Abstract

This paper introduces single-camera, three-dimensional particle tracking velocimetry (SC3D-PTV), an image-based, single-camera technique for measuring 3-component, volumetric velocity fields in environments with limited optical access, in particular, optically accessible internal combustion engines. The optical components used for SC3D-PTV are similar to those used for two-camera stereoscopic-µPIV, but are adapted to project two simultaneous images onto a single image sensor. A novel PTV algorithm relying on the similarity of the particle images corresponding to a single, physical particle produces 3-component, volumetric velocity fields, rather than the 3-component, planar results obtained with stereoscopic PIV, and without the reconstruction of an instantaneous 3D particle field. The hardware and software used for SC3D-PTV are described, and experimental results are presented.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. L. Reuss, R. J. Adrian, C. C. Landreth, D. T. French, and T. D. Fansler, “Instantaneous planar measurements of velocity and large-scale vorticity and strain rate in an engine using particle-image velocimetry,” SAE Tech. Paper, 890616 (1989).
  2. R. Konrath, W. Schröder, and W. Limberg, “Holographic particle image velocimetry applied to the flow within the cylinder of a four-valve internal combustion engine,” Exp. Fluids 33, 781–793 (2002).
  3. W. Choi and Y. Guezennec, “Study of the flow field development during the intake stroke in an IC engine using 2–D PIV and 3–D PTV,” SAE Tech. Paper 1999–01–0957 (1999).
  4. C. Brücker, “3D scanning PIV applied to an air flow in a motored engine using digital high-speed video,” Meas. Sci. Technol. 8(12), 1480–1492 (1997).
    [CrossRef]
  5. M. R. Bown, J. M. MacInnes, and R. W. K. Allen, “Micro-PIV simulation and measurement in complex microchannel geometries,” Meas. Sci. Technol. 16(3), 619–626 (2005).
    [CrossRef]
  6. M. G. Olsen and R. J. Adrian, “Out-of-focus effects on particle image visibility and correlation in microscopic particle image velocimetry,” Exp. Fluids 29(7), S166–S174 (2000).
    [CrossRef]
  7. R. Lindken, J. Westerweel, and B. Wieneke, “Stereoscopic micro particle image velocimetry,” Exp. Fluids 41(2), 161–171 (2006).
    [CrossRef]
  8. M. P. Arroyo and C. A. Greated, “Stereoscopic particle image velocimetry,” Meas. Sci. Technol. 2(12), 1181–1186 (1991).
    [CrossRef]
  9. M. R. Bown, J. M. MacInnes, R. W. K. Allen, and W. B. J. Zimmerman, “Three-dimensional, three-component velocity measurements using stereoscopic micro-PIV and PTV,” Meas. Sci. Technol. 17(8), 2175–2185 (2006).
    [CrossRef]
  10. R. Lindken, J. V. Esch, J. Westerweel, and B. Wieneke, “3D particle imaging for the quantitative characterization of advective microscale mixing,” in 14th Int. Symp. on Applications of Laser Techniques to Fluid Mechanics (2008).
  11. X. Bao and M. Li, “Defocus and binocular vision based stereo particle pairing method for 3D particle tracking velocimetry,” Opt. Lasers Eng. 49(5), 623–631 (2011).
    [CrossRef]
  12. B. Wieneke, “Volume self-calibration for 3D particle image velocimetry,” Exp. Fluids 45(4), 549–556 (2008).
    [CrossRef]
  13. G. E. Elsinga, F. Scarano, B. Wieneke, and B. W. Oudheusden, “Tomographic particle image velocimetry,” Exp. Fluids 41(6), 933–947 (2006).
    [CrossRef]
  14. K. Ohmi and H. Y. Li, “Particle-tracking velocimetry with new algorithms,” Meas. Sci. Technol. 11(6), 603–616 (2000).
    [CrossRef]
  15. M. Ishikawa, Y. Murai, and F. Yamamoto, “Numerical validation of velocity gradient tensor particle tracking velocimetry for highly deformed flow fields,” Meas. Sci. Technol. 11(6), 677–684 (2000).
    [CrossRef]
  16. R. D. Keane, R. J. Adrian, and Y. Zhang, “Super-resolution particle imaging velocimetry,” Meas. Sci. Technol. 6(6), 754–768 (1995).
    [CrossRef]
  17. H. S. Tapia, J. A. G. Aragón, D. M. Hernandez, and B. B. Garcia, “Particle tracking velocimetry (PTV) algorithm for non-uniform and non-spherical particles,” Electronics, Robotics and Automotive Mechanics Conference, 2, 325–330, (2006).
  18. A. V. Mikheev and V. M. Zubtsov, “Enhanced particle-tracking velocimetry (EPTV) with a combined two-component pair-matching algorithm,” Meas. Sci. Technol. 19(8), 085401 (2008).
    [CrossRef]
  19. N. J. Lawson and J. Wu, “Three-dimensional particle image velocimetry: error analysis of stereoscopic techniques,” Meas. Sci. Technol. 8(8), 894–900 (1997).
    [CrossRef]
  20. C. E. Willert and M. Gharib, “Digital particle image velocimetry,” Exp. Fluids 10(4), 181–193 (1991).
    [CrossRef]

