Abstract

Low noise optical frequency combs consist of equally spaced narrow-linewidth optical tones. They are useful in many applications including, for example, line-by-line pulse shaping, THz generation, and coherent communications. In such applications the comb spacing, extent of spectral coverage, degree of spectral flatness, optical tone power and tone-to-noise ratio represent key considerations. Simultaneously achieving the level of performance required in each of these parameters is often challenging using existing comb generation technologies. Herein we suggest and demonstrate how fiber optic parametric amplifiers can be used to enhance all of these key comb parameters, allowing frequency span multiplication, low noise amplification with simultaneous comb spectrum flattening, and improvement in optical tone-to-noise ratio through various phase insensitive as well as phase sensitive implementations.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
    [CrossRef] [PubMed]
  2. S. Fukushima, C. F. C. Silva, Y. Muramoto, and A. J. Seeds, “10 to 110 GHz tunable opto-electronic frequency synthesis using optical frequency comb generator and uni-travelling-carrier photodiode,” Electron. Lett. 37(12), 780–781 (2001).
    [CrossRef]
  3. S. Bennett, B. Cai, E. Burr, O. Gough, and A. J. Seeds, “1.8-THz bandwidth, zero-frequency error, tunable optical comb generator for DWDM applications,” IEEE Photon. Technol. Lett. 11(5), 551–553 (1999).
    [CrossRef]
  4. M. Kourogi, T. Enami, and M. Ohtsu, “Monolithic optical frequency comb generator,” IEEE Photon. Technol. Lett. 6(2), 214–217 (1994).
    [CrossRef]
  5. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
    [CrossRef] [PubMed]
  6. T. Healy, F. C. Garcia Gunning, A. D. Ellis, and J. D. Bull, “Multi-wavelength source using low drive-voltage amplitude modulators for optical communications,” Opt. Express 15(6), 2981–2986 (2007).
    [CrossRef] [PubMed]
  7. P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave Spanning Tunable Frequency Comb from a Microresonator,” Phys. Rev. Lett. 107(6), 063901 (2011).
    [CrossRef] [PubMed]
  8. Z. Jiang, D. E. Leaird, C. Huang, H. Miao, M. Kourogi, K. Imai, and A. M. Weiner, “Spectral Line-by-Line Pulse Shaping on an Optical Frequency Comb Generator,” IEEE J. Quantum Electron. 43(12), 1163–1174 (2007).
    [CrossRef]
  9. S. J. Lee, B. Widiyatmoko, M. Kourogi, and M. Ohtsu, “Ultrahigh Scanning Speed Optical Coherence Tomography Using Optical Frequency Comb Generators,” Jpn. J. Appl. Phys. 40(Part 2, No. 8B), L878–L880 (2001).
    [CrossRef]
  10. Z. Tong, C. Lundström, P. Andrekson, C. McKinstrie, M. Karlsson, D. Blessing, E. Tipsuwannakul, B. Puttnam, H. Toda, and L. Gruner-Nielsen, “Towards the Ultra-Sensitive Optical Link Enabled by Low Noise Phase-Sensitive Amplifiers,” Nat. Photonics 5(7), 430–436 (2011).
    [CrossRef]
  11. J. Kakande, P. Petropoulos, and D. J. Richardson, “Fiber optical parametric amplification of optical combs for enhanced performance and functionality,” 37th European Conference and Exhibition on Optical Communication (ECOC), Geneva, Switzerland, 18–22 Sept. 2011.
  12. C.-S. Brès, A. Wiberg, B. P. Kuo, N. Alic, and S. Radic, “Wavelength Multicasting of 320-Gb/s Channel in Self-Seeded Parametric Amplifier,” IEEE Photon. Technol. Lett. 21(14), 1002–1004 (2009).
    [CrossRef]
  13. R. H. Stolen and J. E. Bjorkholm, “Parametric amplification and frequency conversion in optical fibers,” IEEE J. Quantum Electron. 18(7), 1062–1072 (1982).
    [CrossRef]
  14. M. Hirano and A. Morimoto, “Generation of flat optical frequency comb by fiber loop modulation,” Opt. Rev. 18(1), 13–18 (2011).
    [CrossRef]
  15. S. Xiao, L. Hollberg, N. R. Newbury, and S. A. Diddams, “Toward a low-jitter 10 GHz pulsed source with an optical frequency comb generator,” Opt. Express 16(12), 8498–8508 (2008).
    [CrossRef] [PubMed]
  16. E. Myslivets, C. Lundström, J. M. Aparicio, S. Moro, A. Wiberg, C.-S. Brès, N. Alic, P. A. Andrekson, and S. Radic, “Spatial equalization of zero-dispersion wavelength profiles in nonlinear fibers,” IEEE Photon. Technol. Lett. 21(24), 1807–1809 (2009).
    [CrossRef]
  17. L. Grűner-Nielsen, S. Dasgupta, M. D. Mermelstein, D. Jakobsen, S. Herstrm, M. E. V. Pedersen, E. L. Lim, S. Alam, F. Parmigiani, D. Richardson, and B. Pálsdótti, “A silica based highly nonlinear fibre with improved threshold for stimulated Brillouin scattering,” European Conference on Optical Communications (ECOC), paper Tu.4.D., Torino, Italy, 19–23 September, 2010.
  18. A. Camerlingo, F. Parmigiani, X. Feng, F. Poletti, P. Horak, W. Loh, D. J. Richardson, and P. Petropoulos, “Multichannel wavelength conversion of 40-Gb/s nonreturn-to-zero DPSK signals in a lead–silicate fiber,” IEEE Photon. Technol. Lett. 22(15), 1153–1155 (2010).
    [CrossRef]
  19. R. Tang, P. L. Voss, J. Lasri, P. Devgan, and P. Kumar, “Noise-figure limit of fiber-optical parametric amplifiers and wavelength converters: experimental investigation,” Opt. Lett. 29(20), 2372–2374 (2004).
    [CrossRef] [PubMed]
  20. R. Tang, J. Lasri, P. S. Devgan, V. Grigoryan, P. Kumar, and M. Vasilyev, “Gain characteristics of a frequency nondegenerate phase-sensitive fiber-optic parametric amplifier with phase self-stabilized input,” Opt. Express 13(26), 10483–10493 (2005).
    [CrossRef] [PubMed]

