Abstract

The relationship and trade-offs between the performance parameters including color rendering index (CRI), luminous efficacy of radiation (LER) and correlated color temperature (CCT) of white LEDs using quantum dot nanophosphors (QD-WLEDs) are investigated for CRI ≥ 80 and LER ≥ 300 lm/W at 1500 K ≤ CCT ≤ 6500 K. The optimal spectra of QD-WLEDs with CCTs of 2700–6500 K have been obtained with a nonlinear program for maximizing LER under conditions of both CRI and a special CRI of R9 strong red above 90 or 95. Furthermore, high performance QD-WLEDs with LER = 381 lm/W for CRI = R9 = 90 and LER = 371 lm/W for CRI = R9 = 95 at CCT = 3000 K, with LER = 361 lm/W for CRI = R9 = 90 and LER = 352 lm/W for CRI = R9 = 95 at CCT = 4500 K, and with LER = 346 lm/W for CRI = R9 = 90 and LER = 338 lm/W for CRI = R9 = 95 at CCT = 5700 K could be achieved. The LERs of high performance white LEDs using QD nanophosphors increase by 13% to 32% compared with that of white LEDs using traditional phosphors.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308(5726), 1274–1278 (2005).
    [CrossRef] [PubMed]
  2. E. F. Schubert, Light Emitting Diodes (Cambridge University Press, 2006).
  3. International Commission on Illumination, Method of Measuring and Specifying Colour Rendering Properties of Light Sources (Commission Internationale de l'Éclairage, 1995).
  4. S. V. Gaponenko, Introduction to Nanophotonics (Cambridge University Press, 2010).
  5. V. L. Colvin, M. C. Schlamp, and A. P. Alivisatos, “Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer,” Nature 370(6488), 354–357 (1994).
    [CrossRef]
  6. C. B. Murray, C. R. Kagan, and M. G. Bawendi, “Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies,” Annu. Rev. Mater. Sci. 30(1), 545–610 (2000).
    [CrossRef]
  7. R. Osovsky, D. Cheskis, V. Kloper, A. Sashchiuk, M. Kroner, and E. Lifshitz, “Continuous-wave pumping of multiexciton bands in the photoluminescence spectrum of a single CdTe-CdSe core-shell colloidal quantum dot,” Phys. Rev. Lett. 102(19), 197401 (2009).
    [CrossRef] [PubMed]
  8. T. Erdem, S. Nizamoglu, X. W. Sun, and H. V. Demir, “A photometric investigation of ultra-efficient LEDs with high color rendering index and high luminous efficacy employing nanocrystal quantum dot luminophores,” Opt. Express 18(1), 340–347 (2010).
    [CrossRef] [PubMed]
  9. T. Erdem, S. Nizamoglu, and H. V. Demir, “Computational study of power conversion and luminous efficiency performance for semiconductor quantum dot nanophosphors on light-emitting diodes,” Opt. Express 20(3), 3275–3295 (2012).
    [CrossRef] [PubMed]
  10. S. Nizamoglu, T. Erdem, X. W. Sun, and H. V. Demir, “Warm-white light-emitting diodes integrated with colloidal quantum dots for high luminous efficacy and color rendering,” Opt. Lett. 35(20), 3372–3374 (2010).
    [CrossRef] [PubMed]
  11. G. X. He, “Warm-white light-emitting diodes integrated with colloidal quantum dots for high luminous efficacy and color rendering: comment,” Opt. Lett. 36(15), 2851, discussion 2852 (2011).
    [CrossRef] [PubMed]
  12. ENERGY STAR for SSL Luminaries ver. 1.1, 2008.
  13. American National Standard, Specifications for the Chromaticity of Solid State Lighting Products (ANSI C78.377), NEMA, 2008.
  14. N. Narendran and L. Deng, “Color rendering properties of LED light sources,” Proc. SPIE 4776, 61–67 (2002).
    [CrossRef]
  15. N. Sándor and J. Schanda, “Visual colour rendering based on colour difference evaluations,” Lighting Res. Tech. 38(3), 225–239 (2006).
    [CrossRef]
  16. K. Hashimoto and Y. Nayatani, “Visual clarity and feeling of contrast,” Color Res. Appl. 19(3), 171–185 (1994).
    [CrossRef]
  17. J. Worthey, “Color rendering: asking the questions,” Color Res. Appl. 28(6), 403–412 (2003).
    [CrossRef]
  18. W. Davis and Y. Ohno, “Color quality scale,” Opt. Eng. 49(3), 033602 (2010).
    [CrossRef]
  19. Y. Ohno and W. Davis, “Rationale of color quality scale,” (2010): http://www.digikey.com/us/en/techzone/lighting/resources/articles/rationale-of-color-quality-scale.html .
  20. S. Nizamoglu, T. Erdem, X. W. Sun, and H. V. Demir, “Warm-white light-emitting diodes integrated with colloidal quantum dots for high luminous efficacy and color rendering: reply to comment,” Opt. Lett. 36(15), 2852 (2011).
    [CrossRef]
  21. J. M. Phillips, M. F. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid state lighting,” Laser Photon. Rev. 1(4), 307–333 (2007).
    [CrossRef]
  22. S. J. Rosenthal, “Bar-coding biomolecules with fluorescent nanocrystals,” Nat. Biotechnol. 19(7), 621–622 (2001).
    [CrossRef] [PubMed]
  23. I. Moreno and U. Contreras, “Color distribution from multicolor LED arrays,” Opt. Express 15(6), 3607–3618 (2007).
    [CrossRef] [PubMed]
  24. C. A. C. Coello and G. B. Lamont, Applications of Multi-Objective Evolutionary Algorithms (World Scientific, 2004).
  25. A. Konak, D. Coit, and A. Smith, “Multi-objective optimization using genetic algorithms: a tutorial,” Reliab. Eng. Syst. Saf. 91(9), 992–1007 (2006).
    [CrossRef]
  26. H. Eskandari and C. D. Geiger, “A fast Pareto genetic algorithm approach for solving expensive multiobjective optimization problems,” J. Heuristics 14(3), 203–241 (2008).
    [CrossRef]
  27. K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput. 6(2), 182–197 (2002).
    [CrossRef]
  28. G. X. He and H. F. Yan, “Optimal spectra of the phosphor-coated white LEDs with excellent color rendering property and high luminous efficacy of radiation,” Opt. Express 19(3), 2519–2529 (2011).
    [CrossRef] [PubMed]

