Abstract

Two 78-cm long electrooptic fibers with nonlinear coefficient χ(2) ~0.26 pm/V are used in a Sagnac loop for pulse selection at up to 1 MHz repetition rate. Laser pulses of 1.5 µm wavelength arriving at every 140 ns are selected with an extinction ratio as high as −30 dB. The arrangement is entirely based on silica fiber.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Udd and W. B. Spillman, Jr., Fiber Optic Sensors, 2nd ed. (Wiley-Interscience, 2011).
  2. M. V. Andrés, J. Cruz, A. Diez, P. Pérez-Millán, and M. Delgado-Pinar, “Actively Q-switched all-fiber lasers,” Laser Phys. 5(2), 93–99 (2008).
    [CrossRef]
  3. M. Leigh, W. Shi, J. Zong, J. Wang, S. Jiang, and N. Peyghambarian, “Compact, single-frequency all-fiber Q-switched laser at 1 microm,” Opt. Lett. 32(8), 897–899 (2007).
    [CrossRef] [PubMed]
  4. M. Bello-Jiménez, C. Cuadrado-Laborde, D. Sáez-Rodríguez, A. Diez, J. L. Cruz, and M. V. Andrés, “Actively mode-locked fiber ring laser by intermodal acousto-optic modulation,” Opt. Lett. 35(22), 3781–3783 (2010).
    [CrossRef] [PubMed]
  5. I. Villegas, C. Cuadrado-Laborde, J. Abreu-Afonso, A. Diez, J. Cruz, M. Martínez-Gámez, and M. V. Andrés, “Mode-locked Yb-doped all-fiber laser based on in-fiber acoustooptic modulation,” Laser Phys. Lett. 8(3), 227–231 (2011).
    [CrossRef]
  6. Z. Yu, H. Knape, O. Tarasenko, R. Koch, and W. Margulis, “All-fiber single-pulse selection and nanosecond gating,” Opt. Lett. 34(7), 1024–1026 (2009).
    [CrossRef] [PubMed]
  7. W. Margulis, Z. Yu, M. Malmström, P. Rugeland, H. Knape, and O. Tarasenko, “High-speed electrical switching in optical fibers,” Appl. Opt. 50(25), E65–E67 (2011).
    [CrossRef]
  8. H. Knape and W. Margulis, “All-fiber polarization switch,” Opt. Lett. 32(6), 614–616 (2007).
    [CrossRef] [PubMed]
  9. M. Fokine, L. Kjellberg, P. Helander, N. Myrén, L. Norin, H. Olsson, N. Sjödin, and W. Margulis, “A fibre-based Kerr switch and modulator,” in European Conference on Optical Communications ECOC (2004).
  10. A. Anan’ev, G. Karapetyan, A. Lipovskii, L. Maksimov, V. Polukhin, D. Tagantsev, B. Tatarintsev, A. Vetrov, and O. Yanush, “Multicomponent glasses for electrooptical fibers,” J. Non-Cryst. Solids 351(12-13), 1046–1053 (2005).
    [CrossRef]
  11. R. Kashyap, “Poling of glasses and optical fibers,” in Fiber Bragg Gratings 2nd ed. (Academic Press, 2010).
  12. P. G. Kazansky, P. S. J. Russell, and H. Takebe, “Glass fiber poling and applications,” J. Lightwave Technol. 15(8), 1484–1493 (1997).
    [CrossRef]
  13. W. Margulis, F. Garcia, E. Hering, L. Guedes Valente, B. Lesche, F. Laurell, and I. Carvalho, “Poled glasses,” MRS Bull. 23, 31–35 (1998).
  14. S. C. Fleming and H. An, “Poled glasses and poled fibre devices,” J. Ceram. Soc. Jpn. 116(1358), 1007–1023 (2008).
    [CrossRef]
  15. R. A. Myers, N. Mukherjee, and S. R. J. Brueck, “Large second-order nonlinearity in poled fused silica,” Opt. Lett. 16(22), 1732–1734 (1991).
    [CrossRef] [PubMed]
  16. P. G. Kazansky, L. Dong, and P. S. J. Russell, “High second-order nonlinearities in poled silicate fibers,” Opt. Lett. 19(10), 701–703 (1994).
    [CrossRef] [PubMed]
  17. D. Wong, W. Xu, S. Fleming, M. Janos, and K.-M. Lo, “Frozen-in electrical field in thermally poled fibers,” Opt. Fiber Technol. 5(2), 235–241 (1999).
    [CrossRef]
  18. Z. Liu, F. Bo, L. Wang, F. Tian, and L. Yuan, “Integrated fiber Michelson interferometer based on poled hollow twin-core fiber,” Opt. Lett. 36(13), 2435–2437 (2011).
    [CrossRef] [PubMed]
  19. W. Margulis, O. Tarasenko, and N. Myrén, “Who needs a cathode? Creating a second-order nonlinearity by charging glass fiber with two anodes,” Opt. Express 17(18), 15534–15540 (2009).
    [CrossRef] [PubMed]
  20. D. B. Mortimore, “Fiber loop reflectors,” J. Lightwave Technol. 6(7), 1217–1224 (1988).
    [CrossRef]
  21. O. Tarasenko and W. Margulis, “Electro-optical fiber modulation in a Sagnac interferometer,” Opt. Lett. 32(11), 1356–1358 (2007).
    [CrossRef] [PubMed]
  22. M. Malmström, W. Margulis, O. Tarasenko, V. Pasiskevicius, and F. Laurell, “Soliton generation from an actively mode-locked fiber laser incorporating an electro-optic fiber modulator,” Opt. Express 20(3), 2905–2910 (2012).
    [CrossRef] [PubMed]