2011 (3)

P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave Spanning Tunable Frequency Comb from a Microresonator,” Phys. Rev. Lett. 107(6), 063901 (2011).
[CrossRef] [PubMed]

Z. Tong, C. Lundström, P. Andrekson, C. McKinstrie, M. Karlsson, D. Blessing, E. Tipsuwannakul, B. Puttnam, H. Toda, and L. Gruner-Nielsen, “Towards the Ultra-Sensitive Optical Link Enabled by Low Noise Phase-Sensitive Amplifiers,” Nat. Photonics 5(7), 430–436 (2011).
[CrossRef]

M. Hirano and A. Morimoto, “Generation of flat optical frequency comb by fiber loop modulation,” Opt. Rev. 18(1), 13–18 (2011).
[CrossRef]

2010 (1)

A. Camerlingo, F. Parmigiani, X. Feng, F. Poletti, P. Horak, W. Loh, D. J. Richardson, and P. Petropoulos, “Multichannel wavelength conversion of 40-Gb/s nonreturn-to-zero DPSK signals in a lead–silicate fiber,” IEEE Photon. Technol. Lett. 22(15), 1153–1155 (2010).
[CrossRef]

2009 (2)

E. Myslivets, C. Lundström, J. M. Aparicio, S. Moro, A. Wiberg, C.-S. Brès, N. Alic, P. A. Andrekson, and S. Radic, “Spatial equalization of zero-dispersion wavelength profiles in nonlinear fibers,” IEEE Photon. Technol. Lett. 21(24), 1807–1809 (2009).
[CrossRef]

C.-S. Brès, A. Wiberg, B. P. Kuo, N. Alic, and S. Radic, “Wavelength Multicasting of 320-Gb/s Channel in Self-Seeded Parametric Amplifier,” IEEE Photon. Technol. Lett. 21(14), 1002–1004 (2009).
[CrossRef]

2008 (1)

2007 (3)

T. Healy, F. C. Garcia Gunning, A. D. Ellis, and J. D. Bull, “Multi-wavelength source using low drive-voltage amplitude modulators for optical communications,” Opt. Express 15(6), 2981–2986 (2007).
[CrossRef] [PubMed]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[CrossRef] [PubMed]

Z. Jiang, D. E. Leaird, C. Huang, H. Miao, M. Kourogi, K. Imai, and A. M. Weiner, “Spectral Line-by-Line Pulse Shaping on an Optical Frequency Comb Generator,” IEEE J. Quantum Electron. 43(12), 1163–1174 (2007).
[CrossRef]

2005 (1)

2004 (1)

2002 (1)

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[CrossRef] [PubMed]

2001 (2)

S. Fukushima, C. F. C. Silva, Y. Muramoto, and A. J. Seeds, “10 to 110 GHz tunable opto-electronic frequency synthesis using optical frequency comb generator and uni-travelling-carrier photodiode,” Electron. Lett. 37(12), 780–781 (2001).
[CrossRef]

S. J. Lee, B. Widiyatmoko, M. Kourogi, and M. Ohtsu, “Ultrahigh Scanning Speed Optical Coherence Tomography Using Optical Frequency Comb Generators,” Jpn. J. Appl. Phys. 40(Part 2, No. 8B), L878–L880 (2001).
[CrossRef]

1999 (1)

S. Bennett, B. Cai, E. Burr, O. Gough, and A. J. Seeds, “1.8-THz bandwidth, zero-frequency error, tunable optical comb generator for DWDM applications,” IEEE Photon. Technol. Lett. 11(5), 551–553 (1999).
[CrossRef]

1994 (1)

M. Kourogi, T. Enami, and M. Ohtsu, “Monolithic optical frequency comb generator,” IEEE Photon. Technol. Lett. 6(2), 214–217 (1994).
[CrossRef]

1982 (1)

R. H. Stolen and J. E. Bjorkholm, “Parametric amplification and frequency conversion in optical fibers,” IEEE J. Quantum Electron. 18(7), 1062–1072 (1982).
[CrossRef]

Alic, N.