2012 (1)

2011 (3)

2010 (3)

2009 (1)

R. Osovsky, D. Cheskis, V. Kloper, A. Sashchiuk, M. Kroner, and E. Lifshitz, “Continuous-wave pumping of multiexciton bands in the photoluminescence spectrum of a single CdTe-CdSe core-shell colloidal quantum dot,” Phys. Rev. Lett. 102(19), 197401 (2009).
[CrossRef] [PubMed]

2008 (1)

H. Eskandari and C. D. Geiger, “A fast Pareto genetic algorithm approach for solving expensive multiobjective optimization problems,” J. Heuristics 14(3), 203–241 (2008).
[CrossRef]

2007 (2)

J. M. Phillips, M. F. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid state lighting,” Laser Photon. Rev. 1(4), 307–333 (2007).
[CrossRef]

I. Moreno and U. Contreras, “Color distribution from multicolor LED arrays,” Opt. Express 15(6), 3607–3618 (2007).
[CrossRef] [PubMed]

2006 (2)

A. Konak, D. Coit, and A. Smith, “Multi-objective optimization using genetic algorithms: a tutorial,” Reliab. Eng. Syst. Saf. 91(9), 992–1007 (2006).
[CrossRef]

N. Sándor and J. Schanda, “Visual colour rendering based on colour difference evaluations,” Lighting Res. Tech. 38(3), 225–239 (2006).
[CrossRef]

2005 (1)