2012 (1)

2011 (3)

2010 (1)

2009 (2)

2008 (2)

M. V. Andrés, J. Cruz, A. Diez, P. Pérez-Millán, and M. Delgado-Pinar, “Actively Q-switched all-fiber lasers,” Laser Phys. 5(2), 93–99 (2008).
[CrossRef]

S. C. Fleming and H. An, “Poled glasses and poled fibre devices,” J. Ceram. Soc. Jpn. 116(1358), 1007–1023 (2008).
[CrossRef]

2007 (3)

2005 (1)

A. Anan’ev, G. Karapetyan, A. Lipovskii, L. Maksimov, V. Polukhin, D. Tagantsev, B. Tatarintsev, A. Vetrov, and O. Yanush, “Multicomponent glasses for electrooptical fibers,” J. Non-Cryst. Solids 351(12-13), 1046–1053 (2005).
[CrossRef]

1999 (1)

D. Wong, W. Xu, S. Fleming, M. Janos, and K.-M. Lo, “Frozen-in electrical field in thermally poled fibers,” Opt. Fiber Technol. 5(2), 235–241 (1999).
[CrossRef]

1998 (1)

W. Margulis, F. Garcia, E. Hering, L. Guedes Valente, B. Lesche, F. Laurell, and I. Carvalho, “Poled glasses,” MRS Bull. 23, 31–35 (1998).

1997 (1)

P. G. Kazansky, P. S. J. Russell, and H. Takebe, “Glass fiber poling and applications,” J. Lightwave Technol. 15(8), 1484–1493 (1997).
[CrossRef]

1994 (1)

1991 (1)

1988 (1)

D. B. Mortimore, “Fiber loop reflectors,” J. Lightwave Technol. 6(7), 1217–1224 (1988).
[CrossRef]

Abreu-Afonso, J.

I. Villegas, C. Cuadrado-Laborde, J. Abreu-Afonso, A. Diez, J. Cruz, M. Martínez-Gámez, and M. V. Andrés, “Mode-locked Yb-doped all-fiber laser based on in-fiber acoustooptic modulation,” Laser Phys. Lett. 8(3), 227–231 (2011).
[CrossRef]

An, H.

S. C. Fleming and H. An, “Poled glasses and poled fibre devices,” J. Ceram. Soc. Jpn. 116(1358), 1007–1023 (2008).
[CrossRef]

Anan’ev, A.

