Abstract

Using Au bowtie nanoantennas arrays (BNAs), we demonstrate that the performance and capability of plasmonic nanotweezers is strongly influenced by both the material comprising the thin adhesion layer used to fix Au to a glass substrate and the nanostructure orientation with respect to incident illumination. We find that a Ti adhesion layer provides up to 30% larger trap stiffness and efficiency compared to a Cr layer of equal thickness. Orientation causes the BNAs to operate as either (1) a 2D optical trap capable of efficient trapping and manipulation of particles as small as 300 nm in diameter, or (2) a quasi-3D trap, with the additional capacity for size-dependent particle sorting utilizing axial Rayleigh-Bénard convection currents caused by heat generation. We show that heat generation is not necessarily deleterious to plasmonic nanotweezers and achieve dexterous manipulation of nanoparticles with non-resonant illumination of BNAs.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5, 349–356 (2011).
    [CrossRef]
  2. J. S. Donner, G. Baffou, D. McCloskey, and R. Quidant, “Plasmon-assisted optofluidics,” ACS Nano 5, 5457–5462 (2011).
    [CrossRef] [PubMed]
  3. R. Alvarez-Puebla, L. M. Liz-Marzan, and F. J. Garcia de Abajo, “Light concentration at the nanometer scale,” J. Phys. Chem. Lett. 1, 2428–2434 (2010).
    [CrossRef]
  4. E. Cubukcu, N. Yu, E. J. Smythe, L. Diehl, K. B. Crozier, and F. Capasso, “Plasmonic laser antennas and related devices,” IEEE J. Sel. Top. Quantum Electron. 14, 1448–1461 (2008).
    [CrossRef]
  5. W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10, 1006–1011 (2010).
    [CrossRef] [PubMed]
  6. M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nature Phys. 3, 477–480 (2007).
    [CrossRef]
  7. M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. Garcia de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9, 3387–3391 (2009).
    [CrossRef] [PubMed]
  8. A. Lovera and O. J. F. Martin, “Plasmonic trapping with realistic dipole antennas: Analysis of the detection limit,” Appl. Phys. Lett. 99, 151104 (2011).
    [CrossRef]
  9. A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2, 365–370 (2008).
    [CrossRef]
  10. A. Cuche, O. Mahboub, E. Devaux, C. Genet, and T. W. Ebbesen, “Plasmonic coherent drive of an optical trap,” Phys. Rev. Lett. 108, 026801 (2012).
    [CrossRef] [PubMed]
  11. K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2, 1–6 (2011).
    [CrossRef]
  12. Y. Tanaka and K. Sasaki, “Efficient optical trapping using small arrays of plasmonic nanoblock pairs,” Appl. Phys. Lett. 100, 021102 (2012).
    [CrossRef]
  13. B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. Liu, N. X. Fang, and K. C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12, 796–801 (2012).
    [CrossRef] [PubMed]
  14. X. Miao and Y. L. Lin, “Trapping and manipulation of biological particles through a plasmonic platform,” IEEE J. Sel. Top. Quantum Electron. 13, 1655–1662 (2007).
    [CrossRef]
  15. L. Huang, S. J. Maerkl, and O. J. F. Martin, “Integration of plasmonic trapping in a microfluidic environment,” Opt. Express 17, 6018–6024 (2009).
    [CrossRef] [PubMed]
  16. X. Jiao, J. Goeckeritz, S. Blair, and M. Oldham, “Localization of near-field resonances in bowtie antennae: Influence of adhesion layers,” Plasmonics 4, 37–50 (2009).
    [CrossRef]
  17. H. Aouani, J. Wenger, D. Gerard, H. Rigneault, E. Devaux, T. W. Ebbesen, F. Mahdavi, T. Xu, and S. Blair, “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano 3, 2043–2048 (2009).
    [CrossRef] [PubMed]
  18. J. H. Kang, K. Kim, H. S. Ee, Y. H. Lee, T. Y. Yoon, M. K. Seo, and H. G. Park, “Low-power nano-optical vortex trapping via plasmonic diabolo nanoantennas,” Nat. Commun. 2, 1–6 (2011).
    [CrossRef]
  19. K. Wang, E. Schonbrun, P. Steinvurzel, and K. Crozier, “Scannable plasmonic trapping using a gold stripe,” Nano Lett. 10, 3506–3511 (2010).
    [CrossRef] [PubMed]
  20. V. Garces-Chavez, R. Quidant, P. J. Reece, G. Badenes, L. Torner, and K. Dholakia, “Extended organization of colloidal microparticles by surface plasmon polariton excitation,” Phys. Rev. B 73, 085417 (2006).
    [CrossRef]
  21. M. Ploschner, M. Mazilu, T. F. Krauss, and K. Dholakia, “Optical forces near a nanoantenna,” J. Nanophoton.  4, 041570 (2010).
    [CrossRef]
  22. A. V. Getling, Rayleigh-Bénard Convection: Structures and Dynamics (World Scientific Publishing, 1998).
    [PubMed]
  23. R. T. Schermer, C. C. Olson, J. P. Coleman, and F. Bucholtz, “Laser-induced thermophoresis of individual particles in a viscous liquid,” Opt. Express 19, 10571–10586 (2011).
    [CrossRef] [PubMed]
  24. N. Harris, J. J. Ford, and M. B. Cortie, “Optimization of plasmonic heating by gold nanospheres and nanoshells,” J. Phys. Chem. B 110, 10701–10707 (2006).
    [CrossRef] [PubMed]
  25. G. Baffou, R. Quidant, and C. Girard, “Thermoplasmonics modeling: A Green’s function approach,” Phys. Rev. B 82, 165424 (2010).
    [CrossRef]
  26. G. Baffou and H. Rigneault, “Femtosecond-pulsed optical heating of gold nanoparticles,” Phys. Rev. B 84, 035415 (2011).
    [CrossRef]
  27. K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
    [CrossRef]
  28. A. Rorhbach, “Stiffness of optical traps: Quantitative agreement between experiment and theory,” Phys. Rev. Lett. 95, 168102 (2005).
    [CrossRef]
  29. N. Malagnino, G. Pesce, A. Sasso, and E. Arimondo, “Measurements of trapping efficiency and stiffness in optical tweezers,” Opt. Comm. 214, 15–24 (2002).
    [CrossRef]
  30. R. F. Marchington, M. Mazilu, S. Kuriakose, V. Garces-Chavez, P. J. Reece, T. F. Krauss, M. Gu, and K. Dholakia, “Optical deflection and sorting of microparticles in a near-field optical geometry,” Opt. Express 16, 3712–3726 (2008).
    [CrossRef] [PubMed]