E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308(5726), 1274–1278 (2005).
[CrossRef] [PubMed]

2003 (1)

J. Worthey, “Color rendering: asking the questions,” Color Res. Appl. 28(6), 403–412 (2003).
[CrossRef]

2002 (2)

N. Narendran and L. Deng, “Color rendering properties of LED light sources,” Proc. SPIE 4776, 61–67 (2002).
[CrossRef]

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput. 6(2), 182–197 (2002).
[CrossRef]

2001 (1)

S. J. Rosenthal, “Bar-coding biomolecules with fluorescent nanocrystals,” Nat. Biotechnol. 19(7), 621–622 (2001).
[CrossRef] [PubMed]

2000 (1)

C. B. Murray, C. R. Kagan, and M. G. Bawendi, “Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies,” Annu. Rev. Mater. Sci. 30(1), 545–610 (2000).
[CrossRef]

1994 (2)

K. Hashimoto and Y. Nayatani, “Visual clarity and feeling of contrast,” Color Res. Appl. 19(3), 171–185 (1994).
[CrossRef]

V. L. Colvin, M. C. Schlamp, and A. P. Alivisatos, “Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer,” Nature 370(6488), 354–357 (1994).
[CrossRef]

Agarwal, S.

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput. 6(2), 182–197 (2002).
[CrossRef]

Alivisatos, A. P.

V. L. Colvin, M. C. Schlamp, and A. P. Alivisatos, “Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer,” Nature 370(6488), 354–357 (1994).
[CrossRef]

Bawendi, M. G.

C. B. Murray, C. R. Kagan, and M. G. Bawendi, “Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies,” Annu. Rev. Mater. Sci. 30(1), 545–610 (2000).
[CrossRef]

Cheskis, D.

R. Osovsky, D. Cheskis, V. Kloper, A. Sashchiuk, M. Kroner, and E. Lifshitz, “Continuous-wave pumping of multiexciton bands in the photoluminescence spectrum of a single CdTe-CdSe core-shell colloidal quantum dot,” Phys. Rev. Lett. 102(19), 197401 (2009).
[CrossRef] [PubMed]

Coit, D.

A. Konak, D. Coit, and A. Smith, “Multi-objective optimization using genetic algorithms: a tutorial,” Reliab. Eng. Syst. Saf. 91(9), 992–1007 (2006).
[CrossRef]

Coltrin, M. F.

J. M. Phillips, M. F. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid state lighting,” Laser Photon. Rev. 1(4), 307–333 (2007).
[CrossRef]

Colvin, V. L.

V. L. Colvin, M. C. Schlamp, and A. P. Alivisatos, “Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer,” Nature 370(6488), 354–357 (1994).
[CrossRef]

Contreras, U.

Crawford, M. H.

J. M. Phillips, M. F. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid state lighting,” Laser Photon. Rev. 1(4), 307–333 (2007).
[CrossRef]

Davis, W.

W. Davis and Y. Ohno, “Color quality scale,” Opt. Eng. 49(3), 033602 (2010).
[CrossRef]

Deb, K.

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput. 6(2), 182–197 (2002).
[CrossRef]

Demir, H. V.

Deng, L.

N. Narendran and L. Deng, “Color rendering properties of LED light sources,” Proc. SPIE 4776, 61–67 (2002).
[CrossRef]

Erdem, T.

Eskandari, H.

H. Eskandari and C. D. Geiger, “A fast Pareto genetic algorithm approach for solving expensive multiobjective optimization problems,” J. Heuristics 14(3), 203–241 (2008).
[CrossRef]

Fischer, A. J.

J. M. Phillips, M. F. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid state lighting,” Laser Photon. Rev. 1(4), 307–333 (2007).
[CrossRef]

Geiger, C. D.

H. Eskandari and C. D. Geiger, “A fast Pareto genetic algorithm approach for solving expensive multiobjective optimization problems,” J. Heuristics 14(3), 203–241 (2008).
[CrossRef]

Hashimoto, K.