A. Anan’ev, G. Karapetyan, A. Lipovskii, L. Maksimov, V. Polukhin, D. Tagantsev, B. Tatarintsev, A. Vetrov, and O. Yanush, “Multicomponent glasses for electrooptical fibers,” J. Non-Cryst. Solids 351(12-13), 1046–1053 (2005).
[CrossRef]

Andrés, M. V.

I. Villegas, C. Cuadrado-Laborde, J. Abreu-Afonso, A. Diez, J. Cruz, M. Martínez-Gámez, and M. V. Andrés, “Mode-locked Yb-doped all-fiber laser based on in-fiber acoustooptic modulation,” Laser Phys. Lett. 8(3), 227–231 (2011).
[CrossRef]

M. Bello-Jiménez, C. Cuadrado-Laborde, D. Sáez-Rodríguez, A. Diez, J. L. Cruz, and M. V. Andrés, “Actively mode-locked fiber ring laser by intermodal acousto-optic modulation,” Opt. Lett. 35(22), 3781–3783 (2010).
[CrossRef] [PubMed]

M. V. Andrés, J. Cruz, A. Diez, P. Pérez-Millán, and M. Delgado-Pinar, “Actively Q-switched all-fiber lasers,” Laser Phys. 5(2), 93–99 (2008).
[CrossRef]

Bello-Jiménez, M.

Bo, F.

Brueck, S. R. J.

Carvalho, I.

W. Margulis, F. Garcia, E. Hering, L. Guedes Valente, B. Lesche, F. Laurell, and I. Carvalho, “Poled glasses,” MRS Bull. 23, 31–35 (1998).

Cruz, J.

I. Villegas, C. Cuadrado-Laborde, J. Abreu-Afonso, A. Diez, J. Cruz, M. Martínez-Gámez, and M. V. Andrés, “Mode-locked Yb-doped all-fiber laser based on in-fiber acoustooptic modulation,” Laser Phys. Lett. 8(3), 227–231 (2011).
[CrossRef]

M. V. Andrés, J. Cruz, A. Diez, P. Pérez-Millán, and M. Delgado-Pinar, “Actively Q-switched all-fiber lasers,” Laser Phys. 5(2), 93–99 (2008).
[CrossRef]

Cruz, J. L.

Cuadrado-Laborde, C.

I. Villegas, C. Cuadrado-Laborde, J. Abreu-Afonso, A. Diez, J. Cruz, M. Martínez-Gámez, and M. V. Andrés, “Mode-locked Yb-doped all-fiber laser based on in-fiber acoustooptic modulation,” Laser Phys. Lett. 8(3), 227–231 (2011).
[CrossRef]

M. Bello-Jiménez, C. Cuadrado-Laborde, D. Sáez-Rodríguez, A. Diez, J. L. Cruz, and M. V. Andrés, “Actively mode-locked fiber ring laser by intermodal acousto-optic modulation,” Opt. Lett. 35(22), 3781–3783 (2010).
[CrossRef] [PubMed]

Delgado-Pinar, M.

M. V. Andrés, J. Cruz, A. Diez, P. Pérez-Millán, and M. Delgado-Pinar, “Actively Q-switched all-fiber lasers,” Laser Phys. 5(2), 93–99 (2008).
[CrossRef]

Diez, A.

I. Villegas, C. Cuadrado-Laborde, J. Abreu-Afonso, A. Diez, J. Cruz, M. Martínez-Gámez, and M. V. Andrés, “Mode-locked Yb-doped all-fiber laser based on in-fiber acoustooptic modulation,” Laser Phys. Lett. 8(3), 227–231 (2011).
[CrossRef]

M. Bello-Jiménez, C. Cuadrado-Laborde, D. Sáez-Rodríguez, A. Diez, J. L. Cruz, and M. V. Andrés, “Actively mode-locked fiber ring laser by intermodal acousto-optic modulation,” Opt. Lett. 35(22), 3781–3783 (2010).
[CrossRef] [PubMed]

M. V. Andrés, J. Cruz, A. Diez, P. Pérez-Millán, and M. Delgado-Pinar, “Actively Q-switched all-fiber lasers,” Laser Phys. 5(2), 93–99 (2008).
[CrossRef]

Dong, L.