E. Myslivets, C. Lundström, J. M. Aparicio, S. Moro, A. Wiberg, C.-S. Brès, N. Alic, P. A. Andrekson, and S. Radic, “Spatial equalization of zero-dispersion wavelength profiles in nonlinear fibers,” IEEE Photon. Technol. Lett. 21(24), 1807–1809 (2009).
[CrossRef]

C.-S. Brès, A. Wiberg, B. P. Kuo, N. Alic, and S. Radic, “Wavelength Multicasting of 320-Gb/s Channel in Self-Seeded Parametric Amplifier,” IEEE Photon. Technol. Lett. 21(14), 1002–1004 (2009).
[CrossRef]

Andrekson, P.

Z. Tong, C. Lundström, P. Andrekson, C. McKinstrie, M. Karlsson, D. Blessing, E. Tipsuwannakul, B. Puttnam, H. Toda, and L. Gruner-Nielsen, “Towards the Ultra-Sensitive Optical Link Enabled by Low Noise Phase-Sensitive Amplifiers,” Nat. Photonics 5(7), 430–436 (2011).
[CrossRef]

Andrekson, P. A.

E. Myslivets, C. Lundström, J. M. Aparicio, S. Moro, A. Wiberg, C.-S. Brès, N. Alic, P. A. Andrekson, and S. Radic, “Spatial equalization of zero-dispersion wavelength profiles in nonlinear fibers,” IEEE Photon. Technol. Lett. 21(24), 1807–1809 (2009).
[CrossRef]

Aparicio, J. M.

E. Myslivets, C. Lundström, J. M. Aparicio, S. Moro, A. Wiberg, C.-S. Brès, N. Alic, P. A. Andrekson, and S. Radic, “Spatial equalization of zero-dispersion wavelength profiles in nonlinear fibers,” IEEE Photon. Technol. Lett. 21(24), 1807–1809 (2009).
[CrossRef]

Arcizet, O.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[CrossRef] [PubMed]

Bennett, S.

S. Bennett, B. Cai, E. Burr, O. Gough, and A. J. Seeds, “1.8-THz bandwidth, zero-frequency error, tunable optical comb generator for DWDM applications,” IEEE Photon. Technol. Lett. 11(5), 551–553 (1999).
[CrossRef]

Bjorkholm, J. E.

R. H. Stolen and J. E. Bjorkholm, “Parametric amplification and frequency conversion in optical fibers,” IEEE J. Quantum Electron. 18(7), 1062–1072 (1982).
[CrossRef]

Blessing, D.

Z. Tong, C. Lundström, P. Andrekson, C. McKinstrie, M. Karlsson, D. Blessing, E. Tipsuwannakul, B. Puttnam, H. Toda, and L. Gruner-Nielsen, “Towards the Ultra-Sensitive Optical Link Enabled by Low Noise Phase-Sensitive Amplifiers,” Nat. Photonics 5(7), 430–436 (2011).
[CrossRef]

Brès, C.-S.

C.-S. Brès, A. Wiberg, B. P. Kuo, N. Alic, and S. Radic, “Wavelength Multicasting of 320-Gb/s Channel in Self-Seeded Parametric Amplifier,” IEEE Photon. Technol. Lett. 21(14), 1002–1004 (2009).
[CrossRef]

E. Myslivets, C. Lundström, J. M. Aparicio, S. Moro, A. Wiberg, C.-S. Brès, N. Alic, P. A. Andrekson, and S. Radic, “Spatial equalization of zero-dispersion wavelength profiles in nonlinear fibers,” IEEE Photon. Technol. Lett. 21(24), 1807–1809 (2009).
[CrossRef]

Bull, J. D.

Burr, E.

S. Bennett, B. Cai, E. Burr, O. Gough, and A. J. Seeds, “1.8-THz bandwidth, zero-frequency error, tunable optical comb generator for DWDM applications,” IEEE Photon. Technol. Lett. 11(5), 551–553 (1999).
[CrossRef]

Cai, B.

S. Bennett, B. Cai, E. Burr, O. Gough, and A. J. Seeds, “1.8-THz bandwidth, zero-frequency error, tunable optical comb generator for DWDM applications,” IEEE Photon. Technol. Lett. 11(5), 551–553 (1999).
[CrossRef]

Camerlingo, A.

A. Camerlingo, F. Parmigiani, X. Feng, F. Poletti, P. Horak, W. Loh, D. J. Richardson, and P. Petropoulos, “Multichannel wavelength conversion of 40-Gb/s nonreturn-to-zero DPSK signals in a lead–silicate fiber,” IEEE Photon. Technol. Lett. 22(15), 1153–1155 (2010).
[CrossRef]

Del’Haye, P.