2012

A. Cuche, O. Mahboub, E. Devaux, C. Genet, and T. W. Ebbesen, “Plasmonic coherent drive of an optical trap,” Phys. Rev. Lett. 108, 026801 (2012).
[CrossRef] [PubMed]

Y. Tanaka and K. Sasaki, “Efficient optical trapping using small arrays of plasmonic nanoblock pairs,” Appl. Phys. Lett. 100, 021102 (2012).
[CrossRef]

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. Liu, N. X. Fang, and K. C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12, 796–801 (2012).
[CrossRef] [PubMed]

2011

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2, 1–6 (2011).
[CrossRef]

J. H. Kang, K. Kim, H. S. Ee, Y. H. Lee, T. Y. Yoon, M. K. Seo, and H. G. Park, “Low-power nano-optical vortex trapping via plasmonic diabolo nanoantennas,” Nat. Commun. 2, 1–6 (2011).
[CrossRef]

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5, 349–356 (2011).
[CrossRef]

J. S. Donner, G. Baffou, D. McCloskey, and R. Quidant, “Plasmon-assisted optofluidics,” ACS Nano 5, 5457–5462 (2011).
[CrossRef] [PubMed]

A. Lovera and O. J. F. Martin, “Plasmonic trapping with realistic dipole antennas: Analysis of the detection limit,” Appl. Phys. Lett. 99, 151104 (2011).
[CrossRef]

R. T. Schermer, C. C. Olson, J. P. Coleman, and F. Bucholtz, “Laser-induced thermophoresis of individual particles in a viscous liquid,” Opt. Express 19, 10571–10586 (2011).
[CrossRef] [PubMed]

G. Baffou and H. Rigneault, “Femtosecond-pulsed optical heating of gold nanoparticles,” Phys. Rev. B 84, 035415 (2011).
[CrossRef]

2010

M. Ploschner, M. Mazilu, T. F. Krauss, and K. Dholakia, “Optical forces near a nanoantenna,” J. Nanophoton.  4, 041570 (2010).
[CrossRef]

G. Baffou, R. Quidant, and C. Girard, “Thermoplasmonics modeling: A Green’s function approach,” Phys. Rev. B 82, 165424 (2010).
[CrossRef]

W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10, 1006–1011 (2010).
[CrossRef] [PubMed]

R. Alvarez-Puebla, L. M. Liz-Marzan, and F. J. Garcia de Abajo, “Light concentration at the nanometer scale,” J. Phys. Chem. Lett. 1, 2428–2434 (2010).
[CrossRef]

K. Wang, E. Schonbrun, P. Steinvurzel, and K. Crozier, “Scannable plasmonic trapping using a gold stripe,” Nano Lett. 10, 3506–3511 (2010).
[CrossRef] [PubMed]

2009

L. Huang, S. J. Maerkl, and O. J. F. Martin, “Integration of plasmonic trapping in a microfluidic environment,” Opt. Express 17, 6018–6024 (2009).
[CrossRef] [PubMed]

X. Jiao, J. Goeckeritz, S. Blair, and M. Oldham, “Localization of near-field resonances in bowtie antennae: Influence of adhesion layers,” Plasmonics 4, 37–50 (2009).
[CrossRef]

H. Aouani, J. Wenger, D. Gerard, H. Rigneault, E. Devaux, T. W. Ebbesen, F. Mahdavi, T. Xu, and S. Blair, “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano 3, 2043–2048 (2009).
[CrossRef] [PubMed]

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. Garcia de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9, 3387–3391 (2009).
[CrossRef] [PubMed]

2008

R. F. Marchington, M. Mazilu, S. Kuriakose, V. Garces-Chavez, P. J. Reece, T. F. Krauss, M. Gu, and K. Dholakia, “Optical deflection and sorting of microparticles in a near-field optical geometry,” Opt. Express 16, 3712–3726 (2008).
[CrossRef] [PubMed]

E. Cubukcu, N. Yu, E. J. Smythe, L. Diehl, K. B. Crozier, and F. Capasso, “Plasmonic laser antennas and related devices,” IEEE J. Sel. Top. Quantum Electron. 14, 1448–1461 (2008).
[CrossRef]

