Abstract

Shockley Read Hall equation poses a limit to the maximum conversion efficiency of broadband solar radiation attainable by means of a single bandgap converter. A possible approach to overcome such a limit is to convert different parts of the broadband spectrum using different single junction converters. We consider here a different modus operandi where a single low-cost optimized plastic prismatic structure performs simultaneously the tasks of concentrating the solar light and, based on the dispersive behavior of the employed material, spatially splitting it into its spectral component. We discuss its approach, optical simulations, fabrication issues and preliminary experimental results demonstrating its feasibility for cost effective high efficiency Concentrated Photovoltaic Systems (CPV) systems.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
    [CrossRef]
  2. A. G. Imenes and D. R. Mills, “Spectral beam splitting technology for increased conversion efficiency in solar concentrating systems: A review,” Sol. Energy Mater. Sol. Cells 84(1-4), 19–69 (2004).
    [CrossRef]
  3. L. M. Fraas, J. E. Avery, J. Martin, V. S. Sundaram, G. Girard, V. T. Dinh, T. M. Davenport, J. W. Yerkes, and M. J. O'neil, “Over 35-percent efficient gaas/gasb tandem solar cells,” IEEE Trans. Electron. Dev. 37(2), 443–449 (1990).
    [CrossRef]
  4. W. Welford and R. Winston, High collection nonimaging optics (Academic Press, New York, 1989).
  5. R. King, D. Law, K. Edmondson, C. Fetzer, G. Kinsey, H. Yoon, R. Sherif, and N. Karam, “40% efficient metamorphic gainp/gainas/ge multijunction solar cells,” Appl. Phys. Lett. 90(18), 183516 (2007).
    [CrossRef]
  6. E. D. Jackson, “Solar energy converter” (US Patent 2,949,498, 1960).
  7. A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl. 17(1), 75–83 (2009).
    [CrossRef]
  8. J. D. McCambridge, M. A. Steiner, B. L. Unger, K. A. Emery, E. L. Christensen, M. W. Wanlass, A. L. Gray, L. Takacs, R. Buelow, T. A. Mccollum, J. W. Ashmead, G. R. Schmidt, A. W. Haas, J. R. Wilcox, J. Van Meter, J. L. Gray, D. T. Moore, A. M. Barnett, and R. J. Schwartz, “Compact spectrum splitting photovoltaic module with high efficiency,” Prog. Photovolt. Res. Appl. 19(3), 352–360 (2011).
    [CrossRef]
  9. B. Mitchell, G. Peharz, G. Siefer, M. Peters, T. Gandy, J. C. Goldschmidt, J. Benick, S. W. Glunz, A. W. Bett, and F. Dimroth, “Four‐junction spectral beam‐splitting photovoltaic receiver with high optical efficiency,” Prog. Photovolt. Res. Appl. 19(1), 61–72 (2011).
    [CrossRef]
  10. M. A. Green and A. Ho‐Baillie, “Forty three per cent composite split‐spectrum concentrator solar cell efficiency,” Prog. Photovolt. Res. Appl. 18(1), 42–47 (2010).
    [CrossRef]
  11. D. Vincenzi, A. Busato, M. Stefancich, and G. Martinelli, “Concentrating pv system based on spectral separation of solar radiation,” Phys. Status Solidi A 206(2), 375–378 (2009).
    [CrossRef]
  12. L. Fraas, J. Avery, H. Huang, L. Minkin, and E. Shifman, “Demonstration of a 33% efficient cassegrainian solar module,” in Proceedings of IEEE 4th World Conference on Photovoltaic Energy Conversion (IEEE, 2006), pp. 679-682.
  13. B. Groß, G. Peharz, G. Siefer, M. Peters, J. Goldschmidt, M. Steiner, W. Guter, V. Klinger, B. George, and F. Dimroth, “Highly efficient light splitting photovoltaic receiver,” in Proceedings of 24th European Photovoltaic Solar Energy Conference (2009), pp. 130–134.
  14. U. Ortabasi, A. Lewandowski, R. Mcconnell, D. J. Aiken, P. L. Sharps, and B. G. Bovard, “Dish/photovoltaic cavity converter (pvcc) system for ultimate solar-to-electricty conversion efficiency-general concept and first performance predictions,” in Proceedings of IEEE 29th Photovoltaic Specialists Conference (IEEE, 2002), pp. 1616-1620.
  15. R. Menon, “Ultra-high efficiency multi-junction solar cells using polychromatic diffractive concentrators” (US Patent 20100095999, 2010).
  16. R. K. Kostuk and G. Rosenberg, “Analysis and design of holographic solar concentrators,” Proc. SPIE 7043, 1–8 (2008).
  17. J. E. Ludman, “Holographic solar concentrator,” Appl. Opt. 21(17), 3057–3058 (1982).
    [CrossRef] [PubMed]
  18. J. M. Castro, D. Zhang, and R. Kostuk, “Planar holographic solar concentrators for low and medium ratio concentration system ” in Proceedings of Optics for Solar Energy (Optical Society of America, Tucson, 2010).
  19. C. Bainier, C. Hernandez, and D. Courjon, “Solar concentrating systems using holographic lenses,” Sol. Wind Technol. 5(4), 395–404 (1988).
    [CrossRef]
  20. W. H. Bloss, M. Griesinger, and E. R. Reinhardt, “Dispersive concentrating systems based on transmission phase holograms for solar applications,” Appl. Opt. 21(20), 3739–3742 (1982).
    [CrossRef] [PubMed]
  21. P. Sharlandjiev and B. Markova, “On fabrication of large format optoelectronic elements,” J. Optoelectron. Adv. Mater. 5, 39–44 (2003).
  22. P. Borden, P. Gregory, O. Moore, H. Vander Plas, and L. James, “A 10-unit dichroic filter spectral splitter module,” in Proceedings of IEEE 15th Photovoltaic Specialists Conference (IEEE, 1981), PP. 311-316.
  23. J. Onffroy, D. Stoltzmann, R. Lin, and G. Knowles, “High-efficiency concentration/multi-solar-cell system for orbital power generation,” in Proceedings of 15th Intersociety Energy Conversion Engineering Conference (1980), PP. 371-376.
  24. D. Wagner and L. He, “An innovative solar system with high efficiency and low cost,” in Proceedings of IEEE 35th Photovoltaic Specialists Conference (IEEE, 2010), pp. 003039-003042.
  25. J. P. Penn, “High concentration spectrum splitting solar collector” (US Patent 6469241, 2002).
  26. A. M. Fox, Optical properties of solids (Oxford Univ Press, 2010).
  27. Schott Ag, “Abbe diagram for schott glasses,” (2011), http://www.us.schott.com/advanced_optics/english/download/schott_abbe_nd_vd_pgf_july_2011_us.pdf .
  28. J. D. Lytle, G. W. Wilkerson, and J. G. Jaramillo, “Wideband optical transmission properties of seven thermoplastics,” Appl. Opt. 18(11), 1842–1846 (1979).
    [CrossRef] [PubMed]
  29. F. Technologies, “Polycarbonate transmission coefficient,” http://www.fresneltech.com/graphs/polycarbonate_graph.html .
  30. J. Ward, K. Ramanathan, F. Hasoon, T. Coutts, J. Keane, T. Moriarty, and R. Noufi, “Cu (in, ga) se2 thin-film concentrator solar cells,” in Proceedings of NCPV Program review Meeting (2001).
  31. Y. Hirai, H. Nagashima, Y. Kurokawa, and A. Yamada, “Experimental and theoretical evaluation of cu (in, ga) se2 concentrator solar cells,” Jpn. J. Appl. Phys. 51(1), 04101 (2012).
    [CrossRef]
  32. A. Bechiri, F. Benmakhlouf, and N. Bouarissa, “Calculation of electronic and optical properties of zn-based ii-vi semiconductors,” Phys. Procedia 2(3), 803–812 (2009).
    [CrossRef]
  33. S. Chen, X. Gong, A. Walsh, and S. H. Wei, “Electronic structure and stability of quaternary chalcogenide semiconductors derived from cation cross-substitution of ii-vi and i-iii-vi_ {2} compounds,” Phys. Rev. B 79(16), 165211 (2009).
    [CrossRef]
  34. A. Luque, G. Sala, and J. Arboiro, “Electric and thermal model for non-uniformly illuminated concentration cells,” Sol. Energy Mater. Sol. Cells 51(3-4), 269–290 (1998).
    [CrossRef]
  35. P. G. Nelson, “An analysis of scattered light in reflecting and refracting primary objectives for coronagraphs” in Technical Note 4 (Coronal Solar Magnetism Observatory, 2006).
  36. D. W. Sweeney and G. E. Sommargren, “Harmonic diffractive lenses,” Appl. Opt. 34(14), 2469–2475 (1995).
    [CrossRef] [PubMed]
  37. M. T. Gale, “Replication techniques for diffractive optical elements,” Microelectron. Eng. 34(3-4), 321–339 (1997).
    [CrossRef]
  38. M. Mokhtar, M. T. Ali, S. Bräuniger, A. Afshari, S. Sgouridis, P. Armstrong, and M. Chiesa, “Systematic comprehensive techno-economic assessment of solar cooling technologies using location-specific climate data,” Appl. Energy 87(12), 3766–3778 (2010).
    [CrossRef]