Fleming, S.

D. Wong, W. Xu, S. Fleming, M. Janos, and K.-M. Lo, “Frozen-in electrical field in thermally poled fibers,” Opt. Fiber Technol. 5(2), 235–241 (1999).
[CrossRef]

Fleming, S. C.

S. C. Fleming and H. An, “Poled glasses and poled fibre devices,” J. Ceram. Soc. Jpn. 116(1358), 1007–1023 (2008).
[CrossRef]

Garcia, F.

W. Margulis, F. Garcia, E. Hering, L. Guedes Valente, B. Lesche, F. Laurell, and I. Carvalho, “Poled glasses,” MRS Bull. 23, 31–35 (1998).

Guedes Valente, L.

W. Margulis, F. Garcia, E. Hering, L. Guedes Valente, B. Lesche, F. Laurell, and I. Carvalho, “Poled glasses,” MRS Bull. 23, 31–35 (1998).

Hering, E.

W. Margulis, F. Garcia, E. Hering, L. Guedes Valente, B. Lesche, F. Laurell, and I. Carvalho, “Poled glasses,” MRS Bull. 23, 31–35 (1998).

Janos, M.

D. Wong, W. Xu, S. Fleming, M. Janos, and K.-M. Lo, “Frozen-in electrical field in thermally poled fibers,” Opt. Fiber Technol. 5(2), 235–241 (1999).
[CrossRef]

Jiang, S.

Karapetyan, G.

A. Anan’ev, G. Karapetyan, A. Lipovskii, L. Maksimov, V. Polukhin, D. Tagantsev, B. Tatarintsev, A. Vetrov, and O. Yanush, “Multicomponent glasses for electrooptical fibers,” J. Non-Cryst. Solids 351(12-13), 1046–1053 (2005).
[CrossRef]

Kazansky, P. G.

P. G. Kazansky, P. S. J. Russell, and H. Takebe, “Glass fiber poling and applications,” J. Lightwave Technol. 15(8), 1484–1493 (1997).
[CrossRef]

P. G. Kazansky, L. Dong, and P. S. J. Russell, “High second-order nonlinearities in poled silicate fibers,” Opt. Lett. 19(10), 701–703 (1994).
[CrossRef] [PubMed]

Knape, H.

Koch, R.

Laurell, F.

Leigh, M.

Lesche, B.

W. Margulis, F. Garcia, E. Hering, L. Guedes Valente, B. Lesche, F. Laurell, and I. Carvalho, “Poled glasses,” MRS Bull. 23, 31–35 (1998).

Lipovskii, A.

A. Anan’ev, G. Karapetyan, A. Lipovskii, L. Maksimov, V. Polukhin, D. Tagantsev, B. Tatarintsev, A. Vetrov, and O. Yanush, “Multicomponent glasses for electrooptical fibers,” J. Non-Cryst. Solids 351(12-13), 1046–1053 (2005).
[CrossRef]

Liu, Z.

Lo, K.-M.

D. Wong, W. Xu, S. Fleming, M. Janos, and K.-M. Lo, “Frozen-in electrical field in thermally poled fibers,” Opt. Fiber Technol. 5(2), 235–241 (1999).
[CrossRef]

Maksimov, L.

A. Anan’ev, G. Karapetyan, A. Lipovskii, L. Maksimov, V. Polukhin, D. Tagantsev, B. Tatarintsev, A. Vetrov, and O. Yanush, “Multicomponent glasses for electrooptical fibers,” J. Non-Cryst. Solids 351(12-13), 1046–1053 (2005).
[CrossRef]

Malmström, M.

Margulis, W.

Martínez-Gámez, M.

I. Villegas, C. Cuadrado-Laborde, J. Abreu-Afonso, A. Diez, J. Cruz, M. Martínez-Gámez, and M. V. Andrés, “Mode-locked Yb-doped all-fiber laser based on in-fiber acoustooptic modulation,” Laser Phys. Lett. 8(3), 227–231 (2011).
[CrossRef]

Mortimore, D. B.

D. B. Mortimore, “Fiber loop reflectors,” J. Lightwave Technol. 6(7), 1217–1224 (1988).
[CrossRef]

Mukherjee, N.