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2, 365–370 (2008).
[CrossRef]

2007

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nature Phys. 3, 477–480 (2007).
[CrossRef]

X. Miao and Y. L. Lin, “Trapping and manipulation of biological particles through a plasmonic platform,” IEEE J. Sel. Top. Quantum Electron. 13, 1655–1662 (2007).
[CrossRef]

2006

V. Garces-Chavez, R. Quidant, P. J. Reece, G. Badenes, L. Torner, and K. Dholakia, “Extended organization of colloidal microparticles by surface plasmon polariton excitation,” Phys. Rev. B 73, 085417 (2006).
[CrossRef]

N. Harris, J. J. Ford, and M. B. Cortie, “Optimization of plasmonic heating by gold nanospheres and nanoshells,” J. Phys. Chem. B 110, 10701–10707 (2006).
[CrossRef] [PubMed]

2005

A. Rorhbach, “Stiffness of optical traps: Quantitative agreement between experiment and theory,” Phys. Rev. Lett. 95, 168102 (2005).
[CrossRef]

2004

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
[CrossRef]

2002

N. Malagnino, G. Pesce, A. Sasso, and E. Arimondo, “Measurements of trapping efficiency and stiffness in optical tweezers,” Opt. Comm. 214, 15–24 (2002).
[CrossRef]

Alvarez-Puebla, R.

R. Alvarez-Puebla, L. M. Liz-Marzan, and F. J. Garcia de Abajo, “Light concentration at the nanometer scale,” J. Phys. Chem. Lett. 1, 2428–2434 (2010).
[CrossRef]

Aouani, H.

H. Aouani, J. Wenger, D. Gerard, H. Rigneault, E. Devaux, T. W. Ebbesen, F. Mahdavi, T. Xu, and S. Blair, “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano 3, 2043–2048 (2009).
[CrossRef] [PubMed]

Arimondo, E.

N. Malagnino, G. Pesce, A. Sasso, and E. Arimondo, “Measurements of trapping efficiency and stiffness in optical tweezers,” Opt. Comm. 214, 15–24 (2002).
[CrossRef]

Badenes, G.

V. Garces-Chavez, R. Quidant, P. J. Reece, G. Badenes, L. Torner, and K. Dholakia, “Extended organization of colloidal microparticles by surface plasmon polariton excitation,” Phys. Rev. B 73, 085417 (2006).
[CrossRef]

Baffou, G.

G. Baffou and H. Rigneault, “Femtosecond-pulsed optical heating of gold nanoparticles,” Phys. Rev. B 84, 035415 (2011).
[CrossRef]

J. S. Donner, G. Baffou, D. McCloskey, and R. Quidant, “Plasmon-assisted optofluidics,” ACS Nano 5, 5457–5462 (2011).
[CrossRef] [PubMed]

G. Baffou, R. Quidant, and C. Girard, “Thermoplasmonics modeling: A Green’s function approach,” Phys. Rev. B 82, 165424 (2010).
[CrossRef]

Blair, S.

X. Jiao, J. Goeckeritz, S. Blair, and M. Oldham, “Localization of near-field resonances in bowtie antennae: Influence of adhesion layers,” Plasmonics 4, 37–50 (2009).
[CrossRef]

H. Aouani, J. Wenger, D. Gerard, H. Rigneault, E. Devaux, T. W. Ebbesen, F. Mahdavi, T. Xu, and S. Blair, “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano 3, 2043–2048 (2009).
[CrossRef] [PubMed]

Block, S. M.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
[CrossRef]

Bucholtz, F.

Capasso, F.

E. Cubukcu, N. Yu, E. J. Smythe, L. Diehl, K. B. Crozier, and F. Capasso, “Plasmonic laser antennas and related devices,” IEEE J. Sel. Top. Quantum Electron. 14, 1448–1461 (2008).
[CrossRef]

Cherukulappurath, S.

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. Garcia de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9, 3387–3391 (2009).
[CrossRef] [PubMed]

Chow, E. K. C.

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. Liu, N. X. Fang, and K. C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12, 796–801 (2012).
[CrossRef] [PubMed]

Coleman, J. P.

Cortie, M. B.

N. Harris, J. J. Ford, and M. B. Cortie, “Optimization of plasmonic heating by gold nanospheres and nanoshells,” J. Phys. Chem. B 110, 10701–10707 (2006).
[CrossRef] [PubMed]

Crozier, K.

K. Wang, E. Schonbrun, P. Steinvurzel, and K. Crozier, “Scannable plasmonic trapping using a gold stripe,” Nano Lett. 10, 3506–3511 (2010).
[CrossRef] [PubMed]

Crozier, K. B.

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2, 1–6 (2011).
[CrossRef]

E. Cubukcu, N. Yu, E. J. Smythe, L. Diehl, K. B. Crozier, and F. Capasso, “Plasmonic laser antennas and related devices,” IEEE J. Sel. Top. Quantum Electron. 14, 1448–1461 (2008).
[CrossRef]

Cubukcu, E.

E. Cubukcu, N. Yu, E. J. Smythe, L. Diehl, K. B. Crozier, and F. Capasso, “Plasmonic laser antennas and related devices,” IEEE J. Sel. Top. Quantum Electron. 14, 1448–1461 (2008).
[CrossRef]

Cuche, A.

