Abstract

We have performed Helium (He) ion implantation on InAs and performed post implant annealing to investigate the effect on the sheet resistance. Using the transmission line model (TLM) we have shown that the sheet resistance of a p+ InAs layer, with a nominal doping concentration of 1x1018 cm−3, can increase by over 5 orders of magnitude upon implantation. We achieved a sheet resistance of 1x105 Ω/Square in an ‘as-implanted’ sample and with subsequent annealing this can be further increased to 1x107 Ω/Square. By also performing implantation on p-i-n structures we have shown that it is possible to produce planar photodiodes with comparable dark currents and quantum efficiencies to chemically etched reference mesa InAs photodiodes.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Baker, S. Duncan, and J. Copley, “A low noise, laser-gated imaging system for long range target. identification,” Proc. SPIE5406, 133–144 (2004).
    [CrossRef]
  2. A. Krier, H. H. Gao, and Y. Mao, “A room temperature photovoltaic detector for the mid -infrared (1.8–3.4 μm) wavelength region,” Semicond. Sci. Technol.13(8), 950–956 (1998).
    [CrossRef]
  3. M. Achour, “Free-space optics wavelength selection: 10 μm versus shorter wavelengths,” Proc. SPIE5160, 234–246 (2004).
    [CrossRef]
  4. A. R. J. Marshall, C. H. Tan, M. J. Steer, and J. P. R. David, “Electron dominated impact ionization and avalanche gain characteristics in InAs photodiodes,” Appl. Phys. Lett.93(11), 111107 (2008).
    [CrossRef]
  5. A. R. J. Marshall, P. Vines, P. J. Ker, J. P. R. David, and C. H. Tan, “Avalanche multiplication and excess noise in InAs electron avalanche photodiodes at 77 K,” IEEE J. Quantum Electron.47(6), 858–864 (2011).
    [CrossRef]
  6. P. J. Ker, A. R. J. Marshall, A. B. Krysa, J. P. R. David, and C. H. Tan, “Temperature dependence of leakage current in InAs avalanche photodiodes,” IEEE J. Quantum Electron.47(8), 1123–1128 (2011).
    [CrossRef]
  7. J. M Arias, J. G. Pasko, M. Zandian, S. H. Shin, G. M. Williams, L. O. Bubulac, R. E. de Wames, and W. E. Tennant, “MBE HgCdTe heterostructure p-on-n planar infrared photodiodes,” J. Electron. Mater.22, 1049–1053 (1993).
  8. R. Wollrab, A. Bauer, H. Bitterlich, M. Bruder, S. Hanna, H. Lutz, K.-M. Mahlein, T. Schallenberg, and J. Ziegler, “Planar n-on-p HgCdTe FPAs for LWIR and VLWIR applications,” J. Electron. Mater.40(8), 1618–1623 (2011).
    [CrossRef]
  9. A. Säynätjoki, P. Kostamo, J. Sormunen, J. Riikonen, A. Lankinen, H. Lipsanen, H. Andersson, K. Banzuzi, S. Nenonen, H. Sipilä, S. Vaijärvi, and D. Lumb, “InAs pixel matrix detectors fabricated by diffusion of Zn in a metal-organic vapour-phase epitaxy reactor,” Nucl. Instrum. Methods Phys. Res. A563(1), 24–26 (2006).
    [CrossRef]
  10. J. W. Shi, F. M. Kuo, and B. R. Huang, “Zn-diffusion InAs photodiodes on a semi-insulating GaAs substrate for high-speed and low dark-current performance,” IEEE Photon. Technol. Lett.23(2), 100–102 (2011).
    [CrossRef]
  11. A. Ezis and D. W. Langer, “Backgating characteristics of MODFET structures,” IEEE Electron Device Lett.6(10), 494–496 (1985).
    [CrossRef]
  12. J. D. Speight, P. Leigh, N. Mcintyre, I. G. Groves, S. O’Hara, and P. Hemment, “High-efficiency proton-isolated GaAs IMPATT diodes,” Electron Lett.10(7), 98–99 (1974).
    [CrossRef]
  13. J. J. Hsieh, J. A. Rossi, and J. P. Donnelly, “Room‐temperature cw operation of GaInAsP/InP double‐heterostructure diode lasers emitting at 1.1 μ m,” Appl. Phys. Lett.28(12), 709–711 (1976).
    [CrossRef]
  14. M. V. Rao, “High-energy (MeV) ion implantation and its device applications in GaAs and InP,” IEEE Trans. Electron. Dev.40(6), 1053–1066 (1993).
    [CrossRef]
  15. S. Ahmed, B. J. Sealy, and R. Gwilliam, “Annealing characteristics of the implant-isolated n-type GaAs layers: effects of ion species and implant temperature,” Nucl. Instrum. Methods Phys. Res. B206, 1008–1012 (2003).
    [CrossRef]
  16. S. Ahmed, R. Gwilliam, and B. J. Sealy, “Ion-beam-induced isolation of GaAs layers by 4He+ implantation: effects of hot implants,” Semicond. Sci. Technol.16(10), L64–L67 (2001).
    [CrossRef]
  17. A. G. Foyt, W. T. Lindley, and J. P. Donelly, “n‐p Junction photodetectors in InSb fabricated by proton bombardment,” Appl. Phys. Lett.16(9), 335–337 (1970).
    [CrossRef]
  18. S. J. Pearton, “Ion implantation doping and isolation of III-V semiconductors,” Nucl. Instrum. Methods Phys. Res. B59–60, 970–977 (1991).
    [CrossRef]
  19. P. Too, S. Ahmed, R. Gwilliam, and B. J. Sealy, “Electrical isolation of InP and InGaAs using iron and krypton,” Electron. Lett.40(20), 1302–1303 (2004).
    [CrossRef]
  20. H. Boudinov, H. H. Tan, and C. Jagadish, “Electrical isolation of n-type and p-type InP layers by proton bombardment,” J. Appl. Phys.89(10), 5343–5347 (2001).
    [CrossRef]