2012 (1)

Y. Hirai, H. Nagashima, Y. Kurokawa, and A. Yamada, “Experimental and theoretical evaluation of cu (in, ga) se2 concentrator solar cells,” Jpn. J. Appl. Phys. 51(1), 04101 (2012).
[CrossRef]

2011 (2)

J. D. McCambridge, M. A. Steiner, B. L. Unger, K. A. Emery, E. L. Christensen, M. W. Wanlass, A. L. Gray, L. Takacs, R. Buelow, T. A. Mccollum, J. W. Ashmead, G. R. Schmidt, A. W. Haas, J. R. Wilcox, J. Van Meter, J. L. Gray, D. T. Moore, A. M. Barnett, and R. J. Schwartz, “Compact spectrum splitting photovoltaic module with high efficiency,” Prog. Photovolt. Res. Appl. 19(3), 352–360 (2011).
[CrossRef]

B. Mitchell, G. Peharz, G. Siefer, M. Peters, T. Gandy, J. C. Goldschmidt, J. Benick, S. W. Glunz, A. W. Bett, and F. Dimroth, “Four‐junction spectral beam‐splitting photovoltaic receiver with high optical efficiency,” Prog. Photovolt. Res. Appl. 19(1), 61–72 (2011).
[CrossRef]

2010 (2)

M. A. Green and A. Ho‐Baillie, “Forty three per cent composite split‐spectrum concentrator solar cell efficiency,” Prog. Photovolt. Res. Appl. 18(1), 42–47 (2010).
[CrossRef]

M. Mokhtar, M. T. Ali, S. Bräuniger, A. Afshari, S. Sgouridis, P. Armstrong, and M. Chiesa, “Systematic comprehensive techno-economic assessment of solar cooling technologies using location-specific climate data,” Appl. Energy 87(12), 3766–3778 (2010).
[CrossRef]

2009 (4)

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl. 17(1), 75–83 (2009).
[CrossRef]

D. Vincenzi, A. Busato, M. Stefancich, and G. Martinelli, “Concentrating pv system based on spectral separation of solar radiation,” Phys. Status Solidi A 206(2), 375–378 (2009).
[CrossRef]

A. Bechiri, F. Benmakhlouf, and N. Bouarissa, “Calculation of electronic and optical properties of zn-based ii-vi semiconductors,” Phys. Procedia 2(3), 803–812 (2009).
[CrossRef]

S. Chen, X. Gong, A. Walsh, and S. H. Wei, “Electronic structure and stability of quaternary chalcogenide semiconductors derived from cation cross-substitution of ii-vi and i-iii-vi_ {2} compounds,” Phys. Rev. B 79(16), 165211 (2009).
[CrossRef]

2008 (1)

R. K. Kostuk and G. Rosenberg, “Analysis and design of holographic solar concentrators,” Proc. SPIE 7043, 1–8 (2008).

2007 (1)

R. King, D. Law, K. Edmondson, C. Fetzer, G. Kinsey, H. Yoon, R. Sherif, and N. Karam, “40% efficient metamorphic gainp/gainas/ge multijunction solar cells,” Appl. Phys. Lett. 90(18), 183516 (2007).
[CrossRef]

2004 (1)

A. G. Imenes and D. R. Mills, “Spectral beam splitting technology for increased conversion efficiency in solar concentrating systems: A review,” Sol. Energy Mater. Sol. Cells 84(1-4), 19–69 (2004).
[CrossRef]

2003 (1)

P. Sharlandjiev and B. Markova, “On fabrication of large format optoelectronic elements,” J. Optoelectron. Adv. Mater. 5, 39–44 (2003).

1998 (1)

A. Luque, G. Sala, and J. Arboiro, “Electric and thermal model for non-uniformly illuminated concentration cells,” Sol. Energy Mater. Sol. Cells 51(3-4), 269–290 (1998).
[CrossRef]

1997 (1)

M. T. Gale, “Replication techniques for diffractive optical elements,” Microelectron. Eng. 34(3-4), 321–339 (1997).
[CrossRef]

1995 (1)

1990 (1)

L. M. Fraas, J. E. Avery, J. Martin, V. S. Sundaram, G. Girard, V. T. Dinh, T. M. Davenport, J. W. Yerkes, and M. J. O'neil, “Over 35-percent efficient gaas/gasb tandem solar cells,” IEEE Trans. Electron. Dev. 37(2), 443–449 (1990).
[CrossRef]

1988 (1)

C. Bainier, C. Hernandez, and D. Courjon, “Solar concentrating systems using holographic lenses,” Sol. Wind Technol. 5(4), 395–404 (1988).
[CrossRef]

1982 (2)

1979 (1)

1961 (1)

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[CrossRef]

Afshari, A.

M. Mokhtar, M. T. Ali, S. Bräuniger, A. Afshari, S. Sgouridis, P. Armstrong, and M. Chiesa, “Systematic comprehensive techno-economic assessment of solar cooling technologies using location-specific climate data,” Appl. Energy 87(12), 3766–3778 (2010).
[CrossRef]

Aiken, D.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl. 17(1), 75–83 (2009).
[CrossRef]

Ali, M. T.

M. Mokhtar, M. T. Ali, S. Bräuniger, A. Afshari, S. Sgouridis, P. Armstrong, and M. Chiesa, “Systematic comprehensive techno-economic assessment of solar cooling technologies using location-specific climate data,” Appl. Energy 87(12), 3766–3778 (2010).
[CrossRef]

Arboiro, J.