A. Cuche, O. Mahboub, E. Devaux, C. Genet, and T. W. Ebbesen, “Plasmonic coherent drive of an optical trap,” Phys. Rev. Lett. 108, 026801 (2012).
[CrossRef] [PubMed]

Devaux, E.

A. Cuche, O. Mahboub, E. Devaux, C. Genet, and T. W. Ebbesen, “Plasmonic coherent drive of an optical trap,” Phys. Rev. Lett. 108, 026801 (2012).
[CrossRef] [PubMed]

H. Aouani, J. Wenger, D. Gerard, H. Rigneault, E. Devaux, T. W. Ebbesen, F. Mahdavi, T. Xu, and S. Blair, “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano 3, 2043–2048 (2009).
[CrossRef] [PubMed]

Dholakia, K.

M. Ploschner, M. Mazilu, T. F. Krauss, and K. Dholakia, “Optical forces near a nanoantenna,” J. Nanophoton.  4, 041570 (2010).
[CrossRef]

R. F. Marchington, M. Mazilu, S. Kuriakose, V. Garces-Chavez, P. J. Reece, T. F. Krauss, M. Gu, and K. Dholakia, “Optical deflection and sorting of microparticles in a near-field optical geometry,” Opt. Express 16, 3712–3726 (2008).
[CrossRef] [PubMed]

V. Garces-Chavez, R. Quidant, P. J. Reece, G. Badenes, L. Torner, and K. Dholakia, “Extended organization of colloidal microparticles by surface plasmon polariton excitation,” Phys. Rev. B 73, 085417 (2006).
[CrossRef]

Dickinson, M. R.

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2, 365–370 (2008).
[CrossRef]

Diehl, L.

E. Cubukcu, N. Yu, E. J. Smythe, L. Diehl, K. B. Crozier, and F. Capasso, “Plasmonic laser antennas and related devices,” IEEE J. Sel. Top. Quantum Electron. 14, 1448–1461 (2008).
[CrossRef]

Donner, J. S.

J. S. Donner, G. Baffou, D. McCloskey, and R. Quidant, “Plasmon-assisted optofluidics,” ACS Nano 5, 5457–5462 (2011).
[CrossRef] [PubMed]

Ebbesen, T. W.

A. Cuche, O. Mahboub, E. Devaux, C. Genet, and T. W. Ebbesen, “Plasmonic coherent drive of an optical trap,” Phys. Rev. Lett. 108, 026801 (2012).
[CrossRef] [PubMed]

H. Aouani, J. Wenger, D. Gerard, H. Rigneault, E. Devaux, T. W. Ebbesen, F. Mahdavi, T. Xu, and S. Blair, “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano 3, 2043–2048 (2009).
[CrossRef] [PubMed]

Ee, H. S.

J. H. Kang, K. Kim, H. S. Ee, Y. H. Lee, T. Y. Yoon, M. K. Seo, and H. G. Park, “Low-power nano-optical vortex trapping via plasmonic diabolo nanoantennas,” Nat. Commun. 2, 1–6 (2011).
[CrossRef]

Fang, N. X.

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. Liu, N. X. Fang, and K. C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12, 796–801 (2012).
[CrossRef] [PubMed]

Ford, J. J.

N. Harris, J. J. Ford, and M. B. Cortie, “Optimization of plasmonic heating by gold nanospheres and nanoshells,” J. Phys. Chem. B 110, 10701–10707 (2006).
[CrossRef] [PubMed]

Fung, K. H.

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. Liu, N. X. Fang, and K. C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12, 796–801 (2012).
[CrossRef] [PubMed]

Garces-Chavez, V.

R. F. Marchington, M. Mazilu, S. Kuriakose, V. Garces-Chavez, P. J. Reece, T. F. Krauss, M. Gu, and K. Dholakia, “Optical deflection and sorting of microparticles in a near-field optical geometry,” Opt. Express 16, 3712–3726 (2008).
[CrossRef] [PubMed]

V. Garces-Chavez, R. Quidant, P. J. Reece, G. Badenes, L. Torner, and K. Dholakia, “Extended organization of colloidal microparticles by surface plasmon polariton excitation,” Phys. Rev. B 73, 085417 (2006).
[CrossRef]

Garcia de Abajo, F. J.

R. Alvarez-Puebla, L. M. Liz-Marzan, and F. J. Garcia de Abajo, “Light concentration at the nanometer scale,” J. Phys. Chem. Lett. 1, 2428–2434 (2010).
[CrossRef]

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. Garcia de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9, 3387–3391 (2009).
[CrossRef] [PubMed]

Genet, C.

A. Cuche, O. Mahboub, E. Devaux, C. Genet, and T. W. Ebbesen, “Plasmonic coherent drive of an optical trap,” Phys. Rev. Lett. 108, 026801 (2012).
[CrossRef] [PubMed]

Gerard, D.

H. Aouani, J. Wenger, D. Gerard, H. Rigneault, E. Devaux, T. W. Ebbesen, F. Mahdavi, T. Xu, and S. Blair, “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano 3, 2043–2048 (2009).
[CrossRef] [PubMed]

Getling, A. V.

A. V. Getling, Rayleigh-Bénard Convection: Structures and Dynamics (World Scientific Publishing, 1998).
[PubMed]

Ghenuche, P.

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. Garcia de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9, 3387–3391 (2009).
[CrossRef] [PubMed]

Girard, C.