Myers, R. A.

Myrén, N.

Pasiskevicius, V.

Pérez-Millán, P.

M. V. Andrés, J. Cruz, A. Diez, P. Pérez-Millán, and M. Delgado-Pinar, “Actively Q-switched all-fiber lasers,” Laser Phys. 5(2), 93–99 (2008).
[CrossRef]

Peyghambarian, N.

Polukhin, V.

A. Anan’ev, G. Karapetyan, A. Lipovskii, L. Maksimov, V. Polukhin, D. Tagantsev, B. Tatarintsev, A. Vetrov, and O. Yanush, “Multicomponent glasses for electrooptical fibers,” J. Non-Cryst. Solids 351(12-13), 1046–1053 (2005).
[CrossRef]

Rugeland, P.

Russell, P. S. J.

P. G. Kazansky, P. S. J. Russell, and H. Takebe, “Glass fiber poling and applications,” J. Lightwave Technol. 15(8), 1484–1493 (1997).
[CrossRef]

P. G. Kazansky, L. Dong, and P. S. J. Russell, “High second-order nonlinearities in poled silicate fibers,” Opt. Lett. 19(10), 701–703 (1994).
[CrossRef] [PubMed]

Sáez-Rodríguez, D.

Shi, W.

Tagantsev, D.

A. Anan’ev, G. Karapetyan, A. Lipovskii, L. Maksimov, V. Polukhin, D. Tagantsev, B. Tatarintsev, A. Vetrov, and O. Yanush, “Multicomponent glasses for electrooptical fibers,” J. Non-Cryst. Solids 351(12-13), 1046–1053 (2005).
[CrossRef]

Takebe, H.

P. G. Kazansky, P. S. J. Russell, and H. Takebe, “Glass fiber poling and applications,” J. Lightwave Technol. 15(8), 1484–1493 (1997).
[CrossRef]

Tarasenko, O.

Tatarintsev, B.

A. Anan’ev, G. Karapetyan, A. Lipovskii, L. Maksimov, V. Polukhin, D. Tagantsev, B. Tatarintsev, A. Vetrov, and O. Yanush, “Multicomponent glasses for electrooptical fibers,” J. Non-Cryst. Solids 351(12-13), 1046–1053 (2005).
[CrossRef]

Tian, F.

Vetrov, A.

A. Anan’ev, G. Karapetyan, A. Lipovskii, L. Maksimov, V. Polukhin, D. Tagantsev, B. Tatarintsev, A. Vetrov, and O. Yanush, “Multicomponent glasses for electrooptical fibers,” J. Non-Cryst. Solids 351(12-13), 1046–1053 (2005).
[CrossRef]

Villegas, I.

I. Villegas, C. Cuadrado-Laborde, J. Abreu-Afonso, A. Diez, J. Cruz, M. Martínez-Gámez, and M. V. Andrés, “Mode-locked Yb-doped all-fiber laser based on in-fiber acoustooptic modulation,” Laser Phys. Lett. 8(3), 227–231 (2011).
[CrossRef]

Wang, J.

Wang, L.

Wong, D.

D. Wong, W. Xu, S. Fleming, M. Janos, and K.-M. Lo, “Frozen-in electrical field in thermally poled fibers,” Opt. Fiber Technol. 5(2), 235–241 (1999).
[CrossRef]

Xu, W.

D. Wong, W. Xu, S. Fleming, M. Janos, and K.-M. Lo, “Frozen-in electrical field in thermally poled fibers,” Opt. Fiber Technol. 5(2), 235–241 (1999).
[CrossRef]

Yanush, O.

A. Anan’ev, G. Karapetyan, A. Lipovskii, L. Maksimov, V. Polukhin, D. Tagantsev, B. Tatarintsev, A. Vetrov, and O. Yanush, “Multicomponent glasses for electrooptical fibers,” J. Non-Cryst. Solids 351(12-13), 1046–1053 (2005).
[CrossRef]

Yu, Z.

Yuan, L.

Zong, J.