P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave Spanning Tunable Frequency Comb from a Microresonator,” Phys. Rev. Lett. 107(6), 063901 (2011).
[CrossRef] [PubMed]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[CrossRef] [PubMed]

Devgan, P.

Devgan, P. S.

Diddams, S. A.

Ellis, A. D.

Enami, T.

M. Kourogi, T. Enami, and M. Ohtsu, “Monolithic optical frequency comb generator,” IEEE Photon. Technol. Lett. 6(2), 214–217 (1994).
[CrossRef]

Feng, X.

A. Camerlingo, F. Parmigiani, X. Feng, F. Poletti, P. Horak, W. Loh, D. J. Richardson, and P. Petropoulos, “Multichannel wavelength conversion of 40-Gb/s nonreturn-to-zero DPSK signals in a lead–silicate fiber,” IEEE Photon. Technol. Lett. 22(15), 1153–1155 (2010).
[CrossRef]

Fukushima, S.

S. Fukushima, C. F. C. Silva, Y. Muramoto, and A. J. Seeds, “10 to 110 GHz tunable opto-electronic frequency synthesis using optical frequency comb generator and uni-travelling-carrier photodiode,” Electron. Lett. 37(12), 780–781 (2001).
[CrossRef]

Garcia Gunning, F. C.

Gavartin, E.

P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave Spanning Tunable Frequency Comb from a Microresonator,” Phys. Rev. Lett. 107(6), 063901 (2011).
[CrossRef] [PubMed]

Gorodetsky, M. L.

P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave Spanning Tunable Frequency Comb from a Microresonator,” Phys. Rev. Lett. 107(6), 063901 (2011).
[CrossRef] [PubMed]

Gough, O.

S. Bennett, B. Cai, E. Burr, O. Gough, and A. J. Seeds, “1.8-THz bandwidth, zero-frequency error, tunable optical comb generator for DWDM applications,” IEEE Photon. Technol. Lett. 11(5), 551–553 (1999).
[CrossRef]

Grigoryan, V.

Gruner-Nielsen, L.

Z. Tong, C. Lundström, P. Andrekson, C. McKinstrie, M. Karlsson, D. Blessing, E. Tipsuwannakul, B. Puttnam, H. Toda, and L. Gruner-Nielsen, “Towards the Ultra-Sensitive Optical Link Enabled by Low Noise Phase-Sensitive Amplifiers,” Nat. Photonics 5(7), 430–436 (2011).
[CrossRef]

Hänsch, T. W.

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[CrossRef] [PubMed]

Healy, T.

Herr, T.

P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave Spanning Tunable Frequency Comb from a Microresonator,” Phys. Rev. Lett. 107(6), 063901 (2011).
[CrossRef] [PubMed]

Hirano, M.

M. Hirano and A. Morimoto, “Generation of flat optical frequency comb by fiber loop modulation,” Opt. Rev. 18(1), 13–18 (2011).
[CrossRef]

Hollberg, L.

Holzwarth, R.

P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave Spanning Tunable Frequency Comb from a Microresonator,” Phys. Rev. Lett. 107(6), 063901 (2011).
[CrossRef] [PubMed]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[CrossRef] [PubMed]

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[CrossRef] [PubMed]

Horak, P.

A. Camerlingo, F. Parmigiani, X. Feng, F. Poletti, P. Horak, W. Loh, D. J. Richardson, and P. Petropoulos, “Multichannel wavelength conversion of 40-Gb/s nonreturn-to-zero DPSK signals in a lead–silicate fiber,” IEEE Photon. Technol. Lett. 22(15), 1153–1155 (2010).
[CrossRef]

Huang, C.

Z. Jiang, D. E. Leaird, C. Huang, H. Miao, M. Kourogi, K. Imai, and A. M. Weiner, “Spectral Line-by-Line Pulse Shaping on an Optical Frequency Comb Generator,” IEEE J. Quantum Electron. 43(12), 1163–1174 (2007).
[CrossRef]

Imai, K.

Z. Jiang, D. E. Leaird, C. Huang, H. Miao, M. Kourogi, K. Imai, and A. M. Weiner, “Spectral Line-by-Line Pulse Shaping on an Optical Frequency Comb Generator,” IEEE J. Quantum Electron. 43(12), 1163–1174 (2007).
[CrossRef]

Jiang, Z.

Z. Jiang, D. E. Leaird, C. Huang, H. Miao, M. Kourogi, K. Imai, and A. M. Weiner, “Spectral Line-by-Line Pulse Shaping on an Optical Frequency Comb Generator,” IEEE J. Quantum Electron. 43(12), 1163–1174 (2007).
[CrossRef]

Karlsson, M.

Z. Tong, C. Lundström, P. Andrekson, C. McKinstrie, M. Karlsson, D. Blessing, E. Tipsuwannakul, B. Puttnam, H. Toda, and L. Gruner-Nielsen, “Towards the Ultra-Sensitive Optical Link Enabled by Low Noise Phase-Sensitive Amplifiers,” Nat. Photonics 5(7), 430–436 (2011).
[CrossRef]

Kippenberg, T. J.

