancement in hydrogenated amorphous silicon thin film solar cells,” J. Appl. Phys.108, 123102 (2010).
[CrossRef]

Kayes, B. M.

B. M. Kayes, H. A. Atwater, and N. S. Lewis, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells,” J. Appl. Phys.97, 114302 (2005).
[CrossRef]

Kelzenberg, M. D.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater.9, 239–244 (2010).
[CrossRef] [PubMed]

Kim, E.

E. Kim, Y. Xia, and G. M. Whitesides, “Polymer microstructures formed by moulding in capillaries,” Nature376, 581–584 (2002).
[CrossRef]

Kittel, C.

C. Kittel, Introduction to Solid State Physics, 7th ed. (Wiley, 1995).

Kuo, H.-C.

P. Yu, C.-H. Chang, C.-H. Chiu, C.-S. Yang, J.-C. Yu, H.-C. Kuo, S.-H. Hsu, and Y.-C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolumns,” Adv. Mater.21, 1618–1621 (2009).
[CrossRef]

Lai, K.-Y.

L.-K. Yeh, K.-Y. Lai, G.-J. Lin, P.-H. Fu, H.-C. Chang, C.-A. Lin, and J.-H. He, “Giant efficiency enhancement of GaAs solar cells with graded antireflection layers based on syringelike ZnO nanorod arrays,” Adv. Energy Mater.1, 506–510 (2011).
[CrossRef]

Laroche, M.

R. Esteban, M. Laroche, and J. J. Greffet, “Dielectric gratings for wide-angle, broadband absorption by thin film photovoltaic cells,” Appl. Phys. Lett.97, 221111 (2010).
[CrossRef]

Lee, H.

K.-S. Han, J.-H. Shin, W.-Y. Yoon, and H. Lee, “Enhanced performance of solar cells with anti-reflection layer fabricated by nano-imprint lithography,” Sol. Energy Mater. Sol. Cells95, 288–291 (2011).
[CrossRef]

Lemiti, M.

G. Gomard, E. Drouard, X. Letartre, X. Meng, A. Kaminski, A. Fave, M. Lemiti, E. Garcia-Caurel, and C. Seassal, “Two-dimensional photonic crystal for absorption enhancement in hydrogenated amorphous silicon thin film solar cells,” J. Appl. Phys.108, 123102 (2010).
[CrossRef]

Letartre, X.

G. Gomard, E. Drouard, X. Letartre, X. Meng, A. Kaminski, A. Fave, M. Lemiti, E. Garcia-Caurel, and C. Seassal, “Two-dimensional photonic crystal for absorption enhancement in hydrogenated amorphous silicon thin film solar cells,” J. Appl. Phys.108, 123102 (2010).
[CrossRef]

Lewis, N. S.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater.9, 239–244 (2010).
[CrossRef] [PubMed]

B. M. Kayes, H. A. Atwater, and N. S. Lewis, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells,” J. Appl. Phys.97, 114302 (2005).
[CrossRef]

Lin, C.-A.

L.-K. Yeh, K.-Y. Lai, G.-J. Lin, P.-H. Fu, H.-C. Chang, C.-A. Lin, and J.-H. He, “Giant efficiency enhancement of GaAs solar cells with graded antireflection layers based on syringelike ZnO nanorod arrays,” Adv. Energy Mater.1, 506–510 (2011).
[CrossRef]

Lin, G.-J.

L.-K. Yeh, K.-Y. Lai, G.-J. Lin, P.-H. Fu, H.-C. Chang, C.-A. Lin, and J.-H. He, “Giant efficiency enhancement of GaAs solar cells with graded antireflection layers based on syringelike ZnO nanorod arrays,” Adv. Energy Mater.1, 506–510 (2011).
[CrossRef]

McGehee, M.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical Absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett.9, 279–282 (2009).
[CrossRef]

Meng, X.

G. Gomard, E. Drouard, X. Letartre, X. Meng, A. Kaminski, A. Fave, M. Lemiti, E. Garcia-Caurel, and C. Seassal, “Two-dimensional photonic crystal for absorption enhancement in hydrogenated amorphous silicon thin film solar cells,” J. Appl. Phys.108, 123102 (2010).
[CrossRef]

Mizuno, G.