G. Baffou, R. Quidant, and C. Girard, “Thermoplasmonics modeling: A Green’s function approach,” Phys. Rev. B 82, 165424 (2010).
[CrossRef]

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nature Phys. 3, 477–480 (2007).
[CrossRef]

Goeckeritz, J.

X. Jiao, J. Goeckeritz, S. Blair, and M. Oldham, “Localization of near-field resonances in bowtie antennae: Influence of adhesion layers,” Plasmonics 4, 37–50 (2009).
[CrossRef]

Grigorenko, A. N.

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2, 365–370 (2008).
[CrossRef]

Gu, M.

Harris, N.

N. Harris, J. J. Ford, and M. B. Cortie, “Optimization of plasmonic heating by gold nanospheres and nanoshells,” J. Phys. Chem. B 110, 10701–10707 (2006).
[CrossRef] [PubMed]

Huang, L.

W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10, 1006–1011 (2010).
[CrossRef] [PubMed]

L. Huang, S. J. Maerkl, and O. J. F. Martin, “Integration of plasmonic trapping in a microfluidic environment,” Opt. Express 17, 6018–6024 (2009).
[CrossRef] [PubMed]

Jiao, X.

X. Jiao, J. Goeckeritz, S. Blair, and M. Oldham, “Localization of near-field resonances in bowtie antennae: Influence of adhesion layers,” Plasmonics 4, 37–50 (2009).
[CrossRef]

Juan, M. L.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5, 349–356 (2011).
[CrossRef]

Kang, J. H.

J. H. Kang, K. Kim, H. S. Ee, Y. H. Lee, T. Y. Yoon, M. K. Seo, and H. G. Park, “Low-power nano-optical vortex trapping via plasmonic diabolo nanoantennas,” Nat. Commun. 2, 1–6 (2011).
[CrossRef]

Kim, K.

J. H. Kang, K. Kim, H. S. Ee, Y. H. Lee, T. Y. Yoon, M. K. Seo, and H. G. Park, “Low-power nano-optical vortex trapping via plasmonic diabolo nanoantennas,” Nat. Commun. 2, 1–6 (2011).
[CrossRef]

Ko, K. D.

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. Liu, N. X. Fang, and K. C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12, 796–801 (2012).
[CrossRef] [PubMed]

Krauss, T. F.

Kumar, A.

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. Liu, N. X. Fang, and K. C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12, 796–801 (2012).
[CrossRef] [PubMed]

Kuriakose, S.

Lee, Y. H.

J. H. Kang, K. Kim, H. S. Ee, Y. H. Lee, T. Y. Yoon, M. K. Seo, and H. G. Park, “Low-power nano-optical vortex trapping via plasmonic diabolo nanoantennas,” Nat. Commun. 2, 1–6 (2011).
[CrossRef]

Lin, Y. L.

X. Miao and Y. L. Lin, “Trapping and manipulation of biological particles through a plasmonic platform,” IEEE J. Sel. Top. Quantum Electron. 13, 1655–1662 (2007).
[CrossRef]

Liu, G.

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. Liu, N. X. Fang, and K. C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12, 796–801 (2012).
[CrossRef] [PubMed]

Liz-Marzan, L. M.

R. Alvarez-Puebla, L. M. Liz-Marzan, and F. J. Garcia de Abajo, “Light concentration at the nanometer scale,” J. Phys. Chem. Lett. 1, 2428–2434 (2010).
[CrossRef]

Lovera, A.

A. Lovera and O. J. F. Martin, “Plasmonic trapping with realistic dipole antennas: Analysis of the detection limit,” Appl. Phys. Lett. 99, 151104 (2011).
[CrossRef]

Maerkl, S. J.

Mahboub, O.

A. Cuche, O. Mahboub, E. Devaux, C. Genet, and T. W. Ebbesen, “Plasmonic coherent drive of an optical trap,” Phys. Rev. Lett. 108, 026801 (2012).
[CrossRef] [PubMed]

Mahdavi, F.

H. Aouani, J. Wenger, D. Gerard, H. Rigneault, E. Devaux, T. W. Ebbesen, F. Mahdavi, T. Xu, and S. Blair, “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano 3, 2043–2048 (2009).
[CrossRef] [PubMed]

Malagnino, N.

N. Malagnino, G. Pesce, A. Sasso, and E. Arimondo, “Measurements of trapping efficiency and stiffness in optical tweezers,” Opt. Comm. 214, 15–24 (2002).
[CrossRef]

Marchington, R. F.

Martin, O. J. F.

A. Lovera and O. J. F. Martin, “Plasmonic trapping with realistic dipole antennas: Analysis of the detection limit,” Appl. Phys. Lett. 99, 151104 (2011).
[CrossRef]

W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10, 1006–1011 (2010).
[CrossRef] [PubMed]

L. Huang, S. J. Maerkl, and O. J. F. Martin, “Integration of plasmonic trapping in a microfluidic environment,” Opt. Express 17, 6018–6024 (2009).
[CrossRef] [PubMed]

Mazilu, M.

McCloskey, D.

J. S. Donner, G. Baffou, D. McCloskey, and R. Quidant, “Plasmon-assisted optofluidics,” ACS Nano 5, 5457–5462 (2011).
[CrossRef] [PubMed]

Miao, X.