P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave Spanning Tunable Frequency Comb from a Microresonator,” Phys. Rev. Lett. 107(6), 063901 (2011).
[CrossRef] [PubMed]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[CrossRef] [PubMed]

Kourogi, M.

Z. Jiang, D. E. Leaird, C. Huang, H. Miao, M. Kourogi, K. Imai, and A. M. Weiner, “Spectral Line-by-Line Pulse Shaping on an Optical Frequency Comb Generator,” IEEE J. Quantum Electron. 43(12), 1163–1174 (2007).
[CrossRef]

S. J. Lee, B. Widiyatmoko, M. Kourogi, and M. Ohtsu, “Ultrahigh Scanning Speed Optical Coherence Tomography Using Optical Frequency Comb Generators,” Jpn. J. Appl. Phys. 40(Part 2, No. 8B), L878–L880 (2001).
[CrossRef]

M. Kourogi, T. Enami, and M. Ohtsu, “Monolithic optical frequency comb generator,” IEEE Photon. Technol. Lett. 6(2), 214–217 (1994).
[CrossRef]

Kumar, P.

Kuo, B. P.

C.-S. Brès, A. Wiberg, B. P. Kuo, N. Alic, and S. Radic, “Wavelength Multicasting of 320-Gb/s Channel in Self-Seeded Parametric Amplifier,” IEEE Photon. Technol. Lett. 21(14), 1002–1004 (2009).
[CrossRef]

Lasri, J.

Leaird, D. E.

Z. Jiang, D. E. Leaird, C. Huang, H. Miao, M. Kourogi, K. Imai, and A. M. Weiner, “Spectral Line-by-Line Pulse Shaping on an Optical Frequency Comb Generator,” IEEE J. Quantum Electron. 43(12), 1163–1174 (2007).
[CrossRef]

Lee, S. J.

S. J. Lee, B. Widiyatmoko, M. Kourogi, and M. Ohtsu, “Ultrahigh Scanning Speed Optical Coherence Tomography Using Optical Frequency Comb Generators,” Jpn. J. Appl. Phys. 40(Part 2, No. 8B), L878–L880 (2001).
[CrossRef]

Loh, W.

A. Camerlingo, F. Parmigiani, X. Feng, F. Poletti, P. Horak, W. Loh, D. J. Richardson, and P. Petropoulos, “Multichannel wavelength conversion of 40-Gb/s nonreturn-to-zero DPSK signals in a lead–silicate fiber,” IEEE Photon. Technol. Lett. 22(15), 1153–1155 (2010).
[CrossRef]

Lundström, C.

Z. Tong, C. Lundström, P. Andrekson, C. McKinstrie, M. Karlsson, D. Blessing, E. Tipsuwannakul, B. Puttnam, H. Toda, and L. Gruner-Nielsen, “Towards the Ultra-Sensitive Optical Link Enabled by Low Noise Phase-Sensitive Amplifiers,” Nat. Photonics 5(7), 430–436 (2011).
[CrossRef]

E. Myslivets, C. Lundström, J. M. Aparicio, S. Moro, A. Wiberg, C.-S. Brès, N. Alic, P. A. Andrekson, and S. Radic, “Spatial equalization of zero-dispersion wavelength profiles in nonlinear fibers,” IEEE Photon. Technol. Lett. 21(24), 1807–1809 (2009).
[CrossRef]

McKinstrie, C.

Z. Tong, C. Lundström, P. Andrekson, C. McKinstrie, M. Karlsson, D. Blessing, E. Tipsuwannakul, B. Puttnam, H. Toda, and L. Gruner-Nielsen, “Towards the Ultra-Sensitive Optical Link Enabled by Low Noise Phase-Sensitive Amplifiers,” Nat. Photonics 5(7), 430–436 (2011).
[CrossRef]

Miao, H.

Z. Jiang, D. E. Leaird, C. Huang, H. Miao, M. Kourogi, K. Imai, and A. M. Weiner, “Spectral Line-by-Line Pulse Shaping on an Optical Frequency Comb Generator,” IEEE J. Quantum Electron. 43(12), 1163–1174 (2007).
[CrossRef]

Morimoto, A.

M. Hirano and A. Morimoto, “Generation of flat optical frequency comb by fiber loop modulation,” Opt. Rev. 18(1), 13–18 (2011).
[CrossRef]

Moro, S.

E. Myslivets, C. Lundström, J. M. Aparicio, S. Moro, A. Wiberg, C.-S. Brès, N. Alic, P. A. Andrekson, and S. Radic, “Spatial equalization of zero-dispersion wavelength profiles in nonlinear fibers,” IEEE Photon. Technol. Lett. 21(24), 1807–1809 (2009).
[CrossRef]

Muramoto, Y.

S. Fukushima, C. F. C. Silva, Y. Muramoto, and A. J. Seeds, “10 to 110 GHz tunable opto-electronic frequency synthesis using optical frequency comb generator and uni-travelling-carrier photodiode,” Electron. Lett. 37(12), 780–781 (2001).
[CrossRef]

Myslivets, E.