A. K. Dutta, R. Olah, G. Mizuno, R. Sengupta, J. H. Park, P. Wijewarnasuriya, and N. Dhar, “High efficiency solar cells based on micro-nano scale structures,” Proc. SPIE7683, 768300 (2010)

Morf, R. H.

Mulder, P.

G. J. Bauhuis, P. Mulder, E. J. Haverkamp, J. C. C. M. Huijben, and J. J. Schermer, “26.1% thin-film GaAs solar cell using epitaxial lift-off,” Sol. Energy Mater. Sol. Cells93, 1488–1491 (2009).
[CrossRef]

Olah, R.

A. K. Dutta, R. Olah, G. Mizuno, R. Sengupta, J. H. Park, P. Wijewarnasuriya, and N. Dhar, “High efficiency solar cells based on micro-nano scale structures,” Proc. SPIE7683, 768300 (2010)

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181, 687–702 (2010).
[CrossRef]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Park, J. H.

A. K. Dutta, R. Olah, G. Mizuno, R. Sengupta, J. H. Park, P. Wijewarnasuriya, and N. Dhar, “High efficiency solar cells based on micro-nano scale structures,” Proc. SPIE7683, 768300 (2010)

Pereira, S.

M. Deubel1, G. von Freymann1, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater.3, 444–447 (2004).
[CrossRef]

Petykiewicz, J. A.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater.9, 239–244 (2010).
[CrossRef] [PubMed]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9, 205–213 (2010).
[CrossRef] [PubMed]

Putnam, M. C.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater.9, 239–244 (2010).
[CrossRef] [PubMed]

Raman, A.

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. USA107, 17491–17496 (2010).
[CrossRef] [PubMed]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express18, A366–A380 (2010).
[CrossRef] [PubMed]

Rau, U.

K. Taretto and U. Rau, “Modeling extremely thin absorber solar cells for optimized design,” Prog. Photovoltaics12, 573–591 (2004).
[CrossRef]

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181, 687–702 (2010).
[CrossRef]

Roxlo, C.

Saleh, B. E. A.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley, 2007).

Schermer, J. J.

G. J. Bauhuis, P. Mulder, E. J. Haverkamp, J. C. C. M. Huijben, and J. J. Schermer, “26.1% thin-film GaAs solar cell using epitaxial lift-off,” Sol. Energy Mater. Sol. Cells93, 1488–1491 (2009).
[CrossRef]

Seassal, C.

G. Gomard, E. Drouard, X. Letartre, X. Meng, A. Kaminski, A. Fave, M. Lemiti, E. Garcia-Caurel, and C. Seassal, “Two-dimensional photonic crystal for absorption enhancement in hydrogenated amorphous silicon thin film solar cells,” J. Appl. Phys.108, 123102 (2010).
[CrossRef]

Sengupta, R.

A. K. Dutta, R. Olah, G. Mizuno, R. Sengupta, J. H. Park, P. Wijewarnasuriya, and N. Dhar, “High efficiency solar cells based on micro-nano scale structures,” Proc. SPIE7683, 768300 (2010)

Sheng, P.

P. Sheng, A. Bloch, and R. Stepleman, “Wavelength-selective absorption enhancement in thin-film solar-cells,” Appl. Phys. Lett.43, 579–581 (1983).
[CrossRef]

Shin, J.-H.

K.-S. Han, J.-H. Shin, W.-Y. Yoon, and H. Lee, “Enhanced performance of solar cells with anti-reflection layer fabricated by nano-imprint lithography,” Sol. Energy Mater. Sol. Cells95, 288–291 (2011).
[CrossRef]

Soukoulis, C. M.

M. Deubel1, G. von Freymann1, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater.3, 444–447 (2004).
[CrossRef]

Spurgeon, J. M.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater.9, 239–244 (2010).
[CrossRef] [PubMed]

Stepleman, R.

P. Sheng, A. Bloch, and R. Stepleman, “Wavelength-selective absorption enhancement in thin-film solar-cells,” Appl. Phys. Lett.43, 579–581 (1983).
[CrossRef]

Suh, W.

Taflove, A.

A. Taflove and S. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method (Artech, 2000).

Taretto, K.