A. Luque, G. Sala, and J. Arboiro, “Electric and thermal model for non-uniformly illuminated concentration cells,” Sol. Energy Mater. Sol. Cells 51(3-4), 269–290 (1998).
[CrossRef]

Armstrong, P.

M. Mokhtar, M. T. Ali, S. Bräuniger, A. Afshari, S. Sgouridis, P. Armstrong, and M. Chiesa, “Systematic comprehensive techno-economic assessment of solar cooling technologies using location-specific climate data,” Appl. Energy 87(12), 3766–3778 (2010).
[CrossRef]

Ashmead, J. W.

J. D. McCambridge, M. A. Steiner, B. L. Unger, K. A. Emery, E. L. Christensen, M. W. Wanlass, A. L. Gray, L. Takacs, R. Buelow, T. A. Mccollum, J. W. Ashmead, G. R. Schmidt, A. W. Haas, J. R. Wilcox, J. Van Meter, J. L. Gray, D. T. Moore, A. M. Barnett, and R. J. Schwartz, “Compact spectrum splitting photovoltaic module with high efficiency,” Prog. Photovolt. Res. Appl. 19(3), 352–360 (2011).
[CrossRef]

Avery, J. E.

L. M. Fraas, J. E. Avery, J. Martin, V. S. Sundaram, G. Girard, V. T. Dinh, T. M. Davenport, J. W. Yerkes, and M. J. O'neil, “Over 35-percent efficient gaas/gasb tandem solar cells,” IEEE Trans. Electron. Dev. 37(2), 443–449 (1990).
[CrossRef]

Bainier, C.

C. Bainier, C. Hernandez, and D. Courjon, “Solar concentrating systems using holographic lenses,” Sol. Wind Technol. 5(4), 395–404 (1988).
[CrossRef]

Barnett, A.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl. 17(1), 75–83 (2009).
[CrossRef]

Barnett, A. M.

J. D. McCambridge, M. A. Steiner, B. L. Unger, K. A. Emery, E. L. Christensen, M. W. Wanlass, A. L. Gray, L. Takacs, R. Buelow, T. A. Mccollum, J. W. Ashmead, G. R. Schmidt, A. W. Haas, J. R. Wilcox, J. Van Meter, J. L. Gray, D. T. Moore, A. M. Barnett, and R. J. Schwartz, “Compact spectrum splitting photovoltaic module with high efficiency,” Prog. Photovolt. Res. Appl. 19(3), 352–360 (2011).
[CrossRef]

Bechiri, A.

A. Bechiri, F. Benmakhlouf, and N. Bouarissa, “Calculation of electronic and optical properties of zn-based ii-vi semiconductors,” Phys. Procedia 2(3), 803–812 (2009).
[CrossRef]

Benick, J.

B. Mitchell, G. Peharz, G. Siefer, M. Peters, T. Gandy, J. C. Goldschmidt, J. Benick, S. W. Glunz, A. W. Bett, and F. Dimroth, “Four‐junction spectral beam‐splitting photovoltaic receiver with high optical efficiency,” Prog. Photovolt. Res. Appl. 19(1), 61–72 (2011).
[CrossRef]

Benmakhlouf, F.

A. Bechiri, F. Benmakhlouf, and N. Bouarissa, “Calculation of electronic and optical properties of zn-based ii-vi semiconductors,” Phys. Procedia 2(3), 803–812 (2009).
[CrossRef]

Bett, A. W.

B. Mitchell, G. Peharz, G. Siefer, M. Peters, T. Gandy, J. C. Goldschmidt, J. Benick, S. W. Glunz, A. W. Bett, and F. Dimroth, “Four‐junction spectral beam‐splitting photovoltaic receiver with high optical efficiency,” Prog. Photovolt. Res. Appl. 19(1), 61–72 (2011).
[CrossRef]

Bloss, W. H.

Bortz, J.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl. 17(1), 75–83 (2009).
[CrossRef]

Bouarissa, N.

A. Bechiri, F. Benmakhlouf, and N. Bouarissa, “Calculation of electronic and optical properties of zn-based ii-vi semiconductors,” Phys. Procedia 2(3), 803–812 (2009).
[CrossRef]

Bowden, S.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl. 17(1), 75–83 (2009).
[CrossRef]

Bräuniger, S.

M. Mokhtar, M. T. Ali, S. Bräuniger, A. Afshari, S. Sgouridis, P. Armstrong, and M. Chiesa, “Systematic comprehensive techno-economic assessment of solar cooling technologies using location-specific climate data,” Appl. Energy 87(12), 3766–3778 (2010).
[CrossRef]

Buelow, R.

J. D. McCambridge, M. A. Steiner, B. L. Unger, K. A. Emery, E. L. Christensen, M. W. Wanlass, A. L. Gray, L. Takacs, R. Buelow, T. A. Mccollum, J. W. Ashmead, G. R. Schmidt, A. W. Haas, J. R. Wilcox, J. Van Meter, J. L. Gray, D. T. Moore, A. M. Barnett, and R. J. Schwartz, “Compact spectrum splitting photovoltaic module with high efficiency,” Prog. Photovolt. Res. Appl. 19(3), 352–360 (2011).
[CrossRef]

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl. 17(1), 75–83 (2009).
[CrossRef]

Busato, A.

D. Vincenzi, A. Busato, M. Stefancich, and G. Martinelli, “Concentrating pv system based on spectral separation of solar radiation,” Phys. Status Solidi A 206(2), 375–378 (2009).
[CrossRef]

Carlson, D.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl. 17(1), 75–83 (2009).
[CrossRef]

Chen, S.

S. Chen, X. Gong, A. Walsh, and S. H. Wei, “Electronic structure and stability of quaternary chalcogenide semiconductors derived from cation cross-substitution of ii-vi and i-iii-vi_ {2} compounds,” Phys. Rev. B 79(16), 165211 (2009).
[CrossRef]

Chiesa, M.

M. Mokhtar, M. T. Ali, S. Bräuniger, A. Afshari, S. Sgouridis, P. Armstrong, and M. Chiesa, “Systematic comprehensive techno-economic assessment of solar cooling technologies using location-specific climate data,” Appl. Energy 87(12), 3766–3778 (2010).
[CrossRef]

Christensen, E.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl. 17(1), 75–83 (2009).
[CrossRef]

Christensen, E. L.

J. D. McCambridge, M. A. Steiner, B. L. Unger, K. A. Emery, E. L. Christensen, M. W. Wanlass, A. L. Gray, L. Takacs, R. Buelow, T. A. Mccollum, J. W. Ashmead, G. R. Schmidt, A. W. Haas, J. R. Wilcox, J. Van Meter, J. L. Gray, D. T. Moore, A. M. Barnett, and R. J. Schwartz, “Compact spectrum splitting photovoltaic module with high efficiency,” Prog. Photovolt. Res. Appl. 19(3), 352–360 (2011).
[CrossRef]

Courjon, D.

C. Bainier, C. Hernandez, and D. Courjon, “Solar concentrating systems using holographic lenses,” Sol. Wind Technol. 5(4), 395–404 (1988).
[CrossRef]

Davenport, T.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl. 17(1), 75–83 (2009).
[CrossRef]

Davenport, T. M.

