Abstract

A metal-less RXI collimator has been designed using the Simultaneous multiple surface method (SMS). Unlike conventional RXI collimators, whose back surface and parts of the front surface have to be metalized, this collimator is completely metal-free, made only of plastic (PMMA). The collimator’s back surface is designed as a grooved surface providing two TIR reflections for all rays impinging on it. One advantage of the design is the lower manufacturing cost, since there is no need for the expensive process of metalization. More importantly, unlike conventional RXI collimators, this design performs good colour mixing, as well as being very insensitive to the source non-uniformities. The experimental measurements of the first prototype show good agreement with the simulated design.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Miñano, J. C. Gonźlez, and P. Benítez, “RXI: a high-gain, compact, nonimaging concentrator,” Appl. Opt.34(34), 7850–7856 (1995).
    [CrossRef] [PubMed]
  2. F. Muñoz, Sistemas ópticos avanzados de gran compactibilidad con aplicaciones en formación de imagen y en iluminación, (Thesis Doctoral, E.T.S.I.Telecomunicación, Madrid, 2004)
  3. F. Muñoz, P. Benítez, O. Dross, J. C. Miñano, and B. Parkyn, “Simultaneous multiple surface design of compact air-gap collimators for light-emitting diodes,” Opt. Eng.43(7), 1522–1530 (2004).
    [CrossRef]
  4. R. Winston, J. C. Miñano, and P. Benítez, with contributions of N. Shatz and J. Bortz, Nonimaging Optics, (Elsevier, Academic Press, 2004)
  5. D. Grabovičkić, P. Benítez, and J. C. Miñano, “Free-form V-groove reflector design with the SMS method in three dimensions,” Opt. Express19(S4Suppl 4), A747–A756 (2011).
    [CrossRef] [PubMed]
  6. Synopsys software package LightTools, http://www.opticalres.com/
  7. P. Benítez, J. C. Miñano, and A. Santamaría, “Analysis of microstructured surfaces in two dimensions,” Opt. Express14(19), 8561–8567 (2006).
    [CrossRef] [PubMed]
  8. P. Benítez, J. C. Miñano, A. Santamaría, and M. Hernández, “On the analysis of rotational symmetric microstructured surfaces,” Opt. Express15(5), 2219–2233 (2007).
    [CrossRef] [PubMed]

2011 (1)

2007 (1)

2006 (1)

2004 (1)

F. Muñoz, P. Benítez, O. Dross, J. C. Miñano, and B. Parkyn, “Simultaneous multiple surface design of compact air-gap collimators for light-emitting diodes,” Opt. Eng.43(7), 1522–1530 (2004).
[CrossRef]

1995 (1)

Benítez, P.

Dross, O.

F. Muñoz, P. Benítez, O. Dross, J. C. Miñano, and B. Parkyn, “Simultaneous multiple surface design of compact air-gap collimators for light-emitting diodes,” Opt. Eng.43(7), 1522–1530 (2004).
[CrossRef]

Gonzlez, J. C.

Grabovickic, D.

Hernández, M.

Miñano, J. C.

Muñoz, F.

F. Muñoz, P. Benítez, O. Dross, J. C. Miñano, and B. Parkyn, “Simultaneous multiple surface design of compact air-gap collimators for light-emitting diodes,” Opt. Eng.43(7), 1522–1530 (2004).
[CrossRef]

Parkyn, B.

F. Muñoz, P. Benítez, O. Dross, J. C. Miñano, and B. Parkyn, “Simultaneous multiple surface design of compact air-gap collimators for light-emitting diodes,” Opt. Eng.43(7), 1522–1530 (2004).
[CrossRef]

Santamaría, A.

Appl. Opt. (1)

Opt. Eng. (1)

F. Muñoz, P. Benítez, O. Dross, J. C. Miñano, and B. Parkyn, “Simultaneous multiple surface design of compact air-gap collimators for light-emitting diodes,” Opt. Eng.43(7), 1522–1530 (2004).
[CrossRef]

Opt. Express (3)

Other (3)

Synopsys software package LightTools, http://www.opticalres.com/

R. Winston, J. C. Miñano, and P. Benítez, with contributions of N. Shatz and J. Bortz, Nonimaging Optics, (Elsevier, Academic Press, 2004)

F. Muñoz, Sistemas ópticos avanzados de gran compactibilidad con aplicaciones en formación de imagen y en iluminación, (Thesis Doctoral, E.T.S.I.Telecomunicación, Madrid, 2004)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Existing designs (a) RXI collimator, (b) RIXR collimator.

Fig. 2
Fig. 2

Metal-less TIR RXI (a) Cross section (b) 3D View with the rays traced in LightTools.

Fig. 3
Fig. 3

2D design procedure. Initial conditions.

Fig. 4
Fig. 4

Calculation of the 2D design using the SMS method.

Fig. 5
Fig. 5

Grooved surface substitute for the RIXR back surface.

Fig. 6
Fig. 6

(a) Free-form groove, (b) Flat V-groove. The cross section is a 90° corner (the line in red).

Fig. 7
Fig. 7

TIR RXI model for manufacture with XP-G Cree LED.

Fig. 8
Fig. 8

Far field pattern for TIR RXI obtained in LightTools.

Fig. 9
Fig. 9

(a) Intensity distributions for two designs, the TIR RXI (in red) and the RIXR (in blue). (b) 2D Far field pattern for the RIXR design.

Fig. 10
Fig. 10

Set up for LightTools colour mixing simulation.

Fig. 11
Fig. 11

Colour mixing, real colour far field patterns a) RIXR b) metal-less TIR RXI collimator.

Fig. 12
Fig. 12

LightTools real colour far field patterns (a) RIXR with four cool white LEDs, (b) TIR RXI with four cool white LEDs, (c) RIXR when one LED is turned off, (d) TIR RXI when one LED is turned off.

Fig. 13
Fig. 13

On axis intensity distributions normalized to the maximum value for the TIR RXI with four cool white LEDs. All the LEDs are turned on (the curve in blue). One of the LEDs is turned off (the curve in red).

Fig. 14
Fig. 14

Metal-less TIR RXI collimator. Manufactured prototype.

Fig. 15
Fig. 15

Fixture of the TIR RXI collimator and the LEd. a) The LED is off, b) The LED is on.

Fig. 16
Fig. 16

Experimentally measured far field intensity distribution (for the input power of 1 lm).

Metrics