X. Miao and Y. L. Lin, “Trapping and manipulation of biological particles through a plasmonic platform,” IEEE J. Sel. Top. Quantum Electron. 13, 1655–1662 (2007).
[CrossRef]

Myroshnychenko, V.

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. Garcia de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9, 3387–3391 (2009).
[CrossRef] [PubMed]

Neuman, K. C.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
[CrossRef]

Oldham, M.

X. Jiao, J. Goeckeritz, S. Blair, and M. Oldham, “Localization of near-field resonances in bowtie antennae: Influence of adhesion layers,” Plasmonics 4, 37–50 (2009).
[CrossRef]

Olson, C. C.

Park, H. G.

J. H. Kang, K. Kim, H. S. Ee, Y. H. Lee, T. Y. Yoon, M. K. Seo, and H. G. Park, “Low-power nano-optical vortex trapping via plasmonic diabolo nanoantennas,” Nat. Commun. 2, 1–6 (2011).
[CrossRef]

Pesce, G.

N. Malagnino, G. Pesce, A. Sasso, and E. Arimondo, “Measurements of trapping efficiency and stiffness in optical tweezers,” Opt. Comm. 214, 15–24 (2002).
[CrossRef]

Ploschner, M.

M. Ploschner, M. Mazilu, T. F. Krauss, and K. Dholakia, “Optical forces near a nanoantenna,” J. Nanophoton.  4, 041570 (2010).
[CrossRef]

Quidant, R.

J. S. Donner, G. Baffou, D. McCloskey, and R. Quidant, “Plasmon-assisted optofluidics,” ACS Nano 5, 5457–5462 (2011).
[CrossRef] [PubMed]

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5, 349–356 (2011).
[CrossRef]

G. Baffou, R. Quidant, and C. Girard, “Thermoplasmonics modeling: A Green’s function approach,” Phys. Rev. B 82, 165424 (2010).
[CrossRef]

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. Garcia de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9, 3387–3391 (2009).
[CrossRef] [PubMed]

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nature Phys. 3, 477–480 (2007).
[CrossRef]

V. Garces-Chavez, R. Quidant, P. J. Reece, G. Badenes, L. Torner, and K. Dholakia, “Extended organization of colloidal microparticles by surface plasmon polariton excitation,” Phys. Rev. B 73, 085417 (2006).
[CrossRef]

Reece, P. J.

R. F. Marchington, M. Mazilu, S. Kuriakose, V. Garces-Chavez, P. J. Reece, T. F. Krauss, M. Gu, and K. Dholakia, “Optical deflection and sorting of microparticles in a near-field optical geometry,” Opt. Express 16, 3712–3726 (2008).
[CrossRef] [PubMed]

V. Garces-Chavez, R. Quidant, P. J. Reece, G. Badenes, L. Torner, and K. Dholakia, “Extended organization of colloidal microparticles by surface plasmon polariton excitation,” Phys. Rev. B 73, 085417 (2006).
[CrossRef]

Righini, M.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5, 349–356 (2011).
[CrossRef]

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. Garcia de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9, 3387–3391 (2009).
[CrossRef] [PubMed]

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nature Phys. 3, 477–480 (2007).
[CrossRef]

Rigneault, H.

G. Baffou and H. Rigneault, “Femtosecond-pulsed optical heating of gold nanoparticles,” Phys. Rev. B 84, 035415 (2011).
[CrossRef]

H. Aouani, J. Wenger, D. Gerard, H. Rigneault, E. Devaux, T. W. Ebbesen, F. Mahdavi, T. Xu, and S. Blair, “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano 3, 2043–2048 (2009).
[CrossRef] [PubMed]

Roberts, N. W.

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2, 365–370 (2008).
[CrossRef]

Rorhbach, A.

A. Rorhbach, “Stiffness of optical traps: Quantitative agreement between experiment and theory,” Phys. Rev. Lett. 95, 168102 (2005).
[CrossRef]

Roxworthy, B. J.

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. Liu, N. X. Fang, and K. C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12, 796–801 (2012).
[CrossRef] [PubMed]

Santschi, C.

W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10, 1006–1011 (2010).
[CrossRef] [PubMed]

Sasaki, K.

Y. Tanaka and K. Sasaki, “Efficient optical trapping using small arrays of plasmonic nanoblock pairs,” Appl. Phys. Lett. 100, 021102 (2012).
[CrossRef]

Sasso, A.

N. Malagnino, G. Pesce, A. Sasso, and E. Arimondo, “Measurements of trapping efficiency and stiffness in optical tweezers,” Opt. Comm. 214, 15–24 (2002).
[CrossRef]

Schermer, R. T.

Schonbrun, E.

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2, 1–6 (2011).
[CrossRef]

K. Wang, E. Schonbrun, P. Steinvurzel, and K. Crozier, “Scannable plasmonic trapping using a gold stripe,” Nano Lett. 10, 3506–3511 (2010).
[CrossRef] [PubMed]

Seo, M. K.

J. H. Kang, K. Kim, H. S. Ee, Y. H. Lee, T. Y. Yoon, M. K. Seo, and H. G. Park, “Low-power nano-optical vortex trapping via plasmonic diabolo nanoantennas,” Nat. Commun. 2, 1–6 (2011).
[CrossRef]

Smythe, E. J.

E. Cubukcu, N. Yu, E. J. Smythe, L. Diehl, K. B. Crozier, and F. Capasso, “Plasmonic laser antennas and related devices,” IEEE J. Sel. Top. Quantum Electron. 14, 1448–1461 (2008).
[CrossRef]

Steinvurzel, P.