L. M. Fraas, J. E. Avery, J. Martin, V. S. Sundaram, G. Girard, V. T. Dinh, T. M. Davenport, J. W. Yerkes, and M. J. O'neil, “Over 35-percent efficient gaas/gasb tandem solar cells,” IEEE Trans. Electron. Dev. 37(2), 443–449 (1990).
[CrossRef]

Dimroth, F.

B. Mitchell, G. Peharz, G. Siefer, M. Peters, T. Gandy, J. C. Goldschmidt, J. Benick, S. W. Glunz, A. W. Bett, and F. Dimroth, “Four‐junction spectral beam‐splitting photovoltaic receiver with high optical efficiency,” Prog. Photovolt. Res. Appl. 19(1), 61–72 (2011).
[CrossRef]

Dinh, V. T.

L. M. Fraas, J. E. Avery, J. Martin, V. S. Sundaram, G. Girard, V. T. Dinh, T. M. Davenport, J. W. Yerkes, and M. J. O'neil, “Over 35-percent efficient gaas/gasb tandem solar cells,” IEEE Trans. Electron. Dev. 37(2), 443–449 (1990).
[CrossRef]

Doolittle, A.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl. 17(1), 75–83 (2009).
[CrossRef]

Edmondson, K.

R. King, D. Law, K. Edmondson, C. Fetzer, G. Kinsey, H. Yoon, R. Sherif, and N. Karam, “40% efficient metamorphic gainp/gainas/ge multijunction solar cells,” Appl. Phys. Lett. 90(18), 183516 (2007).
[CrossRef]

Emery, K.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl. 17(1), 75–83 (2009).
[CrossRef]

Emery, K. A.

J. D. McCambridge, M. A. Steiner, B. L. Unger, K. A. Emery, E. L. Christensen, M. W. Wanlass, A. L. Gray, L. Takacs, R. Buelow, T. A. Mccollum, J. W. Ashmead, G. R. Schmidt, A. W. Haas, J. R. Wilcox, J. Van Meter, J. L. Gray, D. T. Moore, A. M. Barnett, and R. J. Schwartz, “Compact spectrum splitting photovoltaic module with high efficiency,” Prog. Photovolt. Res. Appl. 19(3), 352–360 (2011).
[CrossRef]

Ferguson, I.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl. 17(1), 75–83 (2009).
[CrossRef]

Fetzer, C.

R. King, D. Law, K. Edmondson, C. Fetzer, G. Kinsey, H. Yoon, R. Sherif, and N. Karam, “40% efficient metamorphic gainp/gainas/ge multijunction solar cells,” Appl. Phys. Lett. 90(18), 183516 (2007).
[CrossRef]

Fraas, L. M.

L. M. Fraas, J. E. Avery, J. Martin, V. S. Sundaram, G. Girard, V. T. Dinh, T. M. Davenport, J. W. Yerkes, and M. J. O'neil, “Over 35-percent efficient gaas/gasb tandem solar cells,” IEEE Trans. Electron. Dev. 37(2), 443–449 (1990).
[CrossRef]

Gale, M. T.

M. T. Gale, “Replication techniques for diffractive optical elements,” Microelectron. Eng. 34(3-4), 321–339 (1997).
[CrossRef]

Gandy, T.

B. Mitchell, G. Peharz, G. Siefer, M. Peters, T. Gandy, J. C. Goldschmidt, J. Benick, S. W. Glunz, A. W. Bett, and F. Dimroth, “Four‐junction spectral beam‐splitting photovoltaic receiver with high optical efficiency,” Prog. Photovolt. Res. Appl. 19(1), 61–72 (2011).
[CrossRef]

Girard, G.

L. M. Fraas, J. E. Avery, J. Martin, V. S. Sundaram, G. Girard, V. T. Dinh, T. M. Davenport, J. W. Yerkes, and M. J. O'neil, “Over 35-percent efficient gaas/gasb tandem solar cells,” IEEE Trans. Electron. Dev. 37(2), 443–449 (1990).
[CrossRef]

Glunz, S. W.

B. Mitchell, G. Peharz, G. Siefer, M. Peters, T. Gandy, J. C. Goldschmidt, J. Benick, S. W. Glunz, A. W. Bett, and F. Dimroth, “Four‐junction spectral beam‐splitting photovoltaic receiver with high optical efficiency,” Prog. Photovolt. Res. Appl. 19(1), 61–72 (2011).
[CrossRef]

Goldschmidt, J. C.

B. Mitchell, G. Peharz, G. Siefer, M. Peters, T. Gandy, J. C. Goldschmidt, J. Benick, S. W. Glunz, A. W. Bett, and F. Dimroth, “Four‐junction spectral beam‐splitting photovoltaic receiver with high optical efficiency,” Prog. Photovolt. Res. Appl. 19(1), 61–72 (2011).
[CrossRef]

Gong, X.

S. Chen, X. Gong, A. Walsh, and S. H. Wei, “Electronic structure and stability of quaternary chalcogenide semiconductors derived from cation cross-substitution of ii-vi and i-iii-vi_ {2} compounds,” Phys. Rev. B 79(16), 165211 (2009).
[CrossRef]

Goossen, K.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl. 17(1), 75–83 (2009).
[CrossRef]

Gray, A.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl. 17(1), 75–83 (2009).
[CrossRef]

Gray, A. L.

J. D. McCambridge, M. A. Steiner, B. L. Unger, K. A. Emery, E. L. Christensen, M. W. Wanlass, A. L. Gray, L. Takacs, R. Buelow, T. A. Mccollum, J. W. Ashmead, G. R. Schmidt, A. W. Haas, J. R. Wilcox, J. Van Meter, J. L. Gray, D. T. Moore, A. M. Barnett, and R. J. Schwartz, “Compact spectrum splitting photovoltaic module with high efficiency,” Prog. Photovolt. Res. Appl. 19(3), 352–360 (2011).
[CrossRef]

Gray, J.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl. 17(1), 75–83 (2009).
[CrossRef]

Gray, J. L.

J. D. McCambridge, M. A. Steiner, B. L. Unger, K. A. Emery, E. L. Christensen, M. W. Wanlass, A. L. Gray, L. Takacs, R. Buelow, T. A. Mccollum, J. W. Ashmead, G. R. Schmidt, A. W. Haas, J. R. Wilcox, J. Van Meter, J. L. Gray, D. T. Moore, A. M. Barnett, and R. J. Schwartz, “Compact spectrum splitting photovoltaic module with high efficiency,” Prog. Photovolt. Res. Appl. 19(3), 352–360 (2011).
[CrossRef]

Green, M. A.

M. A. Green and A. Ho‐Baillie, “Forty three per cent composite split‐spectrum concentrator solar cell efficiency,” Prog. Photovolt. Res. Appl. 18(1), 42–47 (2010).
[CrossRef]

Griesinger, M.

Haas, A. W.

J. D. McCambridge, M. A. Steiner, B. L. Unger, K. A. Emery, E. L. Christensen, M. W. Wanlass, A. L. Gray, L. Takacs, R. Buelow, T. A. Mccollum, J. W. Ashmead, G. R. Schmidt, A. W. Haas, J. R. Wilcox, J. Van Meter, J. L. Gray, D. T. Moore, A. M. Barnett, and R. J. Schwartz, “Compact spectrum splitting photovoltaic module with high efficiency,” Prog. Photovolt. Res. Appl. 19(3), 352–360 (2011).
[CrossRef]

Hernandez, C.