2011

X. Bao and M. Li, “Defocus and binocular vision based stereo particle pairing method for 3D particle tracking velocimetry,” Opt. Lasers Eng. 49(5), 623–631 (2011).
[CrossRef]

2008

B. Wieneke, “Volume self-calibration for 3D particle image velocimetry,” Exp. Fluids 45(4), 549–556 (2008).
[CrossRef]

A. V. Mikheev and V. M. Zubtsov, “Enhanced particle-tracking velocimetry (EPTV) with a combined two-component pair-matching algorithm,” Meas. Sci. Technol. 19(8), 085401 (2008).
[CrossRef]

2006

R. Lindken, J. Westerweel, and B. Wieneke, “Stereoscopic micro particle image velocimetry,” Exp. Fluids 41(2), 161–171 (2006).
[CrossRef]

M. R. Bown, J. M. MacInnes, R. W. K. Allen, and W. B. J. Zimmerman, “Three-dimensional, three-component velocity measurements using stereoscopic micro-PIV and PTV,” Meas. Sci. Technol. 17(8), 2175–2185 (2006).
[CrossRef]

G. E. Elsinga, F. Scarano, B. Wieneke, and B. W. Oudheusden, “Tomographic particle image velocimetry,” Exp. Fluids 41(6), 933–947 (2006).
[CrossRef]

2005

M. R. Bown, J. M. MacInnes, and R. W. K. Allen, “Micro-PIV simulation and measurement in complex microchannel geometries,” Meas. Sci. Technol. 16(3), 619–626 (2005).
[CrossRef]

2002

R. Konrath, W. Schröder, and W. Limberg, “Holographic particle image velocimetry applied to the flow within the cylinder of a four-valve internal combustion engine,” Exp. Fluids 33, 781–793 (2002).

2000

M. G. Olsen and R. J. Adrian, “Out-of-focus effects on particle image visibility and correlation in microscopic particle image velocimetry,” Exp. Fluids 29(7), S166–S174 (2000).
[CrossRef]

K. Ohmi and H. Y. Li, “Particle-tracking velocimetry with new algorithms,” Meas. Sci. Technol. 11(6), 603–616 (2000).
[CrossRef]

M. Ishikawa, Y. Murai, and F. Yamamoto, “Numerical validation of velocity gradient tensor particle tracking velocimetry for highly deformed flow fields,” Meas. Sci. Technol. 11(6), 677–684 (2000).
[CrossRef]

1997

C. Brücker, “3D scanning PIV applied to an air flow in a motored engine using digital high-speed video,” Meas. Sci. Technol. 8(12), 1480–1492 (1997).
[CrossRef]