K. Hashimoto and Y. Nayatani, “Visual clarity and feeling of contrast,” Color Res. Appl. 19(3), 171–185 (1994).
[CrossRef]

He, G. X.

Kagan, C. R.

C. B. Murray, C. R. Kagan, and M. G. Bawendi, “Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies,” Annu. Rev. Mater. Sci. 30(1), 545–610 (2000).
[CrossRef]

Kim, J. K.

E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308(5726), 1274–1278 (2005).
[CrossRef] [PubMed]

Kloper, V.

R. Osovsky, D. Cheskis, V. Kloper, A. Sashchiuk, M. Kroner, and E. Lifshitz, “Continuous-wave pumping of multiexciton bands in the photoluminescence spectrum of a single CdTe-CdSe core-shell colloidal quantum dot,” Phys. Rev. Lett. 102(19), 197401 (2009).
[CrossRef] [PubMed]

Konak, A.

A. Konak, D. Coit, and A. Smith, “Multi-objective optimization using genetic algorithms: a tutorial,” Reliab. Eng. Syst. Saf. 91(9), 992–1007 (2006).
[CrossRef]

Krames, M. R.

J. M. Phillips, M. F. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid state lighting,” Laser Photon. Rev. 1(4), 307–333 (2007).
[CrossRef]

Kroner, M.

R. Osovsky, D. Cheskis, V. Kloper, A. Sashchiuk, M. Kroner, and E. Lifshitz, “Continuous-wave pumping of multiexciton bands in the photoluminescence spectrum of a single CdTe-CdSe core-shell colloidal quantum dot,” Phys. Rev. Lett. 102(19), 197401 (2009).
[CrossRef] [PubMed]

Lifshitz, E.

R. Osovsky, D. Cheskis, V. Kloper, A. Sashchiuk, M. Kroner, and E. Lifshitz, “Continuous-wave pumping of multiexciton bands in the photoluminescence spectrum of a single CdTe-CdSe core-shell colloidal quantum dot,” Phys. Rev. Lett. 102(19), 197401 (2009).
[CrossRef] [PubMed]

Meyarivan, T.

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput. 6(2), 182–197 (2002).
[CrossRef]

Moreno, I.

Mueller, G. O.

J. M. Phillips, M. F. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid state lighting,” Laser Photon. Rev. 1(4), 307–333 (2007).
[CrossRef]

Mueller-Mach, R.

J. M. Phillips, M. F. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid state lighting,” Laser Photon. Rev. 1(4), 307–333 (2007).
[CrossRef]

Murray, C. B.

C. B. Murray, C. R. Kagan, and M. G. Bawendi, “Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies,” Annu. Rev. Mater. Sci. 30(1), 545–610 (2000).
[CrossRef]

Narendran, N.

N. Narendran and L. Deng, “Color rendering properties of LED light sources,” Proc. SPIE 4776, 61–67 (2002).
[CrossRef]

Nayatani, Y.

K. Hashimoto and Y. Nayatani, “Visual clarity and feeling of contrast,” Color Res. Appl. 19(3), 171–185 (1994).
[CrossRef]

Nizamoglu, S.

Ohno, Y.

W. Davis and Y. Ohno, “Color quality scale,” Opt. Eng. 49(3), 033602 (2010).
[CrossRef]

J. M. Phillips, M. F. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid state lighting,” Laser Photon. Rev. 1(4), 307–333 (2007).
[CrossRef]

Osovsky, R.

R. Osovsky, D. Cheskis, V. Kloper, A. Sashchiuk, M. Kroner, and E. Lifshitz, “Continuous-wave pumping of multiexciton bands in the photoluminescence spectrum of a single CdTe-CdSe core-shell colloidal quantum dot,” Phys. Rev. Lett. 102(19), 197401 (2009).
[CrossRef] [PubMed]

Phillips, J. M.

J. M. Phillips, M. F. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid state lighting,” Laser Photon. Rev. 1(4), 307–333 (2007).
[CrossRef]

Pratap, A.