E. Myslivets, C. Lundström, J. M. Aparicio, S. Moro, A. Wiberg, C.-S. Brès, N. Alic, P. A. Andrekson, and S. Radic, “Spatial equalization of zero-dispersion wavelength profiles in nonlinear fibers,” IEEE Photon. Technol. Lett. 21(24), 1807–1809 (2009).
[CrossRef]

Newbury, N. R.

Ohtsu, M.

S. J. Lee, B. Widiyatmoko, M. Kourogi, and M. Ohtsu, “Ultrahigh Scanning Speed Optical Coherence Tomography Using Optical Frequency Comb Generators,” Jpn. J. Appl. Phys. 40(Part 2, No. 8B), L878–L880 (2001).
[CrossRef]

M. Kourogi, T. Enami, and M. Ohtsu, “Monolithic optical frequency comb generator,” IEEE Photon. Technol. Lett. 6(2), 214–217 (1994).
[CrossRef]

Parmigiani, F.

A. Camerlingo, F. Parmigiani, X. Feng, F. Poletti, P. Horak, W. Loh, D. J. Richardson, and P. Petropoulos, “Multichannel wavelength conversion of 40-Gb/s nonreturn-to-zero DPSK signals in a lead–silicate fiber,” IEEE Photon. Technol. Lett. 22(15), 1153–1155 (2010).
[CrossRef]

Petropoulos, P.

A. Camerlingo, F. Parmigiani, X. Feng, F. Poletti, P. Horak, W. Loh, D. J. Richardson, and P. Petropoulos, “Multichannel wavelength conversion of 40-Gb/s nonreturn-to-zero DPSK signals in a lead–silicate fiber,” IEEE Photon. Technol. Lett. 22(15), 1153–1155 (2010).
[CrossRef]

Poletti, F.

A. Camerlingo, F. Parmigiani, X. Feng, F. Poletti, P. Horak, W. Loh, D. J. Richardson, and P. Petropoulos, “Multichannel wavelength conversion of 40-Gb/s nonreturn-to-zero DPSK signals in a lead–silicate fiber,” IEEE Photon. Technol. Lett. 22(15), 1153–1155 (2010).
[CrossRef]

Puttnam, B.

Z. Tong, C. Lundström, P. Andrekson, C. McKinstrie, M. Karlsson, D. Blessing, E. Tipsuwannakul, B. Puttnam, H. Toda, and L. Gruner-Nielsen, “Towards the Ultra-Sensitive Optical Link Enabled by Low Noise Phase-Sensitive Amplifiers,” Nat. Photonics 5(7), 430–436 (2011).
[CrossRef]

Radic, S.

C.-S. Brès, A. Wiberg, B. P. Kuo, N. Alic, and S. Radic, “Wavelength Multicasting of 320-Gb/s Channel in Self-Seeded Parametric Amplifier,” IEEE Photon. Technol. Lett. 21(14), 1002–1004 (2009).
[CrossRef]

E. Myslivets, C. Lundström, J. M. Aparicio, S. Moro, A. Wiberg, C.-S. Brès, N. Alic, P. A. Andrekson, and S. Radic, “Spatial equalization of zero-dispersion wavelength profiles in nonlinear fibers,” IEEE Photon. Technol. Lett. 21(24), 1807–1809 (2009).
[CrossRef]

Richardson, D. J.

A. Camerlingo, F. Parmigiani, X. Feng, F. Poletti, P. Horak, W. Loh, D. J. Richardson, and P. Petropoulos, “Multichannel wavelength conversion of 40-Gb/s nonreturn-to-zero DPSK signals in a lead–silicate fiber,” IEEE Photon. Technol. Lett. 22(15), 1153–1155 (2010).
[CrossRef]

Schliesser, A.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[CrossRef] [PubMed]

Seeds, A. J.

S. Fukushima, C. F. C. Silva, Y. Muramoto, and A. J. Seeds, “10 to 110 GHz tunable opto-electronic frequency synthesis using optical frequency comb generator and uni-travelling-carrier photodiode,” Electron. Lett. 37(12), 780–781 (2001).
[CrossRef]

S. Bennett, B. Cai, E. Burr, O. Gough, and A. J. Seeds, “1.8-THz bandwidth, zero-frequency error, tunable optical comb generator for DWDM applications,” IEEE Photon. Technol. Lett. 11(5), 551–553 (1999).
[CrossRef]

Silva, C. F. C.

S. Fukushima, C. F. C. Silva, Y. Muramoto, and A. J. Seeds, “10 to 110 GHz tunable opto-electronic frequency synthesis using optical frequency comb generator and uni-travelling-carrier photodiode,” Electron. Lett. 37(12), 780–781 (2001).
[CrossRef]

Stolen, R. H.

R. H. Stolen and J. E. Bjorkholm, “Parametric amplification and frequency conversion in optical fibers,” IEEE J. Quantum Electron. 18(7), 1062–1072 (1982).
[CrossRef]

Tang, R.