K. Taretto and U. Rau, “Modeling extremely thin absorber solar cells for optimized design,” Prog. Photovoltaics12, 573–591 (2004).
[CrossRef]

Teich, M. C.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley, 2007).

Turner-Evans, D. B.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater.9, 239–244 (2010).
[CrossRef] [PubMed]

von Freymann1, G.

M. Deubel1, G. von Freymann1, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater.3, 444–447 (2004).
[CrossRef]

Wang, Q.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical Absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett.9, 279–282 (2009).
[CrossRef]

Warren, E. L.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater.9, 239–244 (2010).
[CrossRef] [PubMed]

Wegener, M.

M. Deubel1, G. von Freymann1, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater.3, 444–447 (2004).
[CrossRef]

Whitesides, G. M.

E. Kim, Y. Xia, and G. M. Whitesides, “Polymer microstructures formed by moulding in capillaries,” Nature376, 581–584 (2002).
[CrossRef]

Wijewarnasuriya, P.

A. K. Dutta, R. Olah, G. Mizuno, R. Sengupta, J. H. Park, P. Wijewarnasuriya, and N. Dhar, “High efficiency solar cells based on micro-nano scale structures,” Proc. SPIE7683, 768300 (2010)

Xia, Y.

E. Kim, Y. Xia, and G. M. Whitesides, “Polymer microstructures formed by moulding in capillaries,” Nature376, 581–584 (2002).
[CrossRef]

Xu, Y.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical Absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett.9, 279–282 (2009).
[CrossRef]

Yablonovitch, E.

Yang, C.-S.

P. Yu, C.-H. Chang, C.-H. Chiu, C.-S. Yang, J.-C. Yu, H.-C. Kuo, S.-H. Hsu, and Y.-C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolumns,” Adv. Mater.21, 1618–1621 (2009).
[CrossRef]

Yeh, L.-K.

L.-K. Yeh, K.-Y. Lai, G.-J. Lin, P.-H. Fu, H.-C. Chang, C.-A. Lin, and J.-H. He, “Giant efficiency enhancement of GaAs solar cells with graded antireflection layers based on syringelike ZnO nanorod arrays,” Adv. Energy Mater.1, 506–510 (2011).
[CrossRef]

Yoon, W.-Y.

K.-S. Han, J.-H. Shin, W.-Y. Yoon, and H. Lee, “Enhanced performance of solar cells with anti-reflection layer fabricated by nano-imprint lithography,” Sol. Energy Mater. Sol. Cells95, 288–291 (2011).
[CrossRef]

Yu, J.-C.

P. Yu, C.-H. Chang, C.-H. Chiu, C.-S. Yang, J.-C. Yu, H.-C. Kuo, S.-H. Hsu, and Y.-C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolumns,” Adv. Mater.21, 1618–1621 (2009).
[CrossRef]

Yu, P.

P. Yu, C.-H. Chang, C.-H. Chiu, C.-S. Yang, J.-C. Yu, H.-C. Kuo, S.-H. Hsu, and Y.-C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolumns,” Adv. Mater.21, 1618–1621 (2009).
[CrossRef]

Yu, Z.

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. USA107, 17491–17496 (2010).
[CrossRef] [PubMed]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express18, A366–A380 (2010).
[CrossRef] [PubMed]

J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett.10, 1979–1984 (2010).
[CrossRef]

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical Absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett.9, 279–282 (2009).
[CrossRef]

Zhu, J.

J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett.10, 1979–1984 (2010).
[CrossRef]

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical Absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett.9, 279–282 (2009).
[CrossRef]

Adv. Energy Mater. (1)

L.-K. Yeh, K.-Y. Lai, G.-J. Lin, P.-H. Fu, H.-C. Chang, C.-A. Lin, and J.-H. He, “Giant efficiency enhancement of GaAs solar cells with graded antireflection layers based on syringelike ZnO nanorod arrays,” Adv. Energy Mater.1, 506–510 (2011).
[CrossRef]

Adv. Mater. (1)

P. Yu, C.-H. Chang, C.-H. Chiu, C.-S. Yang, J.-C. Yu, H.-C. Kuo, S.-H. Hsu, and Y.-C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolumns,” Adv. Mater.21, 1618–1621 (2009).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