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput. 6(2), 182–197 (2002).
[CrossRef]

Rohwer, L. E. S.

J. M. Phillips, M. F. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid state lighting,” Laser Photon. Rev. 1(4), 307–333 (2007).
[CrossRef]

Rosenthal, S. J.

S. J. Rosenthal, “Bar-coding biomolecules with fluorescent nanocrystals,” Nat. Biotechnol. 19(7), 621–622 (2001).
[CrossRef] [PubMed]

Sándor, N.

N. Sándor and J. Schanda, “Visual colour rendering based on colour difference evaluations,” Lighting Res. Tech. 38(3), 225–239 (2006).
[CrossRef]

Sashchiuk, A.

R. Osovsky, D. Cheskis, V. Kloper, A. Sashchiuk, M. Kroner, and E. Lifshitz, “Continuous-wave pumping of multiexciton bands in the photoluminescence spectrum of a single CdTe-CdSe core-shell colloidal quantum dot,” Phys. Rev. Lett. 102(19), 197401 (2009).
[CrossRef] [PubMed]

Schanda, J.

N. Sándor and J. Schanda, “Visual colour rendering based on colour difference evaluations,” Lighting Res. Tech. 38(3), 225–239 (2006).
[CrossRef]

Schlamp, M. C.

V. L. Colvin, M. C. Schlamp, and A. P. Alivisatos, “Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer,” Nature 370(6488), 354–357 (1994).
[CrossRef]

Schubert, E. F.

E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308(5726), 1274–1278 (2005).
[CrossRef] [PubMed]

Simmons, J. A.

J. M. Phillips, M. F. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid state lighting,” Laser Photon. Rev. 1(4), 307–333 (2007).
[CrossRef]

Smith, A.

A. Konak, D. Coit, and A. Smith, “Multi-objective optimization using genetic algorithms: a tutorial,” Reliab. Eng. Syst. Saf. 91(9), 992–1007 (2006).
[CrossRef]

Sun, X. W.

Tsao, J. Y.

J. M. Phillips, M. F. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid state lighting,” Laser Photon. Rev. 1(4), 307–333 (2007).
[CrossRef]

Worthey, J.

J. Worthey, “Color rendering: asking the questions,” Color Res. Appl. 28(6), 403–412 (2003).
[CrossRef]

Yan, H. F.

Annu. Rev. Mater. Sci. (1)

C. B. Murray, C. R. Kagan, and M. G. Bawendi, “Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies,” Annu. Rev. Mater. Sci. 30(1), 545–610 (2000).
[CrossRef]

Color Res. Appl. (2)

K. Hashimoto and Y. Nayatani, “Visual clarity and feeling of contrast,” Color Res. Appl. 19(3), 171–185 (1994).
[CrossRef]

J. Worthey, “Color rendering: asking the questions,” Color Res. Appl. 28(6), 403–412 (2003).
[CrossRef]

IEEE Trans. Evol. Comput. (1)

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput. 6(2), 182–197 (2002).
[CrossRef]

J. Heuristics (1)

H. Eskandari and C. D. Geiger, “A fast Pareto genetic algorithm approach for solving expensive multiobjective optimization problems,” J. Heuristics 14(3), 203–241 (2008).
[CrossRef]

Laser Photon. Rev. (1)

J. M. Phillips, M. F. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra-efficient inorganic solid state lighting,” Laser Photon. Rev. 1(4), 307–333 (2007).
[CrossRef]

Lighting Res. Tech. (1)

N. Sándor and J. Schanda, “Visual colour rendering based on colour difference evaluations,” Lighting Res. Tech. 38(3), 225–239 (2006).
[CrossRef]

Nat. Biotechnol. (1)

S. J. Rosenthal, “Bar-coding biomolecules with fluorescent nanocrystals,” Nat. Biotechnol. 19(7), 621–622 (2001).
[CrossRef] [PubMed]

Nature (1)

V. L. Colvin, M. C. Schlamp, and A. P. Alivisatos, “Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer,” Nature 370(6488), 354–357 (1994).
[CrossRef]