N. J. Lawson and J. Wu, “Three-dimensional particle image velocimetry: error analysis of stereoscopic techniques,” Meas. Sci. Technol. 8(8), 894–900 (1997).
[CrossRef]

1995

R. D. Keane, R. J. Adrian, and Y. Zhang, “Super-resolution particle imaging velocimetry,” Meas. Sci. Technol. 6(6), 754–768 (1995).
[CrossRef]

1991

C. E. Willert and M. Gharib, “Digital particle image velocimetry,” Exp. Fluids 10(4), 181–193 (1991).
[CrossRef]

M. P. Arroyo and C. A. Greated, “Stereoscopic particle image velocimetry,” Meas. Sci. Technol. 2(12), 1181–1186 (1991).
[CrossRef]

Adrian, R. J.

M. G. Olsen and R. J. Adrian, “Out-of-focus effects on particle image visibility and correlation in microscopic particle image velocimetry,” Exp. Fluids 29(7), S166–S174 (2000).
[CrossRef]

R. D. Keane, R. J. Adrian, and Y. Zhang, “Super-resolution particle imaging velocimetry,” Meas. Sci. Technol. 6(6), 754–768 (1995).
[CrossRef]

Allen, R. W. K.

M. R. Bown, J. M. MacInnes, R. W. K. Allen, and W. B. J. Zimmerman, “Three-dimensional, three-component velocity measurements using stereoscopic micro-PIV and PTV,” Meas. Sci. Technol. 17(8), 2175–2185 (2006).
[CrossRef]

M. R. Bown, J. M. MacInnes, and R. W. K. Allen, “Micro-PIV simulation and measurement in complex microchannel geometries,” Meas. Sci. Technol. 16(3), 619–626 (2005).
[CrossRef]

Arroyo, M. P.

M. P. Arroyo and C. A. Greated, “Stereoscopic particle image velocimetry,” Meas. Sci. Technol. 2(12), 1181–1186 (1991).
[CrossRef]

Bao, X.

X. Bao and M. Li, “Defocus and binocular vision based stereo particle pairing method for 3D particle tracking velocimetry,” Opt. Lasers Eng. 49(5), 623–631 (2011).
[CrossRef]

Bown, M. R.

M. R. Bown, J. M. MacInnes, R. W. K. Allen, and W. B. J. Zimmerman, “Three-dimensional, three-component velocity measurements using stereoscopic micro-PIV and PTV,” Meas. Sci. Technol. 17(8), 2175–2185 (2006).
[CrossRef]

M. R. Bown, J. M. MacInnes, and R. W. K. Allen, “Micro-PIV simulation and measurement in complex microchannel geometries,” Meas. Sci. Technol. 16(3), 619–626 (2005).
[CrossRef]

Brücker, C.

C. Brücker, “3D scanning PIV applied to an air flow in a motored engine using digital high-speed video,” Meas. Sci. Technol. 8(12), 1480–1492 (1997).
[CrossRef]

Elsinga, G. E.

G. E. Elsinga, F. Scarano, B. Wieneke, and B. W. Oudheusden, “Tomographic particle image velocimetry,” Exp. Fluids 41(6), 933–947 (2006).
[CrossRef]

Gharib, M.

C. E. Willert and M. Gharib, “Digital particle image velocimetry,” Exp. Fluids 10(4), 181–193 (1991).
[CrossRef]

Greated, C. A.

M. P. Arroyo and C. A. Greated, “Stereoscopic particle image velocimetry,” Meas. Sci. Technol. 2(12), 1181–1186 (1991).
[CrossRef]

Ishikawa, M.

M. Ishikawa, Y. Murai, and F. Yamamoto, “Numerical validation of velocity gradient tensor particle tracking velocimetry for highly deformed flow fields,” Meas. Sci. Technol. 11(6), 677–684 (2000).
[CrossRef]

Keane, R. D.