Appl. Opt. (1)

J. Ceram. Soc. Jpn. (1)

S. C. Fleming and H. An, “Poled glasses and poled fibre devices,” J. Ceram. Soc. Jpn. 116(1358), 1007–1023 (2008).
[CrossRef]

J. Lightwave Technol. (2)

P. G. Kazansky, P. S. J. Russell, and H. Takebe, “Glass fiber poling and applications,” J. Lightwave Technol. 15(8), 1484–1493 (1997).
[CrossRef]

D. B. Mortimore, “Fiber loop reflectors,” J. Lightwave Technol. 6(7), 1217–1224 (1988).
[CrossRef]

J. Non-Cryst. Solids (1)

A. Anan’ev, G. Karapetyan, A. Lipovskii, L. Maksimov, V. Polukhin, D. Tagantsev, B. Tatarintsev, A. Vetrov, and O. Yanush, “Multicomponent glasses for electrooptical fibers,” J. Non-Cryst. Solids 351(12-13), 1046–1053 (2005).
[CrossRef]

Laser Phys. (1)

M. V. Andrés, J. Cruz, A. Diez, P. Pérez-Millán, and M. Delgado-Pinar, “Actively Q-switched all-fiber lasers,” Laser Phys. 5(2), 93–99 (2008).
[CrossRef]

Laser Phys. Lett. (1)

I. Villegas, C. Cuadrado-Laborde, J. Abreu-Afonso, A. Diez, J. Cruz, M. Martínez-Gámez, and M. V. Andrés, “Mode-locked Yb-doped all-fiber laser based on in-fiber acoustooptic modulation,” Laser Phys. Lett. 8(3), 227–231 (2011).
[CrossRef]

MRS Bull. (1)

W. Margulis, F. Garcia, E. Hering, L. Guedes Valente, B. Lesche, F. Laurell, and I. Carvalho, “Poled glasses,” MRS Bull. 23, 31–35 (1998).

Opt. Express (2)

Opt. Fiber Technol. (1)

D. Wong, W. Xu, S. Fleming, M. Janos, and K.-M. Lo, “Frozen-in electrical field in thermally poled fibers,” Opt. Fiber Technol. 5(2), 235–241 (1999).
[CrossRef]

Opt. Lett. (8)

Other (3)

M. Fokine, L. Kjellberg, P. Helander, N. Myrén, L. Norin, H. Olsson, N. Sjödin, and W. Margulis, “A fibre-based Kerr switch and modulator,” in European Conference on Optical Communications ECOC (2004).

R. Kashyap, “Poling of glasses and optical fibers,” in Fiber Bragg Gratings 2nd ed. (Academic Press, 2010).

E. Udd and W. B. Spillman, Jr., Fiber Optic Sensors, 2nd ed. (Wiley-Interscience, 2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Measured input voltage (blue) and current (green) when applying a step function to the modulator. The voltage developed over the electrodes is calculated (red) as the normalized integral of the current. (b) Same as previous with the application of a 13 ns pulse.

Fig. 2
Fig. 2

(a) Schematic diagram of a Sagnac fiber interferometer with an electrooptical fiber as phase control element and (b) Transmission of the Sagnac loop in the temporal and spectral domain when the modulator is driven by 105 V pulses without a 50 Ω resistive load.

Fig. 3
Fig. 3

Setup for selecting every 7th pulse from a pulsed DFB laser. The light transmitted by the circulator is either reflected or transmitted by the Sagnac loop before detection in photodiode

Fig. 4
Fig. 4

(a) The optical input signal to the Sagnac loop, and (b) the reflected (blue) and transmitted (red) signal. The curves are normalized as the reflected signal experiences an extra loss when passing the circulator. The measured peak voltage developed over the fiber electrodes is 131 V.

Fig. 5
Fig. 5

(a) Transfer function of Sagnac loop as a function of the input voltage. The inset shows how the transmission is measured from the time-resolved reflected signal, illustrated for an input voltage 65 V. (b) The extinction ratio as function of the input voltage applied to the two phase modulators. The inset shows how the extinction ratio is measured in the transmitted signal, for the point designated in the graph with a modest extinction ratio of 16 dB.

Metrics