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2, 1–6 (2011).
[CrossRef]

K. Wang, E. Schonbrun, P. Steinvurzel, and K. Crozier, “Scannable plasmonic trapping using a gold stripe,” Nano Lett. 10, 3506–3511 (2010).
[CrossRef] [PubMed]

Tanaka, Y.

Y. Tanaka and K. Sasaki, “Efficient optical trapping using small arrays of plasmonic nanoblock pairs,” Appl. Phys. Lett. 100, 021102 (2012).
[CrossRef]

Torner, L.

V. Garces-Chavez, R. Quidant, P. J. Reece, G. Badenes, L. Torner, and K. Dholakia, “Extended organization of colloidal microparticles by surface plasmon polariton excitation,” Phys. Rev. B 73, 085417 (2006).
[CrossRef]

Toussaint, K. C.

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. Liu, N. X. Fang, and K. C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12, 796–801 (2012).
[CrossRef] [PubMed]

Wang, K.

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2, 1–6 (2011).
[CrossRef]

K. Wang, E. Schonbrun, P. Steinvurzel, and K. Crozier, “Scannable plasmonic trapping using a gold stripe,” Nano Lett. 10, 3506–3511 (2010).
[CrossRef] [PubMed]

Wenger, J.

H. Aouani, J. Wenger, D. Gerard, H. Rigneault, E. Devaux, T. W. Ebbesen, F. Mahdavi, T. Xu, and S. Blair, “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano 3, 2043–2048 (2009).
[CrossRef] [PubMed]

Xu, T.

H. Aouani, J. Wenger, D. Gerard, H. Rigneault, E. Devaux, T. W. Ebbesen, F. Mahdavi, T. Xu, and S. Blair, “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano 3, 2043–2048 (2009).
[CrossRef] [PubMed]

Yoon, T. Y.

J. H. Kang, K. Kim, H. S. Ee, Y. H. Lee, T. Y. Yoon, M. K. Seo, and H. G. Park, “Low-power nano-optical vortex trapping via plasmonic diabolo nanoantennas,” Nat. Commun. 2, 1–6 (2011).
[CrossRef]

Yu, N.

E. Cubukcu, N. Yu, E. J. Smythe, L. Diehl, K. B. Crozier, and F. Capasso, “Plasmonic laser antennas and related devices,” IEEE J. Sel. Top. Quantum Electron. 14, 1448–1461 (2008).
[CrossRef]

Zelenina, A. S.

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nature Phys. 3, 477–480 (2007).
[CrossRef]

Zhang, W.

W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10, 1006–1011 (2010).
[CrossRef] [PubMed]

Zhang, Y.

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2, 365–370 (2008).
[CrossRef]

ACS Nano

J. S. Donner, G. Baffou, D. McCloskey, and R. Quidant, “Plasmon-assisted optofluidics,” ACS Nano 5, 5457–5462 (2011).
[CrossRef] [PubMed]

H. Aouani, J. Wenger, D. Gerard, H. Rigneault, E. Devaux, T. W. Ebbesen, F. Mahdavi, T. Xu, and S. Blair, “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano 3, 2043–2048 (2009).
[CrossRef] [PubMed]

Appl. Phys. Lett.

Y. Tanaka and K. Sasaki, “Efficient optical trapping using small arrays of plasmonic nanoblock pairs,” Appl. Phys. Lett. 100, 021102 (2012).
[CrossRef]

A. Lovera and O. J. F. Martin, “Plasmonic trapping with realistic dipole antennas: Analysis of the detection limit,” Appl. Phys. Lett. 99, 151104 (2011).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

E. Cubukcu, N. Yu, E. J. Smythe, L. Diehl, K. B. Crozier, and F. Capasso, “Plasmonic laser antennas and related devices,” IEEE J. Sel. Top. Quantum Electron. 14, 1448–1461 (2008).
[CrossRef]

X. Miao and Y. L. Lin, “Trapping and manipulation of biological particles through a plasmonic platform,” IEEE J. Sel. Top. Quantum Electron. 13, 1655–1662 (2007).
[CrossRef]

J. Nanophoton

M. Ploschner, M. Mazilu, T. F. Krauss, and K. Dholakia, “Optical forces near a nanoantenna,” J. Nanophoton.  4, 041570 (2010).
[CrossRef]

J. Phys. Chem. B

N. Harris, J. J. Ford, and M. B. Cortie, “Optimization of plasmonic heating by gold nanospheres and nanoshells,” J. Phys. Chem. B 110, 10701–10707 (2006).
[CrossRef] [PubMed]

J. Phys. Chem. Lett.

R. Alvarez-Puebla, L. M. Liz-Marzan, and F. J. Garcia de Abajo, “Light concentration at the nanometer scale,” J. Phys. Chem. Lett. 1, 2428–2434 (2010).
[CrossRef]

Nano Lett.

W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10, 1006–1011 (2010).
[CrossRef] [PubMed]

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. Garcia de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9, 3387–3391 (2009).
[CrossRef] [PubMed]

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. Liu, N. X. Fang, and K. C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12, 796–801 (2012).
[CrossRef] [PubMed]

K. Wang, E. Schonbrun, P. Steinvurzel, and K. Crozier, “Scannable plasmonic trapping using a gold stripe,” Nano Lett. 10, 3506–3511 (2010).
[CrossRef] [PubMed]

Nat. Commun.