Opt. Eng. (1)

W. Davis and Y. Ohno, “Color quality scale,” Opt. Eng. 49(3), 033602 (2010).
[CrossRef]

Opt. Express (4)

Opt. Lett. (3)

Phys. Rev. Lett. (1)

R. Osovsky, D. Cheskis, V. Kloper, A. Sashchiuk, M. Kroner, and E. Lifshitz, “Continuous-wave pumping of multiexciton bands in the photoluminescence spectrum of a single CdTe-CdSe core-shell colloidal quantum dot,” Phys. Rev. Lett. 102(19), 197401 (2009).
[CrossRef] [PubMed]

Proc. SPIE (1)

N. Narendran and L. Deng, “Color rendering properties of LED light sources,” Proc. SPIE 4776, 61–67 (2002).
[CrossRef]

Reliab. Eng. Syst. Saf. (1)

A. Konak, D. Coit, and A. Smith, “Multi-objective optimization using genetic algorithms: a tutorial,” Reliab. Eng. Syst. Saf. 91(9), 992–1007 (2006).
[CrossRef]

Science (1)

E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308(5726), 1274–1278 (2005).
[CrossRef] [PubMed]

Other (7)

E. F. Schubert, Light Emitting Diodes (Cambridge University Press, 2006).

International Commission on Illumination, Method of Measuring and Specifying Colour Rendering Properties of Light Sources (Commission Internationale de l'Éclairage, 1995).

S. V. Gaponenko, Introduction to Nanophotonics (Cambridge University Press, 2010).

ENERGY STAR for SSL Luminaries ver. 1.1, 2008.

American National Standard, Specifications for the Chromaticity of Solid State Lighting Products (ANSI C78.377), NEMA, 2008.

Y. Ohno and W. Davis, “Rationale of color quality scale,” (2010): http://www.digikey.com/us/en/techzone/lighting/resources/articles/rationale-of-color-quality-scale.html .

C. A. C. Coello and G. B. Lamont, Applications of Multi-Objective Evolutionary Algorithms (World Scientific, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Relationships of (a) CRI vs. CCT, (b) CRI vs. LER, and (c) LER vs. CCT with dC ≤ 0.0054.

Fig. 2
Fig. 2

Optimal relative SPDs of QD-WLEDs with CRI = 90 and R9 = 90 at CCTs of 2700 K to 6500 K (dC≤ 0.0054).

Fig. 3
Fig. 3

Optimal relative SPDs of QD-WLEDs with CRI = 95 and R9 = 95 at CCTs of 2700 K to 6500 K (dC≤ 0.0054).

Tables (13)

Tables Icon

Table 1 Optimal peak WL, FWHM and Φe% of each color component, their performance of QD-WLEDs with CRI = 90 at CCTs of 2700 K to 6500 K (dC ≤ 0.0054).

Tables Icon

Table 2 Optimal peak WL, FWHM and Φe% of each color component, their performance of QD-WLEDs with CRI = 95 at CCTs of 2700 K to 6500 K (dC ≤ 0.0054).

Tables Icon

Table 3 Optimal peak WL, FWHM and Φe% of each color component, their performance of QD-WLEDs with CRI = 90 and R9 = 90 at CCTs of 2700 K to 6500 K (dC ≤ 0.0054).

Tables Icon

Table 4 Optimal peak WL, FWHM and Φe% of each color component, their performance of QD-WLEDs with CRI = 95 and R9 = 95 at CCTs of 2700 K to 6500 K (dC ≤ 0.0054).

Tables Icon

Table 5 Highest achievable LER values of p-W LEDs with CRI = 90 and R9 = 90 as well as CRI = 95 and R9 = 95 at CCTs of 2700 K to 6500 K (dC ≤ 0.0054).