Tipsuwannakul, E.

Z. Tong, C. Lundström, P. Andrekson, C. McKinstrie, M. Karlsson, D. Blessing, E. Tipsuwannakul, B. Puttnam, H. Toda, and L. Gruner-Nielsen, “Towards the Ultra-Sensitive Optical Link Enabled by Low Noise Phase-Sensitive Amplifiers,” Nat. Photonics 5(7), 430–436 (2011).
[CrossRef]

Toda, H.

Z. Tong, C. Lundström, P. Andrekson, C. McKinstrie, M. Karlsson, D. Blessing, E. Tipsuwannakul, B. Puttnam, H. Toda, and L. Gruner-Nielsen, “Towards the Ultra-Sensitive Optical Link Enabled by Low Noise Phase-Sensitive Amplifiers,” Nat. Photonics 5(7), 430–436 (2011).
[CrossRef]

Tong, Z.

Z. Tong, C. Lundström, P. Andrekson, C. McKinstrie, M. Karlsson, D. Blessing, E. Tipsuwannakul, B. Puttnam, H. Toda, and L. Gruner-Nielsen, “Towards the Ultra-Sensitive Optical Link Enabled by Low Noise Phase-Sensitive Amplifiers,” Nat. Photonics 5(7), 430–436 (2011).
[CrossRef]

Udem, T.

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[CrossRef] [PubMed]

Vasilyev, M.

Voss, P. L.

Weiner, A. M.

Z. Jiang, D. E. Leaird, C. Huang, H. Miao, M. Kourogi, K. Imai, and A. M. Weiner, “Spectral Line-by-Line Pulse Shaping on an Optical Frequency Comb Generator,” IEEE J. Quantum Electron. 43(12), 1163–1174 (2007).
[CrossRef]

Wiberg, A.

C.-S. Brès, A. Wiberg, B. P. Kuo, N. Alic, and S. Radic, “Wavelength Multicasting of 320-Gb/s Channel in Self-Seeded Parametric Amplifier,” IEEE Photon. Technol. Lett. 21(14), 1002–1004 (2009).
[CrossRef]

E. Myslivets, C. Lundström, J. M. Aparicio, S. Moro, A. Wiberg, C.-S. Brès, N. Alic, P. A. Andrekson, and S. Radic, “Spatial equalization of zero-dispersion wavelength profiles in nonlinear fibers,” IEEE Photon. Technol. Lett. 21(24), 1807–1809 (2009).
[CrossRef]

Widiyatmoko, B.

S. J. Lee, B. Widiyatmoko, M. Kourogi, and M. Ohtsu, “Ultrahigh Scanning Speed Optical Coherence Tomography Using Optical Frequency Comb Generators,” Jpn. J. Appl. Phys. 40(Part 2, No. 8B), L878–L880 (2001).
[CrossRef]

Wilken, T.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[CrossRef] [PubMed]

Xiao, S.

Electron. Lett. (1)

S. Fukushima, C. F. C. Silva, Y. Muramoto, and A. J. Seeds, “10 to 110 GHz tunable opto-electronic frequency synthesis using optical frequency comb generator and uni-travelling-carrier photodiode,” Electron. Lett. 37(12), 780–781 (2001).
[CrossRef]

IEEE J. Quantum Electron. (2)

Z. Jiang, D. E. Leaird, C. Huang, H. Miao, M. Kourogi, K. Imai, and A. M. Weiner, “Spectral Line-by-Line Pulse Shaping on an Optical Frequency Comb Generator,” IEEE J. Quantum Electron. 43(12), 1163–1174 (2007).
[CrossRef]

R. H. Stolen and J. E. Bjorkholm, “Parametric amplification and frequency conversion in optical fibers,” IEEE J. Quantum Electron. 18(7), 1062–1072 (1982).
[CrossRef]

IEEE Photon. Technol. Lett. (5)

C.-S. Brès, A. Wiberg, B. P. Kuo, N. Alic, and S. Radic, “Wavelength Multicasting of 320-Gb/s Channel in Self-Seeded Parametric Amplifier,” IEEE Photon. Technol. Lett. 21(14), 1002–1004 (2009).
[CrossRef]

S. Bennett, B. Cai, E. Burr, O. Gough, and A. J. Seeds, “1.8-THz bandwidth, zero-frequency error, tunable optical comb generator for DWDM applications,” IEEE Photon. Technol. Lett. 11(5), 551–553 (1999).
[CrossRef]

M. Kourogi, T. Enami, and M. Ohtsu, “Monolithic optical frequency comb generator,” IEEE Photon. Technol. Lett. 6(2), 214–217 (1994).
[CrossRef]

E. Myslivets, C. Lundström, J. M. Aparicio, S. Moro, A. Wiberg, C.-S. Brès, N. Alic, P. A. Andrekson, and S. Radic, “Spatial equalization of zero-dispersion wavelength profiles in nonlinear fibers,” IEEE Photon. Technol. Lett. 21(24), 1807–1809 (2009).
[CrossRef]