C. Bainier, C. Hernandez, and D. Courjon, “Solar concentrating systems using holographic lenses,” Sol. Wind Technol. 5(4), 395–404 (1988).
[CrossRef]

Hirai, Y.

Y. Hirai, H. Nagashima, Y. Kurokawa, and A. Yamada, “Experimental and theoretical evaluation of cu (in, ga) se2 concentrator solar cells,” Jpn. J. Appl. Phys. 51(1), 04101 (2012).
[CrossRef]

Ho-Baillie, A.

M. A. Green and A. Ho‐Baillie, “Forty three per cent composite split‐spectrum concentrator solar cell efficiency,” Prog. Photovolt. Res. Appl. 18(1), 42–47 (2010).
[CrossRef]

Honsberg, C.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl. 17(1), 75–83 (2009).
[CrossRef]

Imenes, A. G.

A. G. Imenes and D. R. Mills, “Spectral beam splitting technology for increased conversion efficiency in solar concentrating systems: A review,” Sol. Energy Mater. Sol. Cells 84(1-4), 19–69 (2004).
[CrossRef]

Jani, O.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl. 17(1), 75–83 (2009).
[CrossRef]

Jaramillo, J. G.

Karam, N.

R. King, D. Law, K. Edmondson, C. Fetzer, G. Kinsey, H. Yoon, R. Sherif, and N. Karam, “40% efficient metamorphic gainp/gainas/ge multijunction solar cells,” Appl. Phys. Lett. 90(18), 183516 (2007).
[CrossRef]

Kazmerski, L.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl. 17(1), 75–83 (2009).
[CrossRef]

Kiamilev, F.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl. 17(1), 75–83 (2009).
[CrossRef]

King, R.

R. King, D. Law, K. Edmondson, C. Fetzer, G. Kinsey, H. Yoon, R. Sherif, and N. Karam, “40% efficient metamorphic gainp/gainas/ge multijunction solar cells,” Appl. Phys. Lett. 90(18), 183516 (2007).
[CrossRef]

Kinsey, G.

R. King, D. Law, K. Edmondson, C. Fetzer, G. Kinsey, H. Yoon, R. Sherif, and N. Karam, “40% efficient metamorphic gainp/gainas/ge multijunction solar cells,” Appl. Phys. Lett. 90(18), 183516 (2007).
[CrossRef]

Kirkpatrick, D.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl. 17(1), 75–83 (2009).
[CrossRef]

Kostuk, R. K.

R. K. Kostuk and G. Rosenberg, “Analysis and design of holographic solar concentrators,” Proc. SPIE 7043, 1–8 (2008).

Kurokawa, Y.

Y. Hirai, H. Nagashima, Y. Kurokawa, and A. Yamada, “Experimental and theoretical evaluation of cu (in, ga) se2 concentrator solar cells,” Jpn. J. Appl. Phys. 51(1), 04101 (2012).
[CrossRef]

Kurtz, S.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl. 17(1), 75–83 (2009).
[CrossRef]

Law, D.

R. King, D. Law, K. Edmondson, C. Fetzer, G. Kinsey, H. Yoon, R. Sherif, and N. Karam, “40% efficient metamorphic gainp/gainas/ge multijunction solar cells,” Appl. Phys. Lett. 90(18), 183516 (2007).
[CrossRef]

Ludman, J. E.

Luque, A.

A. Luque, G. Sala, and J. Arboiro, “Electric and thermal model for non-uniformly illuminated concentration cells,” Sol. Energy Mater. Sol. Cells 51(3-4), 269–290 (1998).
[CrossRef]

Lytle, J. D.

Markova, B.

P. Sharlandjiev and B. Markova, “On fabrication of large format optoelectronic elements,” J. Optoelectron. Adv. Mater. 5, 39–44 (2003).

Martin, J.

L. M. Fraas, J. E. Avery, J. Martin, V. S. Sundaram, G. Girard, V. T. Dinh, T. M. Davenport, J. W. Yerkes, and M. J. O'neil, “Over 35-percent efficient gaas/gasb tandem solar cells,” IEEE Trans. Electron. Dev. 37(2), 443–449 (1990).
[CrossRef]

Martinelli, G.

D. Vincenzi, A. Busato, M. Stefancich, and G. Martinelli, “Concentrating pv system based on spectral separation of solar radiation,” Phys. Status Solidi A 206(2), 375–378 (2009).
[CrossRef]

McCambridge, J. D.

J. D. McCambridge, M. A. Steiner, B. L. Unger, K. A. Emery, E. L. Christensen, M. W. Wanlass, A. L. Gray, L. Takacs, R. Buelow, T. A. Mccollum, J. W. Ashmead, G. R. Schmidt, A. W. Haas, J. R. Wilcox, J. Van Meter, J. L. Gray, D. T. Moore, A. M. Barnett, and R. J. Schwartz, “Compact spectrum splitting photovoltaic module with high efficiency,” Prog. Photovolt. Res. Appl. 19(3), 352–360 (2011).
[CrossRef]

Mccollum, T. A.

J. D. McCambridge, M. A. Steiner, B. L. Unger, K. A. Emery, E. L. Christensen, M. W. Wanlass, A. L. Gray, L. Takacs, R. Buelow, T. A. Mccollum, J. W. Ashmead, G. R. Schmidt, A. W. Haas, J. R. Wilcox, J. Van Meter, J. L. Gray, D. T. Moore, A. M. Barnett, and R. J. Schwartz, “Compact spectrum splitting photovoltaic module with high efficiency,” Prog. Photovolt. Res. Appl. 19(3), 352–360 (2011).
[CrossRef]

Mills, D. R.

A. G. Imenes and D. R. Mills, “Spectral beam splitting technology for increased conversion efficiency in solar concentrating systems: A review,” Sol. Energy Mater. Sol. Cells 84(1-4), 19–69 (2004).
[CrossRef]

Mitchell, B.

B. Mitchell, G. Peharz, G. Siefer, M. Peters, T. Gandy, J. C. Goldschmidt, J. Benick, S. W. Glunz, A. W. Bett, and F. Dimroth, “Four‐junction spectral beam‐splitting photovoltaic receiver with high optical efficiency,” Prog. Photovolt. Res. Appl. 19(1), 61–72 (2011).
[CrossRef]

Mokhtar, M.

M. Mokhtar, M. T. Ali, S. Bräuniger, A. Afshari, S. Sgouridis, P. Armstrong, and M. Chiesa, “Systematic comprehensive techno-economic assessment of solar cooling technologies using location-specific climate data,” Appl. Energy 87(12), 3766–3778 (2010).
[CrossRef]

Moore, D.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl. 17(1), 75–83 (2009).
[CrossRef]

Moore, D. T.

J. D. McCambridge, M. A. Steiner, B. L. Unger, K. A. Emery, E. L. Christensen, M. W. Wanlass, A. L. Gray, L. Takacs, R. Buelow, T. A. Mccollum, J. W. Ashmead, G. R. Schmidt, A. W. Haas, J. R. Wilcox, J. Van Meter, J. L. Gray, D. T. Moore, A. M. Barnett, and R. J. Schwartz, “Compact spectrum splitting photovoltaic module with high efficiency,” Prog. Photovolt. Res. Appl. 19(3), 352–360 (2011).
[CrossRef]

Nagashima, H.

Y. Hirai, H. Nagashima, Y. Kurokawa, and A. Yamada, “Experimental and theoretical evaluation of cu (in, ga) se2 concentrator solar cells,” Jpn. J. Appl. Phys. 51(1), 04101 (2012).
[CrossRef]

O'neil, M. J.

L. M. Fraas, J. E. Avery, J. Martin, V. S. Sundaram, G. Girard, V. T. Dinh, T. M. Davenport, J. W. Yerkes, and M. J. O'neil, “Over 35-percent efficient gaas/gasb tandem solar cells,” IEEE Trans. Electron. Dev. 37(2), 443–449 (1990).
[CrossRef]

Peharz, G.

B. Mitchell, G. Peharz, G. Siefer, M. Peters, T. Gandy, J. C. Goldschmidt, J. Benick, S. W. Glunz, A. W. Bett, and F. Dimroth, “Four‐junction spectral beam‐splitting photovoltaic receiver with high optical efficiency,” Prog. Photovolt. Res. Appl. 19(1), 61–72 (2011).
[CrossRef]

Peters, M.

B. Mitchell, G. Peharz, G. Siefer, M. Peters, T. Gandy, J. C. Goldschmidt, J. Benick, S. W. Glunz, A. W. Bett, and F. Dimroth, “Four‐junction spectral beam‐splitting photovoltaic receiver with high optical efficiency,” Prog. Photovolt. Res. Appl. 19(1), 61–72 (2011).
[CrossRef]

Queisser, H. J.

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[CrossRef]

Reinhardt, E. R.

Rosenberg, G.

R. K. Kostuk and G. Rosenberg, “Analysis and design of holographic solar concentrators,” Proc. SPIE 7043, 1–8 (2008).

Sala, G.

A. Luque, G. Sala, and J. Arboiro, “Electric and thermal model for non-uniformly illuminated concentration cells,” Sol. Energy Mater. Sol. Cells 51(3-4), 269–290 (1998).
[CrossRef]

Salzman, D.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl. 17(1), 75–83 (2009).
[CrossRef]

Schmidt, G.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl. 17(1), 75–83 (2009).
[CrossRef]

Schmidt, G. R.

J. D. McCambridge, M. A. Steiner, B. L. Unger, K. A. Emery, E. L. Christensen, M. W. Wanlass, A. L. Gray, L. Takacs, R. Buelow, T. A. Mccollum, J. W. Ashmead, G. R. Schmidt, A. W. Haas, J. R. Wilcox, J. Van Meter, J. L. Gray, D. T. Moore, A. M. Barnett, and R. J. Schwartz, “Compact spectrum splitting photovoltaic module with high efficiency,” Prog. Photovolt. Res. Appl. 19(3), 352–360 (2011).
[CrossRef]

Schwartz, R.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl. 17(1), 75–83 (2009).
[CrossRef]

Schwartz, R. J.

J. D. McCambridge, M. A. Steiner, B. L. Unger, K. A. Emery, E. L. Christensen, M. W. Wanlass, A. L. Gray, L. Takacs, R. Buelow, T. A. Mccollum, J. W. Ashmead, G. R. Schmidt, A. W. Haas, J. R. Wilcox, J. Van Meter, J. L. Gray, D. T. Moore, A. M. Barnett, and R. J. Schwartz, “Compact spectrum splitting photovoltaic module with high efficiency,” Prog. Photovolt. Res. Appl. 19(3), 352–360 (2011).
[CrossRef]

Sgouridis, S.

M. Mokhtar, M. T. Ali, S. Bräuniger, A. Afshari, S. Sgouridis, P. Armstrong, and M. Chiesa, “Systematic comprehensive techno-economic assessment of solar cooling technologies using location-specific climate data,” Appl. Energy 87(12), 3766–3778 (2010).
[CrossRef]

Sharlandjiev, P.

P. Sharlandjiev and B. Markova, “On fabrication of large format optoelectronic elements,” J. Optoelectron. Adv. Mater. 5, 39–44 (2003).

Shatz, N.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl. 17(1), 75–83 (2009).
[CrossRef]

Sherif, R.

R. King, D. Law, K. Edmondson, C. Fetzer, G. Kinsey, H. Yoon, R. Sherif, and N. Karam, “40% efficient metamorphic gainp/gainas/ge multijunction solar cells,” Appl. Phys. Lett. 90(18), 183516 (2007).
[CrossRef]

Shockley, W.

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[CrossRef]

Siefer, G.

B. Mitchell, G. Peharz, G. Siefer, M. Peters, T. Gandy, J. C. Goldschmidt, J. Benick, S. W. Glunz, A. W. Bett, and F. Dimroth, “Four‐junction spectral beam‐splitting photovoltaic receiver with high optical efficiency,” Prog. Photovolt. Res. Appl. 19(1), 61–72 (2011).
[CrossRef]

Sommargren, G. E.

Stefancich, M.

D. Vincenzi, A. Busato, M. Stefancich, and G. Martinelli, “Concentrating pv system based on spectral separation of solar radiation,” Phys. Status Solidi A 206(2), 375–378 (2009).
[CrossRef]

Steiner, M.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl. 17(1), 75–83 (2009).
[CrossRef]

Steiner, M. A.

J. D. McCambridge, M. A. Steiner, B. L. Unger, K. A. Emery, E. L. Christensen, M. W. Wanlass, A. L. Gray, L. Takacs, R. Buelow, T. A. Mccollum, J. W. Ashmead, G. R. Schmidt, A. W. Haas, J. R. Wilcox, J. Van Meter, J. L. Gray, D. T. Moore, A. M. Barnett, and R. J. Schwartz, “Compact spectrum splitting photovoltaic module with high efficiency,” Prog. Photovolt. Res. Appl. 19(3), 352–360 (2011).
[CrossRef]

Sundaram, V. S.

L. M. Fraas, J. E. Avery, J. Martin, V. S. Sundaram, G. Girard, V. T. Dinh, T. M. Davenport, J. W. Yerkes, and M. J. O'neil, “Over 35-percent efficient gaas/gasb tandem solar cells,” IEEE Trans. Electron. Dev. 37(2), 443–449 (1990).
[CrossRef]

Sweeney, D. W.

Takacs, L.

J. D. McCambridge, M. A. Steiner, B. L. Unger, K. A. Emery, E. L. Christensen, M. W. Wanlass, A. L. Gray, L. Takacs, R. Buelow, T. A. Mccollum, J. W. Ashmead, G. R. Schmidt, A. W. Haas, J. R. Wilcox, J. Van Meter, J. L. Gray, D. T. Moore, A. M. Barnett, and R. J. Schwartz, “Compact spectrum splitting photovoltaic module with high efficiency,” Prog. Photovolt. Res. Appl. 19(3), 352–360 (2011).
[CrossRef]

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl. 17(1), 75–83 (2009).
[CrossRef]

Unger, B.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl. 17(1), 75–83 (2009).
[CrossRef]

Unger, B. L.