Tables Icon

Table 6 Average and standard deviation (σ) values of the wavelength and FWHM of each color component satisfying the conditions of LER ≥ 370 lm/W at CCT = 2700 K, LER ≥ 370 lm/W at CCT = 3000 K, LER ≥ 365 lm/W at CCT = 3500 K, LER ≥ 360 lm/W at CCT = 4000 K, LER ≥ 350 lm/W at CCT = 4500 K, LER ≥ 345 lm/W at CCT = 5000 K, LER ≥ 335 lm/W at CCT = 5700 K, and LER ≥ 325 lm/W at CCT = 6500 K for both CRI ≥ 90 and R9 ≥ 90.

Tables Icon

Table 7 Average and standard deviation (σ) values of the wavelength and FWHM of each color component satisfying the conditions of LER ≥ 360 lm/W at CCT = 2700 K, LER ≥ 360 lm/W at CCT = 3000 K, LER ≥ 360 lm/W at CCT = 3500 K, LER ≥ 350 lm/W at CCT = 4000 K, LER ≥ 345 lm/W at CCT = 4500 K, LER ≥ 340 lm/W at CCT = 5000 K, LER ≥ 330 lm/W at CCT = 5700 K, and LER ≥ 320 lm/W at CCT = 6500 K for both CRI ≥ 95 and R9 ≥ 95.

Tables Icon

Table 8 Φe% of each color component, their performance of QD-WLEDs with λ ¯ and Δλ ¯ of each color component at CCTs of 2700 K to 6500 K under conditions of CRI 90 and R9 90.

Tables Icon

Table 9 Φe% of each color component, their performance of QD-WLEDs with λ ¯ + σλ and Δλ ¯ + σ∆λ of each color component at CCTs of 2700 K to 6500 K under conditions of CRI 90 and R9 90.

Tables Icon

Table 10 Φe% of each color component, their performance of QD-WLEDs with λ ¯ - σλ and Δλ ¯ - σ∆λ of each color component at CCTs of 2700 K to 6500 K under conditions of CRI 90 and R9 90.

Tables Icon

Table 11 Φe% of each color component, their performance of QD-WLEDs with λ ¯ and Δλ ¯ of each color component at CCTs of 2700 K to 6500 K under conditions of CRI ≥ 95 and R9 ≥ 95.

Tables Icon

Table 12 Φe% of each color component, their performance of QD-WLEDs with λ ¯ + σλ and Δλ ¯ + σ∆λ of each color component at CCTs of 2700 K to 6500 K under conditions of CRI 95 and R9 95.

Tables Icon

Table 13 Φe% of each color component, their performance of QD-WLEDs with λ ¯ - σλ and Δλ ¯ - σ∆λ of each color component at CCTs of 2700 K to 6500 K under conditions of CRI ≥ 95 and R9 ≥ 95.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

S QDWLED (λ)= q b S(λ, λ b ,Δ λ b )+ q g S(λ, λ g ,Δ λ g )+ q y S(λ, λ y ,Δ λ y )+ q r S(λ, λ r ,Δ λ r )
F 1 ( λ b , λ g , λ y , λ r ,Δ λ b ,Δ λ g ,Δ λ y ,Δ λ r , q r )=CRI (under conditions of LER 300 lm/W and dC 0.0054)
F 2 ( λ b , λ g , λ y , λ r ,Δ λ b ,Δ λ g ,Δ λ y ,Δ λ r , q r )=CRI (under conditions of 1500 K CCT 6500 K and dC 0.0054)
F 3 ( λ b , λ g , λ y , λ r ,Δ λ b ,Δ λ g ,Δ λ y ,Δ λ r , q r )=LER (under conditions of CRI 80 and dC 0.0054)
F 4 ( λ b , λ g , λ y , λ r ,Δ λ b ,Δ λ g ,Δ λ y ,Δ λ r , q r )=LER (under conditions of CRI i at CCT = j with dC 0.0054)
F 5 ( λ b , λ g , λ y , λ r ,Δ λ b ,Δ λ g ,Δ λ y ,Δ λ r , q r )=LER (under conditions of both CRI and R9 above i at CCT = j with dC 0.0054)

Metrics