A. Camerlingo, F. Parmigiani, X. Feng, F. Poletti, P. Horak, W. Loh, D. J. Richardson, and P. Petropoulos, “Multichannel wavelength conversion of 40-Gb/s nonreturn-to-zero DPSK signals in a lead–silicate fiber,” IEEE Photon. Technol. Lett. 22(15), 1153–1155 (2010).
[CrossRef]

Jpn. J. Appl. Phys. (1)

S. J. Lee, B. Widiyatmoko, M. Kourogi, and M. Ohtsu, “Ultrahigh Scanning Speed Optical Coherence Tomography Using Optical Frequency Comb Generators,” Jpn. J. Appl. Phys. 40(Part 2, No. 8B), L878–L880 (2001).
[CrossRef]

Nat. Photonics (1)

Z. Tong, C. Lundström, P. Andrekson, C. McKinstrie, M. Karlsson, D. Blessing, E. Tipsuwannakul, B. Puttnam, H. Toda, and L. Gruner-Nielsen, “Towards the Ultra-Sensitive Optical Link Enabled by Low Noise Phase-Sensitive Amplifiers,” Nat. Photonics 5(7), 430–436 (2011).
[CrossRef]

Nature (2)

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[CrossRef] [PubMed]

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Opt. Rev. (1)

M. Hirano and A. Morimoto, “Generation of flat optical frequency comb by fiber loop modulation,” Opt. Rev. 18(1), 13–18 (2011).
[CrossRef]

Phys. Rev. Lett. (1)

P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave Spanning Tunable Frequency Comb from a Microresonator,” Phys. Rev. Lett. 107(6), 063901 (2011).
[CrossRef] [PubMed]

Other (2)

J. Kakande, P. Petropoulos, and D. J. Richardson, “Fiber optical parametric amplification of optical combs for enhanced performance and functionality,” 37th European Conference and Exhibition on Optical Communication (ECOC), Geneva, Switzerland, 18–22 Sept. 2011.

L. Grűner-Nielsen, S. Dasgupta, M. D. Mermelstein, D. Jakobsen, S. Herstrm, M. E. V. Pedersen, E. L. Lim, S. Alam, F. Parmigiani, D. Richardson, and B. Pálsdótti, “A silica based highly nonlinear fibre with improved threshold for stimulated Brillouin scattering,” European Conference on Optical Communications (ECOC), paper Tu.4.D., Torino, Italy, 19–23 September, 2010.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Single-pump (a,b) and dual-pump (c) phase insensitive FOPA for processing of an optical comb. A single pump can be (a) used to amplify and shape the comb with simultaneous doubling its spectral width by phase synchronizing the pump with a comb tone at its edge or (b), to generate a comb copy in another spectral band. The dual-pump configuration (c) has several advantages including better parametric gain, better shaping capabilities and the possibility to either triple the spectral width or broaden the comb even further by exploiting cascaded FWM processes in which additional pumps are generated from the original pumps, allowing for subsequent generation of additional comb copies.

Fig. 2
Fig. 2

Single-pump (a) and dual-pump (b) phase sensitive FOPAs.

Fig. 3
Fig. 3

OFCG spectrum at its output when seeded by 40 mW (max power recommended by the manufacturer) – the seed was a semiconductor laser amplified with an EDFA.

Fig. 4
Fig. 4

Set-up for the phase-insensitive FOPA. The bandpass filter behind the OFCG selects the 1541-1557.5 nm spectral band (one half of the OFCG spectrum).

Fig. 5
Fig. 5

Phase insensitive FOPA for average pump powers of 18, 21, and 24 dBm, respectively.

Fig. 6
Fig. 6

Phase insensitive FOPA for an average pump power of 24 dBm showing the key comb parameters.

Fig. 7
Fig. 7

Comb spectrum without amplification (pump OFF) (a), FOPA-amplified with pump power of 24 dBm (b), and amplified only with an EDFA to obtain the same output power as FOPA at 1542 nm (c), EDFA output numerically filtered by an idealized gain flattening filter with zero attenuation at 1542 nm is shown in (d) together with FOPA result shown in (b). The observed OTNR difference of 10 dB should be lowered by 3 dB, as half of the EDFA ASE noise is in an orthogonal polarization as compared to the signal.

Fig. 8
Fig. 8

Set-up for PS-FOPA (without the programmable filter shown as ‘A’). The programmable filter ‘A’ was inserted to allow ready comparison between the PI-FOPA and the PS-FOPA.

Fig. 9
Fig. 9

PS-FOPA for pump powers 24 dBm (black) and pump off (red) showing key parameters. Every odd line is suppressed by 8-14 dB.

Fig. 10
Fig. 10

Detail of comparison of phase sensitive (red, solid) and phase insensitive (black, dashed) FOPA at two wavelength being 4 and 11 nm from the comb center. PS-FOPA has about 5.5 dB higher gain.

Tables (1)

Tables Icon

Table 1 Comparison of Key Parameters of Combs Based on Various Technologies

Metrics