R. Esteban, M. Laroche, and J. J. Greffet, “Dielectric gratings for wide-angle, broadband absorption by thin film photovoltaic cells,” Appl. Phys. Lett.97, 221111 (2010).
[CrossRef]

P. Sheng, A. Bloch, and R. Stepleman, “Wavelength-selective absorption enhancement in thin-film solar-cells,” Appl. Phys. Lett.43, 579–581 (1983).
[CrossRef]

Comput. Phys. Commun. (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181, 687–702 (2010).
[CrossRef]

J. Appl. Phys. (3)

P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys.62, 243–249 (1987).
[CrossRef]

G. Gomard, E. Drouard, X. Letartre, X. Meng, A. Kaminski, A. Fave, M. Lemiti, E. Garcia-Caurel, and C. Seassal, “Two-dimensional photonic crystal for absorption enhancement in hydrogenated amorphous silicon thin film solar cells,” J. Appl. Phys.108, 123102 (2010).
[CrossRef]

B. M. Kayes, H. A. Atwater, and N. S. Lewis, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells,” J. Appl. Phys.97, 114302 (2005).
[CrossRef]

J. Comput. Theor. Nanosci. (1)

L. Hu, X. Chen, and G. Chen, “Surface-plasmon enhanced near-bandgap light absorption in silicon photovoltaics,” J. Comput. Theor. Nanosci.5, 2096–2101 (2008).
[CrossRef]

J. Opt. Soc. Am. A (1)

Nano Lett. (5)

L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett.7, 3249–3252 (2007).
[CrossRef] [PubMed]

S. E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett.10, 1012–1015 (2010).
[CrossRef] [PubMed]

S. E. Han and G. Chen, “Toward the Lambertian limit of light trapping in thin nanostructured silicon solar cells,” Nano Lett.10, 4692–4696 (2010).
[CrossRef] [PubMed]

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical Absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett.9, 279–282 (2009).
[CrossRef]

J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett.10, 1979–1984 (2010).
[CrossRef]

Nat. Mater. (3)

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater.9, 239–244 (2010).
[CrossRef] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9, 205–213 (2010).
[CrossRef] [PubMed]

M. Deubel1, G. von Freymann1, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater.3, 444–447 (2004).
[CrossRef]

Nature (1)

E. Kim, Y. Xia, and G. M. Whitesides, “Polymer microstructures formed by moulding in capillaries,” Nature376, 581–584 (2002).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Proc. Natl. Acad. Sci. USA (1)

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. USA107, 17491–17496 (2010).
[CrossRef] [PubMed]

Proc. SPIE (1)

A. K. Dutta, R. Olah, G. Mizuno, R. Sengupta, J. H. Park, P. Wijewarnasuriya, and N. Dhar, “High efficiency solar cells based on micro-nano scale structures,” Proc. SPIE7683, 768300 (2010)

Prog. Photovoltaics (2)

E. A. Alsema, “Energy pay-back time and CO2 emissions of PV systems,” Prog. Photovoltaics8, 17–25 (2000).
[CrossRef]

K. Taretto and U. Rau, “Modeling extremely thin absorber solar cells for optimized design,” Prog. Photovoltaics12, 573–591 (2004).
[CrossRef]

Sol. Energy Mater. Sol. Cells (2)

K.-S. Han, J.-H. Shin, W.-Y. Yoon, and H. Lee, “Enhanced performance of solar cells with anti-reflection layer fabricated by nano-imprint lithography,” Sol. Energy Mater. Sol. Cells95, 288–291 (2011).
[CrossRef]

G. J. Bauhuis, P. Mulder, E. J. Haverkamp, J. C. C. M. Huijben, and J. J. Schermer, “26.1% thin-film GaAs solar cell using epitaxial lift-off,” Sol. Energy Mater. Sol. Cells93, 1488–1491 (2009).
[CrossRef]

Other (5)

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley, 2007).

A. Taflove and S. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method (Artech, 2000).

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

H. A. Haus, Waves and Fields in Optoelectronics (Prentice Hall, 1984).

C. Kittel, Introduction to Solid State Physics, 7th ed. (Wiley, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics