Abstract

Actively tunable metal-insulator-metal waveguides that employ vanadium dioxide films as the active medium are analyzed numerically. Vanadium dioxide exhibits strong contrast between the optical properties of its insulating and metallic phases. In particular, the large optical absorption in the metallic phase makes it straightforward to implement broadband attenuation modulators and switches, but this strong loss can also complicate the design of other types of devices. We present a plasmonic waveguide that functions as an index modulator with Δn > 20% at λ0 = 1550nm (0.80 eV), by using a thin active layer to strike a balance between maximizing index contrast while mitigating attenuation. A second device is configured as a band-stop absorption modulator, taking advantage of symmetry to selectively suppress the TM1 and TM3 modes, with relatively minimal attenuation of the TM0 and TM2 modes.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. I. Bozhevolnyi, ed. Plasmonic nanoguides and circuits (Pan Stanford Publishing, 2008).
    [CrossRef]
  2. M. L. Brongersma and P. G. Kik, eds. Surface plasmon nanophotonics (Springer, 2007).
    [CrossRef]
  3. K. F. MacDonald and N. I. Zheludev, “Active plasmonics: current status,” Laser Photonics Rev. 4, 562–567 (2010).
    [CrossRef]
  4. J. A. Dionne, L. A. Sweatlock, M. T. Sheldon, A. P. Alivisatos, and H. A. Atwater, “Silicon-based plasmonics for on-chip photonics,” IEEE J. Sel. Top. Quantum Electron. 16, 295–306 (2010)
    [CrossRef]
  5. J. A. Dionne, L. A. Sweatlock, A. Polman, and H. A. Atwater, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
    [CrossRef]
  6. K. Diest, J. A. Dionne, M. Spain, and H. A. Atwater, “Tunable color filters based on metal-insulator-metal resonators,” Nano Lett. 9, 2579–2583 (2009).
    [CrossRef] [PubMed]
  7. J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9, 897–902 (2009).
    [CrossRef] [PubMed]
  8. M. Pu, N. Yao, C. Hu, X. Xin, Z. Zhao, C. Wang, and X. Luo, “Directional coupler and nonlinear Mach–Zehnder interferometer based on metal-insulator-metal plasmonic waveguide,” Opt. Express 18, 21030–21037 (2010).
    [CrossRef] [PubMed]
  9. S. Lysenko, A. Rua, F. Fernandez, and H. Liu, “Optical nonlinearity and structural dynamics of VO2 films,” J. Appl. Phys. 105, 043502 (2009).
    [CrossRef]
  10. J. Lappalainen, S. Heinilehto, S. Saukko, W. Lantto, and H. Jantunen, “Microstructure dependent switching properties of VO2 thin films,” Sens. Actuators, A 142, 250–255 (2008).
    [CrossRef]
  11. G. Xu, C. M. Huang, P. Jin, M. Tazawa, and D. M. Chen, “Nano-Ag on vanadium dioxide. I. Localized spectrum tailoring,” J. Appl. Phys. 104, 053101 (2008).
    [CrossRef]
  12. R. M. Briggs, I. M. Pryce, and H. A. Atwater, “Compact silicon photonic waveguide modulator based on the vanadium dioxide metal-insulator phase transition,” Opt. Express 18, 11192–11201 (2010).
    [CrossRef] [PubMed]
  13. J. Nag, J. D. Ryckman, M. T. Hertkorn, B. K. Choi, R. F. Haglund, and S. M. Weiss, “Ultrafast compact silicon-based ring resonator modulators using metal-insulator switching of vanadium dioxide,” Proc. SPIE 7597, 759710 (2010).
    [CrossRef]
  14. V. G. Golubev, V. Y. Davydov, N. F. Kartenko, D. A. Kurdyukov, A. V. Medvedev, A. B. Pevtsov, A. V. Scherbakov, and E. B. Shadrin, “Phase transition-governed opal-VO2 photonic crystal,” Appl. Phys. Lett. 79, 2127–2129 (2001).
    [CrossRef]
  15. D. Y. Lei, K. Appavoo, Y. Sonnefraud, R. F. Haglund, and S. A. Maier, “Single-particle plasmon resonance spectroscopy of phase transition in vanadium dioxide,” Opt. Lett. 35, 3988–3990 (2010).
    [CrossRef] [PubMed]
  16. M. Seo, J. Kyoung, H. Park, S. Koo, H.-S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q.-H. Park, K. Ahn, and D.-S. Kim“Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10, 2064–2068 (2010).
    [CrossRef] [PubMed]
  17. M. D. Goldflam, T. Driscoll, B. Chapler, O. Khatib, N. M. Jokerst, S. Palit, D. R. Smith, B.-J. Kim, G. Seo, H.-T. Kim, M. Di Ventra, and D. N. Basov“Reconfigurable gradient index using VO2 memory metamaterials,” Appl. Phys. Lett. 99044103 (2011).
    [CrossRef]
  18. M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express 17, 18330–18339 (2009).
    [CrossRef] [PubMed]
  19. A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices.” Appl. Opt. 37, 5271–5283 (1998).
    [CrossRef]
  20. D. W. Lynch and W. R. Hunter, “Comments on the optical constants of metals,” in Handbook of optical constants of solids, E. D. Palik, ed. (Academic, 1985) pp. 275–367.
  21. E. N Economou, “Surface plasmons in thin films,” Phys. Rev.,  182, 539–554 (1969).
    [CrossRef]
  22. H. Raether, Surface plasmons on smooth and rough surfaces and on gratings (Springer-Verlag, 1988), pp. 4–7.

2011 (1)

M. D. Goldflam, T. Driscoll, B. Chapler, O. Khatib, N. M. Jokerst, S. Palit, D. R. Smith, B.-J. Kim, G. Seo, H.-T. Kim, M. Di Ventra, and D. N. Basov“Reconfigurable gradient index using VO2 memory metamaterials,” Appl. Phys. Lett. 99044103 (2011).
[CrossRef]

2010 (7)

R. M. Briggs, I. M. Pryce, and H. A. Atwater, “Compact silicon photonic waveguide modulator based on the vanadium dioxide metal-insulator phase transition,” Opt. Express 18, 11192–11201 (2010).
[CrossRef] [PubMed]

J. Nag, J. D. Ryckman, M. T. Hertkorn, B. K. Choi, R. F. Haglund, and S. M. Weiss, “Ultrafast compact silicon-based ring resonator modulators using metal-insulator switching of vanadium dioxide,” Proc. SPIE 7597, 759710 (2010).
[CrossRef]

D. Y. Lei, K. Appavoo, Y. Sonnefraud, R. F. Haglund, and S. A. Maier, “Single-particle plasmon resonance spectroscopy of phase transition in vanadium dioxide,” Opt. Lett. 35, 3988–3990 (2010).
[CrossRef] [PubMed]

M. Seo, J. Kyoung, H. Park, S. Koo, H.-S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q.-H. Park, K. Ahn, and D.-S. Kim“Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10, 2064–2068 (2010).
[CrossRef] [PubMed]

K. F. MacDonald and N. I. Zheludev, “Active plasmonics: current status,” Laser Photonics Rev. 4, 562–567 (2010).
[CrossRef]

J. A. Dionne, L. A. Sweatlock, M. T. Sheldon, A. P. Alivisatos, and H. A. Atwater, “Silicon-based plasmonics for on-chip photonics,” IEEE J. Sel. Top. Quantum Electron. 16, 295–306 (2010)
[CrossRef]

M. Pu, N. Yao, C. Hu, X. Xin, Z. Zhao, C. Wang, and X. Luo, “Directional coupler and nonlinear Mach–Zehnder interferometer based on metal-insulator-metal plasmonic waveguide,” Opt. Express 18, 21030–21037 (2010).
[CrossRef] [PubMed]

2009 (4)

S. Lysenko, A. Rua, F. Fernandez, and H. Liu, “Optical nonlinearity and structural dynamics of VO2 films,” J. Appl. Phys. 105, 043502 (2009).
[CrossRef]

K. Diest, J. A. Dionne, M. Spain, and H. A. Atwater, “Tunable color filters based on metal-insulator-metal resonators,” Nano Lett. 9, 2579–2583 (2009).
[CrossRef] [PubMed]

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9, 897–902 (2009).
[CrossRef] [PubMed]

M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express 17, 18330–18339 (2009).
[CrossRef] [PubMed]

2008 (2)

J. Lappalainen, S. Heinilehto, S. Saukko, W. Lantto, and H. Jantunen, “Microstructure dependent switching properties of VO2 thin films,” Sens. Actuators, A 142, 250–255 (2008).
[CrossRef]

G. Xu, C. M. Huang, P. Jin, M. Tazawa, and D. M. Chen, “Nano-Ag on vanadium dioxide. I. Localized spectrum tailoring,” J. Appl. Phys. 104, 053101 (2008).
[CrossRef]

2006 (1)

J. A. Dionne, L. A. Sweatlock, A. Polman, and H. A. Atwater, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[CrossRef]

2001 (1)

V. G. Golubev, V. Y. Davydov, N. F. Kartenko, D. A. Kurdyukov, A. V. Medvedev, A. B. Pevtsov, A. V. Scherbakov, and E. B. Shadrin, “Phase transition-governed opal-VO2 photonic crystal,” Appl. Phys. Lett. 79, 2127–2129 (2001).
[CrossRef]

1998 (1)

1969 (1)

E. N Economou, “Surface plasmons in thin films,” Phys. Rev.,  182, 539–554 (1969).
[CrossRef]

Ahn, K.

M. Seo, J. Kyoung, H. Park, S. Koo, H.-S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q.-H. Park, K. Ahn, and D.-S. Kim“Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10, 2064–2068 (2010).
[CrossRef] [PubMed]

Ahn, Y. H.

M. Seo, J. Kyoung, H. Park, S. Koo, H.-S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q.-H. Park, K. Ahn, and D.-S. Kim“Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10, 2064–2068 (2010).
[CrossRef] [PubMed]

Alivisatos, A. P.

J. A. Dionne, L. A. Sweatlock, M. T. Sheldon, A. P. Alivisatos, and H. A. Atwater, “Silicon-based plasmonics for on-chip photonics,” IEEE J. Sel. Top. Quantum Electron. 16, 295–306 (2010)
[CrossRef]

Appavoo, K.

Atwater, H. A.

R. M. Briggs, I. M. Pryce, and H. A. Atwater, “Compact silicon photonic waveguide modulator based on the vanadium dioxide metal-insulator phase transition,” Opt. Express 18, 11192–11201 (2010).
[CrossRef] [PubMed]

J. A. Dionne, L. A. Sweatlock, M. T. Sheldon, A. P. Alivisatos, and H. A. Atwater, “Silicon-based plasmonics for on-chip photonics,” IEEE J. Sel. Top. Quantum Electron. 16, 295–306 (2010)
[CrossRef]

K. Diest, J. A. Dionne, M. Spain, and H. A. Atwater, “Tunable color filters based on metal-insulator-metal resonators,” Nano Lett. 9, 2579–2583 (2009).
[CrossRef] [PubMed]

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9, 897–902 (2009).
[CrossRef] [PubMed]

M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express 17, 18330–18339 (2009).
[CrossRef] [PubMed]

J. A. Dionne, L. A. Sweatlock, A. Polman, and H. A. Atwater, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[CrossRef]

Aydin, K.

Basov, D. N.

M. D. Goldflam, T. Driscoll, B. Chapler, O. Khatib, N. M. Jokerst, S. Palit, D. R. Smith, B.-J. Kim, G. Seo, H.-T. Kim, M. Di Ventra, and D. N. Basov“Reconfigurable gradient index using VO2 memory metamaterials,” Appl. Phys. Lett. 99044103 (2011).
[CrossRef]

Bernien, H.

M. Seo, J. Kyoung, H. Park, S. Koo, H.-S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q.-H. Park, K. Ahn, and D.-S. Kim“Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10, 2064–2068 (2010).
[CrossRef] [PubMed]

Boyd, E. M.

Briggs, R. M.

Chapler, B.

M. D. Goldflam, T. Driscoll, B. Chapler, O. Khatib, N. M. Jokerst, S. Palit, D. R. Smith, B.-J. Kim, G. Seo, H.-T. Kim, M. Di Ventra, and D. N. Basov“Reconfigurable gradient index using VO2 memory metamaterials,” Appl. Phys. Lett. 99044103 (2011).
[CrossRef]

Chen, D. M.

G. Xu, C. M. Huang, P. Jin, M. Tazawa, and D. M. Chen, “Nano-Ag on vanadium dioxide. I. Localized spectrum tailoring,” J. Appl. Phys. 104, 053101 (2008).
[CrossRef]

Choe, J. H.

M. Seo, J. Kyoung, H. Park, S. Koo, H.-S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q.-H. Park, K. Ahn, and D.-S. Kim“Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10, 2064–2068 (2010).
[CrossRef] [PubMed]

Choi, B. K.

J. Nag, J. D. Ryckman, M. T. Hertkorn, B. K. Choi, R. F. Haglund, and S. M. Weiss, “Ultrafast compact silicon-based ring resonator modulators using metal-insulator switching of vanadium dioxide,” Proc. SPIE 7597, 759710 (2010).
[CrossRef]

Davydov, V. Y.

V. G. Golubev, V. Y. Davydov, N. F. Kartenko, D. A. Kurdyukov, A. V. Medvedev, A. B. Pevtsov, A. V. Scherbakov, and E. B. Shadrin, “Phase transition-governed opal-VO2 photonic crystal,” Appl. Phys. Lett. 79, 2127–2129 (2001).
[CrossRef]

Di Ventra, M.

M. D. Goldflam, T. Driscoll, B. Chapler, O. Khatib, N. M. Jokerst, S. Palit, D. R. Smith, B.-J. Kim, G. Seo, H.-T. Kim, M. Di Ventra, and D. N. Basov“Reconfigurable gradient index using VO2 memory metamaterials,” Appl. Phys. Lett. 99044103 (2011).
[CrossRef]

Dicken, M. J.

Diest, K.

K. Diest, J. A. Dionne, M. Spain, and H. A. Atwater, “Tunable color filters based on metal-insulator-metal resonators,” Nano Lett. 9, 2579–2583 (2009).
[CrossRef] [PubMed]

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9, 897–902 (2009).
[CrossRef] [PubMed]

Dionne, J. A.

J. A. Dionne, L. A. Sweatlock, M. T. Sheldon, A. P. Alivisatos, and H. A. Atwater, “Silicon-based plasmonics for on-chip photonics,” IEEE J. Sel. Top. Quantum Electron. 16, 295–306 (2010)
[CrossRef]

K. Diest, J. A. Dionne, M. Spain, and H. A. Atwater, “Tunable color filters based on metal-insulator-metal resonators,” Nano Lett. 9, 2579–2583 (2009).
[CrossRef] [PubMed]

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9, 897–902 (2009).
[CrossRef] [PubMed]

J. A. Dionne, L. A. Sweatlock, A. Polman, and H. A. Atwater, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[CrossRef]

Djurišic, A. B.

Driscoll, T.

M. D. Goldflam, T. Driscoll, B. Chapler, O. Khatib, N. M. Jokerst, S. Palit, D. R. Smith, B.-J. Kim, G. Seo, H.-T. Kim, M. Di Ventra, and D. N. Basov“Reconfigurable gradient index using VO2 memory metamaterials,” Appl. Phys. Lett. 99044103 (2011).
[CrossRef]

Economou, E. N

E. N Economou, “Surface plasmons in thin films,” Phys. Rev.,  182, 539–554 (1969).
[CrossRef]

Elazar, J. M.

Fernandez, F.

S. Lysenko, A. Rua, F. Fernandez, and H. Liu, “Optical nonlinearity and structural dynamics of VO2 films,” J. Appl. Phys. 105, 043502 (2009).
[CrossRef]

Goldflam, M. D.

M. D. Goldflam, T. Driscoll, B. Chapler, O. Khatib, N. M. Jokerst, S. Palit, D. R. Smith, B.-J. Kim, G. Seo, H.-T. Kim, M. Di Ventra, and D. N. Basov“Reconfigurable gradient index using VO2 memory metamaterials,” Appl. Phys. Lett. 99044103 (2011).
[CrossRef]

Golubev, V. G.

V. G. Golubev, V. Y. Davydov, N. F. Kartenko, D. A. Kurdyukov, A. V. Medvedev, A. B. Pevtsov, A. V. Scherbakov, and E. B. Shadrin, “Phase transition-governed opal-VO2 photonic crystal,” Appl. Phys. Lett. 79, 2127–2129 (2001).
[CrossRef]

Haglund, R. F.

J. Nag, J. D. Ryckman, M. T. Hertkorn, B. K. Choi, R. F. Haglund, and S. M. Weiss, “Ultrafast compact silicon-based ring resonator modulators using metal-insulator switching of vanadium dioxide,” Proc. SPIE 7597, 759710 (2010).
[CrossRef]

D. Y. Lei, K. Appavoo, Y. Sonnefraud, R. F. Haglund, and S. A. Maier, “Single-particle plasmon resonance spectroscopy of phase transition in vanadium dioxide,” Opt. Lett. 35, 3988–3990 (2010).
[CrossRef] [PubMed]

Heinilehto, S.

J. Lappalainen, S. Heinilehto, S. Saukko, W. Lantto, and H. Jantunen, “Microstructure dependent switching properties of VO2 thin films,” Sens. Actuators, A 142, 250–255 (2008).
[CrossRef]

Hertkorn, M. T.

J. Nag, J. D. Ryckman, M. T. Hertkorn, B. K. Choi, R. F. Haglund, and S. M. Weiss, “Ultrafast compact silicon-based ring resonator modulators using metal-insulator switching of vanadium dioxide,” Proc. SPIE 7597, 759710 (2010).
[CrossRef]

Hu, C.

Huang, C. M.

G. Xu, C. M. Huang, P. Jin, M. Tazawa, and D. M. Chen, “Nano-Ag on vanadium dioxide. I. Localized spectrum tailoring,” J. Appl. Phys. 104, 053101 (2008).
[CrossRef]

Hunter, W. R.

D. W. Lynch and W. R. Hunter, “Comments on the optical constants of metals,” in Handbook of optical constants of solids, E. D. Palik, ed. (Academic, 1985) pp. 275–367.

Jantunen, H.

J. Lappalainen, S. Heinilehto, S. Saukko, W. Lantto, and H. Jantunen, “Microstructure dependent switching properties of VO2 thin films,” Sens. Actuators, A 142, 250–255 (2008).
[CrossRef]

Jin, P.

G. Xu, C. M. Huang, P. Jin, M. Tazawa, and D. M. Chen, “Nano-Ag on vanadium dioxide. I. Localized spectrum tailoring,” J. Appl. Phys. 104, 053101 (2008).
[CrossRef]

Jokerst, N. M.

M. D. Goldflam, T. Driscoll, B. Chapler, O. Khatib, N. M. Jokerst, S. Palit, D. R. Smith, B.-J. Kim, G. Seo, H.-T. Kim, M. Di Ventra, and D. N. Basov“Reconfigurable gradient index using VO2 memory metamaterials,” Appl. Phys. Lett. 99044103 (2011).
[CrossRef]

Kartenko, N. F.

V. G. Golubev, V. Y. Davydov, N. F. Kartenko, D. A. Kurdyukov, A. V. Medvedev, A. B. Pevtsov, A. V. Scherbakov, and E. B. Shadrin, “Phase transition-governed opal-VO2 photonic crystal,” Appl. Phys. Lett. 79, 2127–2129 (2001).
[CrossRef]

Khatib, O.

M. D. Goldflam, T. Driscoll, B. Chapler, O. Khatib, N. M. Jokerst, S. Palit, D. R. Smith, B.-J. Kim, G. Seo, H.-T. Kim, M. Di Ventra, and D. N. Basov“Reconfigurable gradient index using VO2 memory metamaterials,” Appl. Phys. Lett. 99044103 (2011).
[CrossRef]

Kim, B. J.

M. Seo, J. Kyoung, H. Park, S. Koo, H.-S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q.-H. Park, K. Ahn, and D.-S. Kim“Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10, 2064–2068 (2010).
[CrossRef] [PubMed]

Kim, B.-J.

M. D. Goldflam, T. Driscoll, B. Chapler, O. Khatib, N. M. Jokerst, S. Palit, D. R. Smith, B.-J. Kim, G. Seo, H.-T. Kim, M. Di Ventra, and D. N. Basov“Reconfigurable gradient index using VO2 memory metamaterials,” Appl. Phys. Lett. 99044103 (2011).
[CrossRef]

Kim, D.-S.

M. Seo, J. Kyoung, H. Park, S. Koo, H.-S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q.-H. Park, K. Ahn, and D.-S. Kim“Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10, 2064–2068 (2010).
[CrossRef] [PubMed]

Kim, H.-S.

M. Seo, J. Kyoung, H. Park, S. Koo, H.-S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q.-H. Park, K. Ahn, and D.-S. Kim“Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10, 2064–2068 (2010).
[CrossRef] [PubMed]

Kim, H.-T.

M. D. Goldflam, T. Driscoll, B. Chapler, O. Khatib, N. M. Jokerst, S. Palit, D. R. Smith, B.-J. Kim, G. Seo, H.-T. Kim, M. Di Ventra, and D. N. Basov“Reconfigurable gradient index using VO2 memory metamaterials,” Appl. Phys. Lett. 99044103 (2011).
[CrossRef]

M. Seo, J. Kyoung, H. Park, S. Koo, H.-S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q.-H. Park, K. Ahn, and D.-S. Kim“Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10, 2064–2068 (2010).
[CrossRef] [PubMed]

Koo, S.

M. Seo, J. Kyoung, H. Park, S. Koo, H.-S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q.-H. Park, K. Ahn, and D.-S. Kim“Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10, 2064–2068 (2010).
[CrossRef] [PubMed]

Kurdyukov, D. A.

V. G. Golubev, V. Y. Davydov, N. F. Kartenko, D. A. Kurdyukov, A. V. Medvedev, A. B. Pevtsov, A. V. Scherbakov, and E. B. Shadrin, “Phase transition-governed opal-VO2 photonic crystal,” Appl. Phys. Lett. 79, 2127–2129 (2001).
[CrossRef]

Kyoung, J.

M. Seo, J. Kyoung, H. Park, S. Koo, H.-S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q.-H. Park, K. Ahn, and D.-S. Kim“Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10, 2064–2068 (2010).
[CrossRef] [PubMed]

Lantto, W.

J. Lappalainen, S. Heinilehto, S. Saukko, W. Lantto, and H. Jantunen, “Microstructure dependent switching properties of VO2 thin films,” Sens. Actuators, A 142, 250–255 (2008).
[CrossRef]

Lappalainen, J.

J. Lappalainen, S. Heinilehto, S. Saukko, W. Lantto, and H. Jantunen, “Microstructure dependent switching properties of VO2 thin films,” Sens. Actuators, A 142, 250–255 (2008).
[CrossRef]

Lei, D. Y.

Liu, H.

S. Lysenko, A. Rua, F. Fernandez, and H. Liu, “Optical nonlinearity and structural dynamics of VO2 films,” J. Appl. Phys. 105, 043502 (2009).
[CrossRef]

Luo, X.

Lynch, D. W.

D. W. Lynch and W. R. Hunter, “Comments on the optical constants of metals,” in Handbook of optical constants of solids, E. D. Palik, ed. (Academic, 1985) pp. 275–367.

Lysenko, S.

S. Lysenko, A. Rua, F. Fernandez, and H. Liu, “Optical nonlinearity and structural dynamics of VO2 films,” J. Appl. Phys. 105, 043502 (2009).
[CrossRef]

Ma, J.

MacDonald, K. F.

K. F. MacDonald and N. I. Zheludev, “Active plasmonics: current status,” Laser Photonics Rev. 4, 562–567 (2010).
[CrossRef]

Maier, S. A.

Majewski, M. L.

Medvedev, A. V.

V. G. Golubev, V. Y. Davydov, N. F. Kartenko, D. A. Kurdyukov, A. V. Medvedev, A. B. Pevtsov, A. V. Scherbakov, and E. B. Shadrin, “Phase transition-governed opal-VO2 photonic crystal,” Appl. Phys. Lett. 79, 2127–2129 (2001).
[CrossRef]

Nag, J.

J. Nag, J. D. Ryckman, M. T. Hertkorn, B. K. Choi, R. F. Haglund, and S. M. Weiss, “Ultrafast compact silicon-based ring resonator modulators using metal-insulator switching of vanadium dioxide,” Proc. SPIE 7597, 759710 (2010).
[CrossRef]

Palit, S.

M. D. Goldflam, T. Driscoll, B. Chapler, O. Khatib, N. M. Jokerst, S. Palit, D. R. Smith, B.-J. Kim, G. Seo, H.-T. Kim, M. Di Ventra, and D. N. Basov“Reconfigurable gradient index using VO2 memory metamaterials,” Appl. Phys. Lett. 99044103 (2011).
[CrossRef]

Park, H.

M. Seo, J. Kyoung, H. Park, S. Koo, H.-S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q.-H. Park, K. Ahn, and D.-S. Kim“Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10, 2064–2068 (2010).
[CrossRef] [PubMed]

Park, N.

M. Seo, J. Kyoung, H. Park, S. Koo, H.-S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q.-H. Park, K. Ahn, and D.-S. Kim“Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10, 2064–2068 (2010).
[CrossRef] [PubMed]

Park, Q.-H.

M. Seo, J. Kyoung, H. Park, S. Koo, H.-S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q.-H. Park, K. Ahn, and D.-S. Kim“Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10, 2064–2068 (2010).
[CrossRef] [PubMed]

Pevtsov, A. B.

V. G. Golubev, V. Y. Davydov, N. F. Kartenko, D. A. Kurdyukov, A. V. Medvedev, A. B. Pevtsov, A. V. Scherbakov, and E. B. Shadrin, “Phase transition-governed opal-VO2 photonic crystal,” Appl. Phys. Lett. 79, 2127–2129 (2001).
[CrossRef]

Polman, A.

J. A. Dionne, L. A. Sweatlock, A. Polman, and H. A. Atwater, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[CrossRef]

Pryce, I. M.

Pu, M.

Raether, H.

H. Raether, Surface plasmons on smooth and rough surfaces and on gratings (Springer-Verlag, 1988), pp. 4–7.

Rakic, A. D.

Rua, A.

S. Lysenko, A. Rua, F. Fernandez, and H. Liu, “Optical nonlinearity and structural dynamics of VO2 films,” J. Appl. Phys. 105, 043502 (2009).
[CrossRef]

Ryckman, J. D.

J. Nag, J. D. Ryckman, M. T. Hertkorn, B. K. Choi, R. F. Haglund, and S. M. Weiss, “Ultrafast compact silicon-based ring resonator modulators using metal-insulator switching of vanadium dioxide,” Proc. SPIE 7597, 759710 (2010).
[CrossRef]

Saukko, S.

J. Lappalainen, S. Heinilehto, S. Saukko, W. Lantto, and H. Jantunen, “Microstructure dependent switching properties of VO2 thin films,” Sens. Actuators, A 142, 250–255 (2008).
[CrossRef]

Scherbakov, A. V.

V. G. Golubev, V. Y. Davydov, N. F. Kartenko, D. A. Kurdyukov, A. V. Medvedev, A. B. Pevtsov, A. V. Scherbakov, and E. B. Shadrin, “Phase transition-governed opal-VO2 photonic crystal,” Appl. Phys. Lett. 79, 2127–2129 (2001).
[CrossRef]

Seo, G.

M. D. Goldflam, T. Driscoll, B. Chapler, O. Khatib, N. M. Jokerst, S. Palit, D. R. Smith, B.-J. Kim, G. Seo, H.-T. Kim, M. Di Ventra, and D. N. Basov“Reconfigurable gradient index using VO2 memory metamaterials,” Appl. Phys. Lett. 99044103 (2011).
[CrossRef]

Seo, M.

M. Seo, J. Kyoung, H. Park, S. Koo, H.-S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q.-H. Park, K. Ahn, and D.-S. Kim“Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10, 2064–2068 (2010).
[CrossRef] [PubMed]

Shadrin, E. B.

V. G. Golubev, V. Y. Davydov, N. F. Kartenko, D. A. Kurdyukov, A. V. Medvedev, A. B. Pevtsov, A. V. Scherbakov, and E. B. Shadrin, “Phase transition-governed opal-VO2 photonic crystal,” Appl. Phys. Lett. 79, 2127–2129 (2001).
[CrossRef]

Sheldon, M. T.

J. A. Dionne, L. A. Sweatlock, M. T. Sheldon, A. P. Alivisatos, and H. A. Atwater, “Silicon-based plasmonics for on-chip photonics,” IEEE J. Sel. Top. Quantum Electron. 16, 295–306 (2010)
[CrossRef]

Smith, D. R.

M. D. Goldflam, T. Driscoll, B. Chapler, O. Khatib, N. M. Jokerst, S. Palit, D. R. Smith, B.-J. Kim, G. Seo, H.-T. Kim, M. Di Ventra, and D. N. Basov“Reconfigurable gradient index using VO2 memory metamaterials,” Appl. Phys. Lett. 99044103 (2011).
[CrossRef]

Sonnefraud, Y.

Spain, M.

K. Diest, J. A. Dionne, M. Spain, and H. A. Atwater, “Tunable color filters based on metal-insulator-metal resonators,” Nano Lett. 9, 2579–2583 (2009).
[CrossRef] [PubMed]

Sweatlock, L. A.

J. A. Dionne, L. A. Sweatlock, M. T. Sheldon, A. P. Alivisatos, and H. A. Atwater, “Silicon-based plasmonics for on-chip photonics,” IEEE J. Sel. Top. Quantum Electron. 16, 295–306 (2010)
[CrossRef]

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9, 897–902 (2009).
[CrossRef] [PubMed]

M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express 17, 18330–18339 (2009).
[CrossRef] [PubMed]

J. A. Dionne, L. A. Sweatlock, A. Polman, and H. A. Atwater, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[CrossRef]

Tazawa, M.

G. Xu, C. M. Huang, P. Jin, M. Tazawa, and D. M. Chen, “Nano-Ag on vanadium dioxide. I. Localized spectrum tailoring,” J. Appl. Phys. 104, 053101 (2008).
[CrossRef]

Walavalkar, S.

Wang, C.

Weiss, S. M.

J. Nag, J. D. Ryckman, M. T. Hertkorn, B. K. Choi, R. F. Haglund, and S. M. Weiss, “Ultrafast compact silicon-based ring resonator modulators using metal-insulator switching of vanadium dioxide,” Proc. SPIE 7597, 759710 (2010).
[CrossRef]

Xin, X.

Xu, G.

G. Xu, C. M. Huang, P. Jin, M. Tazawa, and D. M. Chen, “Nano-Ag on vanadium dioxide. I. Localized spectrum tailoring,” J. Appl. Phys. 104, 053101 (2008).
[CrossRef]

Yao, N.

Zhao, Z.

Zheludev, N. I.

K. F. MacDonald and N. I. Zheludev, “Active plasmonics: current status,” Laser Photonics Rev. 4, 562–567 (2010).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

V. G. Golubev, V. Y. Davydov, N. F. Kartenko, D. A. Kurdyukov, A. V. Medvedev, A. B. Pevtsov, A. V. Scherbakov, and E. B. Shadrin, “Phase transition-governed opal-VO2 photonic crystal,” Appl. Phys. Lett. 79, 2127–2129 (2001).
[CrossRef]

M. D. Goldflam, T. Driscoll, B. Chapler, O. Khatib, N. M. Jokerst, S. Palit, D. R. Smith, B.-J. Kim, G. Seo, H.-T. Kim, M. Di Ventra, and D. N. Basov“Reconfigurable gradient index using VO2 memory metamaterials,” Appl. Phys. Lett. 99044103 (2011).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. A. Dionne, L. A. Sweatlock, M. T. Sheldon, A. P. Alivisatos, and H. A. Atwater, “Silicon-based plasmonics for on-chip photonics,” IEEE J. Sel. Top. Quantum Electron. 16, 295–306 (2010)
[CrossRef]

J. Appl. Phys. (2)

S. Lysenko, A. Rua, F. Fernandez, and H. Liu, “Optical nonlinearity and structural dynamics of VO2 films,” J. Appl. Phys. 105, 043502 (2009).
[CrossRef]

G. Xu, C. M. Huang, P. Jin, M. Tazawa, and D. M. Chen, “Nano-Ag on vanadium dioxide. I. Localized spectrum tailoring,” J. Appl. Phys. 104, 053101 (2008).
[CrossRef]

Laser Photonics Rev. (1)

K. F. MacDonald and N. I. Zheludev, “Active plasmonics: current status,” Laser Photonics Rev. 4, 562–567 (2010).
[CrossRef]

Nano Lett. (3)

M. Seo, J. Kyoung, H. Park, S. Koo, H.-S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q.-H. Park, K. Ahn, and D.-S. Kim“Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10, 2064–2068 (2010).
[CrossRef] [PubMed]

K. Diest, J. A. Dionne, M. Spain, and H. A. Atwater, “Tunable color filters based on metal-insulator-metal resonators,” Nano Lett. 9, 2579–2583 (2009).
[CrossRef] [PubMed]

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9, 897–902 (2009).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. (1)

E. N Economou, “Surface plasmons in thin films,” Phys. Rev.,  182, 539–554 (1969).
[CrossRef]

Phys. Rev. B (1)

J. A. Dionne, L. A. Sweatlock, A. Polman, and H. A. Atwater, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[CrossRef]

Proc. SPIE (1)

J. Nag, J. D. Ryckman, M. T. Hertkorn, B. K. Choi, R. F. Haglund, and S. M. Weiss, “Ultrafast compact silicon-based ring resonator modulators using metal-insulator switching of vanadium dioxide,” Proc. SPIE 7597, 759710 (2010).
[CrossRef]

Sens. Actuators, A (1)

J. Lappalainen, S. Heinilehto, S. Saukko, W. Lantto, and H. Jantunen, “Microstructure dependent switching properties of VO2 thin films,” Sens. Actuators, A 142, 250–255 (2008).
[CrossRef]

Other (4)

S. I. Bozhevolnyi, ed. Plasmonic nanoguides and circuits (Pan Stanford Publishing, 2008).
[CrossRef]

M. L. Brongersma and P. G. Kik, eds. Surface plasmon nanophotonics (Springer, 2007).
[CrossRef]

H. Raether, Surface plasmons on smooth and rough surfaces and on gratings (Springer-Verlag, 1988), pp. 4–7.

D. W. Lynch and W. R. Hunter, “Comments on the optical constants of metals,” in Handbook of optical constants of solids, E. D. Palik, ed. (Academic, 1985) pp. 275–367.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Normalized Ex fields of the optical modes supported from 0.5 – 3 eV within the 4-layer waveguide shown. Field calculations were performed using the optical properties of monoclinic VO2(M) (device off state).

Fig. 2
Fig. 2

Normalized Ex fields of the optical modes supported from 0.5 – 3 eV within the 5-layer MIM waveguide shown. Field calculations were performed using the optical properties of monoclinic VO2(M) (device off state).

Fig. 3
Fig. 3

Dispersion calculations for the MIM waveguide in Fig. 1 for VO2 in the device off (a) and on (b) states. The bottom panels in (a) and (b) show the corresponding figures of merit f = log10(��{kx}/��{kx}), as a function of wavevector. The colormap in each panel is scales so that “white” points corresponds to a f < 0 and “black” points to f > 2.

Fig. 4
Fig. 4

Dispersion calculations for the MIM waveguide in Fig. 2 for VO2 in the device off (a) and on (b) states. The bottom panels in (a) and (b) show the corresponding figures of merit f = log10(��{kx}/��{kx}), as a function of wavevector. The colormap in each panel is scales so that “white” points correspond to a f < 0 and “black” points to f > 2.

Tables (2)

Tables Icon

Table 1 MIM Modal Properties from Figure 3.

Tables Icon

Table 2 MIM Modal Properties from Figure 4.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

λ = ( 2 π ) / 𝔕 { k x }
L = 1 / ( 2 𝔌 { k x } )
β l = k x 2 ε l ( ω / c ) 2 η l = i k x / β l
E x l = e i ( k x x ω t ) [ a l exp ( β l z ) + b l exp ( β l z ) ] E z l = η l e i ( k x x ω t ) [ a l exp ( β l z ) + b l exp ( β l z ) ] B y l = ω c k x ε l E z l
b 1 = 0 a N = 0
a l exp ( β l d l ) + b l exp ( β l d l ) = a l + 1 exp ( β l + 1 d l ) + b l + 1 exp ( β l + 1 d l ) ε l η l [ a l exp ( β l d l ) + b l exp ( β l d l ) ] = ε l + 1 η l + 1 [ a l + 1 exp ( β l + 1 d l ) + b l + 1 exp ( β l + 1 d l ) ]
𝕃 a = 0
𝔸 l = ( exp ( β l d l ) exp ( β l d l ) exp ( β l + 1 d l ) exp ( β l + 1 d l ) ε l β l exp ( β l d l ) ε l β l exp ( β l d l ) ε l + 1 β l + 1 exp ( β l + 1 d l ) ε l + 1 β l + 1 exp ( β l + 1 d l ) )
𝕃 = ( 0 1 0 0 0 0 0 0 𝔸 1 0 0 0 0 0 0 0 0 0 0 𝔸 2 0 0 0 0 0 0 0 0 0 0 𝔸 N 1 0 0 0 0 0 0 0 0 0 0 1 0 )
f = log 10 𝔕 { k x } 𝔌 { k x }

Metrics