R. D. Keane, R. J. Adrian, and Y. Zhang, “Super-resolution particle imaging velocimetry,” Meas. Sci. Technol. 6(6), 754–768 (1995).
[CrossRef]

Konrath, R.

R. Konrath, W. Schröder, and W. Limberg, “Holographic particle image velocimetry applied to the flow within the cylinder of a four-valve internal combustion engine,” Exp. Fluids 33, 781–793 (2002).

Lawson, N. J.

N. J. Lawson and J. Wu, “Three-dimensional particle image velocimetry: error analysis of stereoscopic techniques,” Meas. Sci. Technol. 8(8), 894–900 (1997).
[CrossRef]

Li, H. Y.

K. Ohmi and H. Y. Li, “Particle-tracking velocimetry with new algorithms,” Meas. Sci. Technol. 11(6), 603–616 (2000).
[CrossRef]

Li, M.

X. Bao and M. Li, “Defocus and binocular vision based stereo particle pairing method for 3D particle tracking velocimetry,” Opt. Lasers Eng. 49(5), 623–631 (2011).
[CrossRef]

Limberg, W.

R. Konrath, W. Schröder, and W. Limberg, “Holographic particle image velocimetry applied to the flow within the cylinder of a four-valve internal combustion engine,” Exp. Fluids 33, 781–793 (2002).

Lindken, R.

R. Lindken, J. Westerweel, and B. Wieneke, “Stereoscopic micro particle image velocimetry,” Exp. Fluids 41(2), 161–171 (2006).
[CrossRef]

MacInnes, J. M.

M. R. Bown, J. M. MacInnes, R. W. K. Allen, and W. B. J. Zimmerman, “Three-dimensional, three-component velocity measurements using stereoscopic micro-PIV and PTV,” Meas. Sci. Technol. 17(8), 2175–2185 (2006).
[CrossRef]

M. R. Bown, J. M. MacInnes, and R. W. K. Allen, “Micro-PIV simulation and measurement in complex microchannel geometries,” Meas. Sci. Technol. 16(3), 619–626 (2005).
[CrossRef]

Mikheev, A. V.

A. V. Mikheev and V. M. Zubtsov, “Enhanced particle-tracking velocimetry (EPTV) with a combined two-component pair-matching algorithm,” Meas. Sci. Technol. 19(8), 085401 (2008).
[CrossRef]

Murai, Y.

M. Ishikawa, Y. Murai, and F. Yamamoto, “Numerical validation of velocity gradient tensor particle tracking velocimetry for highly deformed flow fields,” Meas. Sci. Technol. 11(6), 677–684 (2000).
[CrossRef]

Ohmi, K.

K. Ohmi and H. Y. Li, “Particle-tracking velocimetry with new algorithms,” Meas. Sci. Technol. 11(6), 603–616 (2000).
[CrossRef]

Olsen, M. G.

M. G. Olsen and R. J. Adrian, “Out-of-focus effects on particle image visibility and correlation in microscopic particle image velocimetry,” Exp. Fluids 29(7), S166–S174 (2000).
[CrossRef]

Oudheusden, B. W.

G. E. Elsinga, F. Scarano, B. Wieneke, and B. W. Oudheusden, “Tomographic particle image velocimetry,” Exp. Fluids 41(6), 933–947 (2006).
[CrossRef]

Scarano, F.

G. E. Elsinga, F. Scarano, B. Wieneke, and B. W. Oudheusden, “Tomographic particle image velocimetry,” Exp. Fluids 41(6), 933–947 (2006).
[CrossRef]

Schröder, W.

R. Konrath, W. Schröder, and W. Limberg, “Holographic particle image velocimetry applied to the flow within the cylinder of a four-valve internal combustion engine,” Exp. Fluids 33, 781–793 (2002).

Westerweel, J.

R. Lindken, J. Westerweel, and B. Wieneke, “Stereoscopic micro particle image velocimetry,” Exp. Fluids 41(2), 161–171 (2006).
[CrossRef]

Wieneke, B.