J. D. McCambridge, M. A. Steiner, B. L. Unger, K. A. Emery, E. L. Christensen, M. W. Wanlass, A. L. Gray, L. Takacs, R. Buelow, T. A. Mccollum, J. W. Ashmead, G. R. Schmidt, A. W. Haas, J. R. Wilcox, J. Van Meter, J. L. Gray, D. T. Moore, A. M. Barnett, and R. J. Schwartz, “Compact spectrum splitting photovoltaic module with high efficiency,” Prog. Photovolt. Res. Appl. 19(3), 352–360 (2011).
[CrossRef]

Van Meter, J.

J. D. McCambridge, M. A. Steiner, B. L. Unger, K. A. Emery, E. L. Christensen, M. W. Wanlass, A. L. Gray, L. Takacs, R. Buelow, T. A. Mccollum, J. W. Ashmead, G. R. Schmidt, A. W. Haas, J. R. Wilcox, J. Van Meter, J. L. Gray, D. T. Moore, A. M. Barnett, and R. J. Schwartz, “Compact spectrum splitting photovoltaic module with high efficiency,” Prog. Photovolt. Res. Appl. 19(3), 352–360 (2011).
[CrossRef]

Vincenzi, D.

D. Vincenzi, A. Busato, M. Stefancich, and G. Martinelli, “Concentrating pv system based on spectral separation of solar radiation,” Phys. Status Solidi A 206(2), 375–378 (2009).
[CrossRef]

Walsh, A.

S. Chen, X. Gong, A. Walsh, and S. H. Wei, “Electronic structure and stability of quaternary chalcogenide semiconductors derived from cation cross-substitution of ii-vi and i-iii-vi_ {2} compounds,” Phys. Rev. B 79(16), 165211 (2009).
[CrossRef]

Wanlass, M.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl. 17(1), 75–83 (2009).
[CrossRef]

Wanlass, M. W.

J. D. McCambridge, M. A. Steiner, B. L. Unger, K. A. Emery, E. L. Christensen, M. W. Wanlass, A. L. Gray, L. Takacs, R. Buelow, T. A. Mccollum, J. W. Ashmead, G. R. Schmidt, A. W. Haas, J. R. Wilcox, J. Van Meter, J. L. Gray, D. T. Moore, A. M. Barnett, and R. J. Schwartz, “Compact spectrum splitting photovoltaic module with high efficiency,” Prog. Photovolt. Res. Appl. 19(3), 352–360 (2011).
[CrossRef]

Wei, S. H.

S. Chen, X. Gong, A. Walsh, and S. H. Wei, “Electronic structure and stability of quaternary chalcogenide semiconductors derived from cation cross-substitution of ii-vi and i-iii-vi_ {2} compounds,” Phys. Rev. B 79(16), 165211 (2009).
[CrossRef]

Wilcox, J. R.

J. D. McCambridge, M. A. Steiner, B. L. Unger, K. A. Emery, E. L. Christensen, M. W. Wanlass, A. L. Gray, L. Takacs, R. Buelow, T. A. Mccollum, J. W. Ashmead, G. R. Schmidt, A. W. Haas, J. R. Wilcox, J. Van Meter, J. L. Gray, D. T. Moore, A. M. Barnett, and R. J. Schwartz, “Compact spectrum splitting photovoltaic module with high efficiency,” Prog. Photovolt. Res. Appl. 19(3), 352–360 (2011).
[CrossRef]

Wilkerson, G. W.

Yamada, A.

Y. Hirai, H. Nagashima, Y. Kurokawa, and A. Yamada, “Experimental and theoretical evaluation of cu (in, ga) se2 concentrator solar cells,” Jpn. J. Appl. Phys. 51(1), 04101 (2012).
[CrossRef]

Yerkes, J. W.

L. M. Fraas, J. E. Avery, J. Martin, V. S. Sundaram, G. Girard, V. T. Dinh, T. M. Davenport, J. W. Yerkes, and M. J. O'neil, “Over 35-percent efficient gaas/gasb tandem solar cells,” IEEE Trans. Electron. Dev. 37(2), 443–449 (1990).
[CrossRef]

Yoon, H.

R. King, D. Law, K. Edmondson, C. Fetzer, G. Kinsey, H. Yoon, R. Sherif, and N. Karam, “40% efficient metamorphic gainp/gainas/ge multijunction solar cells,” Appl. Phys. Lett. 90(18), 183516 (2007).
[CrossRef]

Appl. Energy (1)

M. Mokhtar, M. T. Ali, S. Bräuniger, A. Afshari, S. Sgouridis, P. Armstrong, and M. Chiesa, “Systematic comprehensive techno-economic assessment of solar cooling technologies using location-specific climate data,” Appl. Energy 87(12), 3766–3778 (2010).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. Lett. (1)

R. King, D. Law, K. Edmondson, C. Fetzer, G. Kinsey, H. Yoon, R. Sherif, and N. Karam, “40% efficient metamorphic gainp/gainas/ge multijunction solar cells,” Appl. Phys. Lett. 90(18), 183516 (2007).
[CrossRef]

IEEE Trans. Electron. Dev. (1)

L. M. Fraas, J. E. Avery, J. Martin, V. S. Sundaram, G. Girard, V. T. Dinh, T. M. Davenport, J. W. Yerkes, and M. J. O'neil, “Over 35-percent efficient gaas/gasb tandem solar cells,” IEEE Trans. Electron. Dev. 37(2), 443–449 (1990).
[CrossRef]

J. Appl. Phys. (1)

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[CrossRef]

J. Optoelectron. Adv. Mater. (1)

P. Sharlandjiev and B. Markova, “On fabrication of large format optoelectronic elements,” J. Optoelectron. Adv. Mater. 5, 39–44 (2003).

Jpn. J. Appl. Phys. (1)

Y. Hirai, H. Nagashima, Y. Kurokawa, and A. Yamada, “Experimental and theoretical evaluation of cu (in, ga) se2 concentrator solar cells,” Jpn. J. Appl. Phys. 51(1), 04101 (2012).
[CrossRef]

Microelectron. Eng. (1)

M. T. Gale, “Replication techniques for diffractive optical elements,” Microelectron. Eng. 34(3-4), 321–339 (1997).
[CrossRef]

Phys. Procedia (1)

A. Bechiri, F. Benmakhlouf, and N. Bouarissa, “Calculation of electronic and optical properties of zn-based ii-vi semiconductors,” Phys. Procedia 2(3), 803–812 (2009).
[CrossRef]

Phys. Rev. B (1)

S. Chen, X. Gong, A. Walsh, and S. H. Wei, “Electronic structure and stability of quaternary chalcogenide semiconductors derived from cation cross-substitution of ii-vi and i-iii-vi_ {2} compounds,” Phys. Rev. B 79(16), 165211 (2009).
[CrossRef]

Phys. Status Solidi A (1)

D. Vincenzi, A. Busato, M. Stefancich, and G. Martinelli, “Concentrating pv system based on spectral separation of solar radiation,” Phys. Status Solidi A 206(2), 375–378 (2009).
[CrossRef]

Proc. SPIE (1)

R. K. Kostuk and G. Rosenberg, “Analysis and design of holographic solar concentrators,” Proc. SPIE 7043, 1–8 (2008).

Prog. Photovolt. Res. Appl. (4)

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl. 17(1), 75–83 (2009).
[CrossRef]