J. H. Kang, K. Kim, H. S. Ee, Y. H. Lee, T. Y. Yoon, M. K. Seo, and H. G. Park, “Low-power nano-optical vortex trapping via plasmonic diabolo nanoantennas,” Nat. Commun. 2, 1–6 (2011).
[CrossRef]

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2, 1–6 (2011).
[CrossRef]

Nat. Photonics

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5, 349–356 (2011).
[CrossRef]

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2, 365–370 (2008).
[CrossRef]

Nature Phys.

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nature Phys. 3, 477–480 (2007).
[CrossRef]

Opt. Comm.

N. Malagnino, G. Pesce, A. Sasso, and E. Arimondo, “Measurements of trapping efficiency and stiffness in optical tweezers,” Opt. Comm. 214, 15–24 (2002).
[CrossRef]

Opt. Express

Phys. Rev. B

G. Baffou, R. Quidant, and C. Girard, “Thermoplasmonics modeling: A Green’s function approach,” Phys. Rev. B 82, 165424 (2010).
[CrossRef]

G. Baffou and H. Rigneault, “Femtosecond-pulsed optical heating of gold nanoparticles,” Phys. Rev. B 84, 035415 (2011).
[CrossRef]

V. Garces-Chavez, R. Quidant, P. J. Reece, G. Badenes, L. Torner, and K. Dholakia, “Extended organization of colloidal microparticles by surface plasmon polariton excitation,” Phys. Rev. B 73, 085417 (2006).
[CrossRef]

Phys. Rev. Lett.

A. Cuche, O. Mahboub, E. Devaux, C. Genet, and T. W. Ebbesen, “Plasmonic coherent drive of an optical trap,” Phys. Rev. Lett. 108, 026801 (2012).
[CrossRef] [PubMed]

A. Rorhbach, “Stiffness of optical traps: Quantitative agreement between experiment and theory,” Phys. Rev. Lett. 95, 168102 (2005).
[CrossRef]

Plasmonics

X. Jiao, J. Goeckeritz, S. Blair, and M. Oldham, “Localization of near-field resonances in bowtie antennae: Influence of adhesion layers,” Plasmonics 4, 37–50 (2009).
[CrossRef]

Rev. Sci. Instrum.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
[CrossRef]

Other

A. V. Getling, Rayleigh-Bénard Convection: Structures and Dynamics (World Scientific Publishing, 1998).
[PubMed]

Supplementary Material (2)

» Media 1: AVI (523 KB)     
» Media 2: AVI (1443 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Illustration of experimental configurations depicting (a) the upright orientation and (b) the inverted orientation. Unlabeled arrows indicate the direction of Rayleigh-Bénard convection currents with their color representing the relative temperature. See text for details.

Fig. 2
Fig. 2

Media 1 Video of particle advection due to lateral Rayleigh-Bénard convection on Ti-AL BNAs using 400 μW of input power with λ = 685 nm. The scale bar is 10 μm

Fig. 3
Fig. 3

(a) Simulated bowtie absorption cross-section using a 3-nm Cr (black) or Ti (green) adhesion layer in the upright orientation. Blue and red dotted lines indicate laser illumination wavelengths λnr = 685 and λr = 785 nm, respectively. The inset image shows a snapshot of the simulated geometry with the red arrow indicating incident polarization and the black indicating the wave vector. Identical results are obtained in the inverted orientation. (b) Intensity enhancement over the 425 x 425-nm unit cell at 20 nm above the BNAs using Ti with maximum intensity enhancement of 19; Cr (not shown) has the same spatial intensity distribution with a maximum intensity enhancement of 18.

Fig. 4
Fig. 4

Comparison of trapping efficiency of BNA nanotweezers with other plasmonic systems and conventional optical tweezers. Error bars are included on values measured in this work. Note that the error bars scale with the relative height of the corresponding data bar, and the error in all cases lies in the range 5–20%. The inset figure is the trap stiffness comparison between various systems, with example Lorentzian power spectra Sxx (on log-log scale) and fits included for each particle diameter.

Fig. 5
Fig. 5

Media 2 Dark-field microscopy, time-lapse frames showing circular manipulation of a 300-nm diameter fluorescent sphere over the Ti-AL BNA surface. The scalebar is 10 μm and the inset shows an SEM of the array with a 5-μm diameter circular trajectory overlaid.

Tables (4)

Tables Icon

Table 1 Adhesion Layer Comparison

Tables Icon

Table 2 Nanostructure Orientation Comparison

Tables Icon

Table 3 Experimental Trap Stiffness κ

Tables Icon

Table 4 Experimental Trapping Efficiency Q

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

ν R B g α L 2 ρ T η ,
S x x ( f ) = A f 2 + f c 2 ,
ε ( a , h ) = | 8 15 ln ( h a a ) 0.9588 | ,
Δ ( Λ ) = Λ Ti Λ Cr Λ Ti + Λ Cr ,
Q heat = λ min λ max σ abs ( λ ) I inc ( λ ) d λ ,
k ( r ) 2 T + ( r ) = q ( r ) ,
V bowtie = 4 3 π c 3 .
T + = Q heat 4 π k w c .
Δ ( Γ ) = Γ Inv Γ Up Γ Inv + Γ Up ,

Metrics