B. Wieneke, “Volume self-calibration for 3D particle image velocimetry,” Exp. Fluids 45(4), 549–556 (2008).
[CrossRef]

G. E. Elsinga, F. Scarano, B. Wieneke, and B. W. Oudheusden, “Tomographic particle image velocimetry,” Exp. Fluids 41(6), 933–947 (2006).
[CrossRef]

R. Lindken, J. Westerweel, and B. Wieneke, “Stereoscopic micro particle image velocimetry,” Exp. Fluids 41(2), 161–171 (2006).
[CrossRef]

Willert, C. E.

C. E. Willert and M. Gharib, “Digital particle image velocimetry,” Exp. Fluids 10(4), 181–193 (1991).
[CrossRef]

Wu, J.

N. J. Lawson and J. Wu, “Three-dimensional particle image velocimetry: error analysis of stereoscopic techniques,” Meas. Sci. Technol. 8(8), 894–900 (1997).
[CrossRef]

Yamamoto, F.

M. Ishikawa, Y. Murai, and F. Yamamoto, “Numerical validation of velocity gradient tensor particle tracking velocimetry for highly deformed flow fields,” Meas. Sci. Technol. 11(6), 677–684 (2000).
[CrossRef]

Zhang, Y.

R. D. Keane, R. J. Adrian, and Y. Zhang, “Super-resolution particle imaging velocimetry,” Meas. Sci. Technol. 6(6), 754–768 (1995).
[CrossRef]

Zimmerman, W. B. J.

M. R. Bown, J. M. MacInnes, R. W. K. Allen, and W. B. J. Zimmerman, “Three-dimensional, three-component velocity measurements using stereoscopic micro-PIV and PTV,” Meas. Sci. Technol. 17(8), 2175–2185 (2006).
[CrossRef]

Zubtsov, V. M.

A. V. Mikheev and V. M. Zubtsov, “Enhanced particle-tracking velocimetry (EPTV) with a combined two-component pair-matching algorithm,” Meas. Sci. Technol. 19(8), 085401 (2008).
[CrossRef]

Exp. Fluids

R. Konrath, W. Schröder, and W. Limberg, “Holographic particle image velocimetry applied to the flow within the cylinder of a four-valve internal combustion engine,” Exp. Fluids 33, 781–793 (2002).

M. G. Olsen and R. J. Adrian, “Out-of-focus effects on particle image visibility and correlation in microscopic particle image velocimetry,” Exp. Fluids 29(7), S166–S174 (2000).
[CrossRef]

R. Lindken, J. Westerweel, and B. Wieneke, “Stereoscopic micro particle image velocimetry,” Exp. Fluids 41(2), 161–171 (2006).
[CrossRef]

B. Wieneke, “Volume self-calibration for 3D particle image velocimetry,” Exp. Fluids 45(4), 549–556 (2008).
[CrossRef]

G. E. Elsinga, F. Scarano, B. Wieneke, and B. W. Oudheusden, “Tomographic particle image velocimetry,” Exp. Fluids 41(6), 933–947 (2006).
[CrossRef]

C. E. Willert and M. Gharib, “Digital particle image velocimetry,” Exp. Fluids 10(4), 181–193 (1991).
[CrossRef]

Meas. Sci. Technol.

K. Ohmi and H. Y. Li, “Particle-tracking velocimetry with new algorithms,” Meas. Sci. Technol. 11(6), 603–616 (2000).
[CrossRef]

M. Ishikawa, Y. Murai, and F. Yamamoto, “Numerical validation of velocity gradient tensor particle tracking velocimetry for highly deformed flow fields,” Meas. Sci. Technol. 11(6), 677–684 (2000).
[CrossRef]

R. D. Keane, R. J. Adrian, and Y. Zhang, “Super-resolution particle imaging velocimetry,” Meas. Sci. Technol. 6(6), 754–768 (1995).
[CrossRef]