J. D. McCambridge, M. A. Steiner, B. L. Unger, K. A. Emery, E. L. Christensen, M. W. Wanlass, A. L. Gray, L. Takacs, R. Buelow, T. A. Mccollum, J. W. Ashmead, G. R. Schmidt, A. W. Haas, J. R. Wilcox, J. Van Meter, J. L. Gray, D. T. Moore, A. M. Barnett, and R. J. Schwartz, “Compact spectrum splitting photovoltaic module with high efficiency,” Prog. Photovolt. Res. Appl. 19(3), 352–360 (2011).
[CrossRef]

B. Mitchell, G. Peharz, G. Siefer, M. Peters, T. Gandy, J. C. Goldschmidt, J. Benick, S. W. Glunz, A. W. Bett, and F. Dimroth, “Four‐junction spectral beam‐splitting photovoltaic receiver with high optical efficiency,” Prog. Photovolt. Res. Appl. 19(1), 61–72 (2011).
[CrossRef]

M. A. Green and A. Ho‐Baillie, “Forty three per cent composite split‐spectrum concentrator solar cell efficiency,” Prog. Photovolt. Res. Appl. 18(1), 42–47 (2010).
[CrossRef]

Sol. Energy Mater. Sol. Cells (2)

A. G. Imenes and D. R. Mills, “Spectral beam splitting technology for increased conversion efficiency in solar concentrating systems: A review,” Sol. Energy Mater. Sol. Cells 84(1-4), 19–69 (2004).
[CrossRef]

A. Luque, G. Sala, and J. Arboiro, “Electric and thermal model for non-uniformly illuminated concentration cells,” Sol. Energy Mater. Sol. Cells 51(3-4), 269–290 (1998).
[CrossRef]

Sol. Wind Technol. (1)

C. Bainier, C. Hernandez, and D. Courjon, “Solar concentrating systems using holographic lenses,” Sol. Wind Technol. 5(4), 395–404 (1988).
[CrossRef]

Other (16)

E. D. Jackson, “Solar energy converter” (US Patent 2,949,498, 1960).

P. G. Nelson, “An analysis of scattered light in reflecting and refracting primary objectives for coronagraphs” in Technical Note 4 (Coronal Solar Magnetism Observatory, 2006).

J. M. Castro, D. Zhang, and R. Kostuk, “Planar holographic solar concentrators for low and medium ratio concentration system ” in Proceedings of Optics for Solar Energy (Optical Society of America, Tucson, 2010).

L. Fraas, J. Avery, H. Huang, L. Minkin, and E. Shifman, “Demonstration of a 33% efficient cassegrainian solar module,” in Proceedings of IEEE 4th World Conference on Photovoltaic Energy Conversion (IEEE, 2006), pp. 679-682.

B. Groß, G. Peharz, G. Siefer, M. Peters, J. Goldschmidt, M. Steiner, W. Guter, V. Klinger, B. George, and F. Dimroth, “Highly efficient light splitting photovoltaic receiver,” in Proceedings of 24th European Photovoltaic Solar Energy Conference (2009), pp. 130–134.

U. Ortabasi, A. Lewandowski, R. Mcconnell, D. J. Aiken, P. L. Sharps, and B. G. Bovard, “Dish/photovoltaic cavity converter (pvcc) system for ultimate solar-to-electricty conversion efficiency-general concept and first performance predictions,” in Proceedings of IEEE 29th Photovoltaic Specialists Conference (IEEE, 2002), pp. 1616-1620.

R. Menon, “Ultra-high efficiency multi-junction solar cells using polychromatic diffractive concentrators” (US Patent 20100095999, 2010).

W. Welford and R. Winston, High collection nonimaging optics (Academic Press, New York, 1989).

P. Borden, P. Gregory, O. Moore, H. Vander Plas, and L. James, “A 10-unit dichroic filter spectral splitter module,” in Proceedings of IEEE 15th Photovoltaic Specialists Conference (IEEE, 1981), PP. 311-316.

J. Onffroy, D. Stoltzmann, R. Lin, and G. Knowles, “High-efficiency concentration/multi-solar-cell system for orbital power generation,” in Proceedings of 15th Intersociety Energy Conversion Engineering Conference (1980), PP. 371-376.

D. Wagner and L. He, “An innovative solar system with high efficiency and low cost,” in Proceedings of IEEE 35th Photovoltaic Specialists Conference (IEEE, 2010), pp. 003039-003042.

J. P. Penn, “High concentration spectrum splitting solar collector” (US Patent 6469241, 2002).

A. M. Fox, Optical properties of solids (Oxford Univ Press, 2010).

Schott Ag, “Abbe diagram for schott glasses,” (2011), http://www.us.schott.com/advanced_optics/english/download/schott_abbe_nd_vd_pgf_july_2011_us.pdf .

F. Technologies, “Polycarbonate transmission coefficient,” http://www.fresneltech.com/graphs/polycarbonate_graph.html .

J. Ward, K. Ramanathan, F. Hasoon, T. Coutts, J. Keane, T. Moriarty, and R. Noufi, “Cu (in, ga) se2 thin-film concentrator solar cells,” in Proceedings of NCPV Program review Meeting (2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Conceptual drawing of the concentrator/spectral splitting system with a detail of the beam splitting effect through part of the component. The system is a set of microprisms designed to deflect two reference wavelength on two distinct points on the photovoltaic receiver. The receiver does not need to be placed perpendicular to the optical axis and the proposed cells are just possible examples.

Fig. 2
Fig. 2

The splitting by a single prism: A is the prism apex angle, I1, I2: Beam entrance/exit angle with respect to the relevant facets, r characterizes the rotation of the prism basis with respect to the optical axis (I1 = A/2-r), h is the “height” of the entering light beam with respect to the reference center of the focal plane and x is the distance where the beam hitting the prism at height “h” encounters the focal plane where the cells are placed. D is the beam deflection angle between entrance and exit ray (wavelength dependent).

Fig. 3
Fig. 3

Total reflection losses (blue) and angular separation (green, degrees) between two wavelength (750 and 1000 nm) for different configurations of a polycarbonate prism set to deflect the 1000 nm wavelength of 30 degrees.

Fig. 4
Fig. 4

The resulting concentrator design (A), the simulation of its behavior with perfectly collimated monochromatic light at two different wavelengths (B) and (C)

Fig. 5
Fig. 5

Simulated (dashed lines) and experimental (full area curves) power distribution for 3 different positions of the integrating sphere.

Fig. 6
Fig. 6

An actual image of the outdoor data acquisition system. . The visible setup is actually assembled on a biaxial tracking system. An image of the actual split beam collected on a black diffuser is presented. The gradual transition between colors is visible.

Fig. 7
Fig. 7

Normalized power distribution across the receiver. The different areas in the graph correspond to the amount of energy arriving on each receiver between 400 and 730 nm (blue region), and between 730 and 950 (red).

Tables (1)

Tables Icon

Table 1 Spectral Distribution of Concentrated Radiation in Different Regions of the Receiver

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

D λ = I 1 A+ sin 1 { n λ sin[A sin 1 ( 1 n λ sin( I 1 ))] }
D λref = tan 1 ( h x )
D λ λ = 1 n λ n λ dλ tan( D λ I 1 +A )( 1+ sin( I 1 ) sin( D λ I 1 +A) n λ 2 sin 2 ( D λ I 1 +A) n λ 2 sin 2 ( I 1 ) )

Metrics