A. V. Mikheev and V. M. Zubtsov, “Enhanced particle-tracking velocimetry (EPTV) with a combined two-component pair-matching algorithm,” Meas. Sci. Technol. 19(8), 085401 (2008).
[CrossRef]

N. J. Lawson and J. Wu, “Three-dimensional particle image velocimetry: error analysis of stereoscopic techniques,” Meas. Sci. Technol. 8(8), 894–900 (1997).
[CrossRef]

M. P. Arroyo and C. A. Greated, “Stereoscopic particle image velocimetry,” Meas. Sci. Technol. 2(12), 1181–1186 (1991).
[CrossRef]

M. R. Bown, J. M. MacInnes, R. W. K. Allen, and W. B. J. Zimmerman, “Three-dimensional, three-component velocity measurements using stereoscopic micro-PIV and PTV,” Meas. Sci. Technol. 17(8), 2175–2185 (2006).
[CrossRef]

C. Brücker, “3D scanning PIV applied to an air flow in a motored engine using digital high-speed video,” Meas. Sci. Technol. 8(12), 1480–1492 (1997).
[CrossRef]

M. R. Bown, J. M. MacInnes, and R. W. K. Allen, “Micro-PIV simulation and measurement in complex microchannel geometries,” Meas. Sci. Technol. 16(3), 619–626 (2005).
[CrossRef]

Opt. Lasers Eng.

X. Bao and M. Li, “Defocus and binocular vision based stereo particle pairing method for 3D particle tracking velocimetry,” Opt. Lasers Eng. 49(5), 623–631 (2011).
[CrossRef]

Other

D. L. Reuss, R. J. Adrian, C. C. Landreth, D. T. French, and T. D. Fansler, “Instantaneous planar measurements of velocity and large-scale vorticity and strain rate in an engine using particle-image velocimetry,” SAE Tech. Paper, 890616 (1989).

H. S. Tapia, J. A. G. Aragón, D. M. Hernandez, and B. B. Garcia, “Particle tracking velocimetry (PTV) algorithm for non-uniform and non-spherical particles,” Electronics, Robotics and Automotive Mechanics Conference, 2, 325–330, (2006).

W. Choi and Y. Guezennec, “Study of the flow field development during the intake stroke in an IC engine using 2–D PIV and 3–D PTV,” SAE Tech. Paper 1999–01–0957 (1999).

R. Lindken, J. V. Esch, J. Westerweel, and B. Wieneke, “3D particle imaging for the quantitative characterization of advective microscale mixing,” in 14th Int. Symp. on Applications of Laser Techniques to Fluid Mechanics (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Two off-center optical paths through a single lens create two views of the measurement volume. A mirror arrangement rotates the images by 90° to use the space of a single image sensor most efficiently.

Fig. 2
Fig. 2

The cumulative density function of the width difference of valid and invalid matches shows that at a threshold where 90% of the valid matches are retained, 30% of the invalid matches are also retained.

Fig. 3
Fig. 3

A threshold value for each feature is set at the level where 90% of the valid matches are retained. Valid sets are much more likely than invalid sets to exceed the 90% threshold for every feature comparison, allowing valid and invalid sets to be separated using feature comparisons.

Fig. 4
Fig. 4

Experimental set-up. An air jet seeded with silicon oil droplets was studied by illuminating the droplets with laser light and imaging the flow using the SC3D-PTV optic attached to a high-speed camera.

Fig. 5
Fig. 5

(Left) Using the SC3D-PTV algorithm, an average velocity field was calculated from 100 instantaneous flow measurements taken over an interval of 100 milliseconds. (Right) The same raw data was used to compute 100 SPIV velocity fields, and the average velocity field was computed.

Fig. 6
Fig. 6

The velocity field is integrated along the x-axis for both the SC3D-PTV results and the SPIV results, and the profiles are compared. The general shapes of the profiles agree, the average velocity difference is 3% and the maximum difference is 9%.

Fig. 7
Fig. 7

An instantaneous vector field computed from data taken inside an optical engine shows a volumetric vortex structure.

Metrics