2011

A. R. J. Marshall, P. Vines, P. J. Ker, J. P. R. David, and C. H. Tan, “Avalanche multiplication and excess noise in InAs electron avalanche photodiodes at 77 K,” IEEE J. Quantum Electron.47(6), 858–864 (2011).
[CrossRef]

P. J. Ker, A. R. J. Marshall, A. B. Krysa, J. P. R. David, and C. H. Tan, “Temperature dependence of leakage current in InAs avalanche photodiodes,” IEEE J. Quantum Electron.47(8), 1123–1128 (2011).
[CrossRef]

R. Wollrab, A. Bauer, H. Bitterlich, M. Bruder, S. Hanna, H. Lutz, K.-M. Mahlein, T. Schallenberg, and J. Ziegler, “Planar n-on-p HgCdTe FPAs for LWIR and VLWIR applications,” J. Electron. Mater.40(8), 1618–1623 (2011).
[CrossRef]

J. W. Shi, F. M. Kuo, and B. R. Huang, “Zn-diffusion InAs photodiodes on a semi-insulating GaAs substrate for high-speed and low dark-current performance,” IEEE Photon. Technol. Lett.23(2), 100–102 (2011).
[CrossRef]

2008

A. R. J. Marshall, C. H. Tan, M. J. Steer, and J. P. R. David, “Electron dominated impact ionization and avalanche gain characteristics in InAs photodiodes,” Appl. Phys. Lett.93(11), 111107 (2008).
[CrossRef]

2006

A. Säynätjoki, P. Kostamo, J. Sormunen, J. Riikonen, A. Lankinen, H. Lipsanen, H. Andersson, K. Banzuzi, S. Nenonen, H. Sipilä, S. Vaijärvi, and D. Lumb, “InAs pixel matrix detectors fabricated by diffusion of Zn in a metal-organic vapour-phase epitaxy reactor,” Nucl. Instrum. Methods Phys. Res. A563(1), 24–26 (2006).
[CrossRef]

2004

M. Achour, “Free-space optics wavelength selection: 10 μm versus shorter wavelengths,” Proc. SPIE5160, 234–246 (2004).
[CrossRef]

I. Baker, S. Duncan, and J. Copley, “A low noise, laser-gated imaging system for long range target. identification,” Proc. SPIE5406, 133–144 (2004).
[CrossRef]

P. Too, S. Ahmed, R. Gwilliam, and B. J. Sealy, “Electrical isolation of InP and InGaAs using iron and krypton,” Electron. Lett.40(20), 1302–1303 (2004).
[CrossRef]

2003

S. Ahmed, B. J. Sealy, and R. Gwilliam, “Annealing characteristics of the implant-isolated n-type GaAs layers: effects of ion species and implant temperature,” Nucl. Instrum. Methods Phys. Res. B206, 1008–1012 (2003).
[CrossRef]

2001

S. Ahmed, R. Gwilliam, and B. J. Sealy, “Ion-beam-induced isolation of GaAs layers by 4He+ implantation: effects of hot implants,” Semicond. Sci. Technol.16(10), L64–L67 (2001).
[CrossRef]

H. Boudinov, H. H. Tan, and C. Jagadish, “Electrical isolation of n-type and p-type InP layers by proton bombardment,” J. Appl. Phys.89(10), 5343–5347 (2001).
[CrossRef]

1998

A. Krier, H. H. Gao, and Y. Mao, “A room temperature photovoltaic detector for the mid -infrared (1.8–3.4 μm) wavelength region,” Semicond. Sci. Technol.13(8), 950–956 (1998).
[CrossRef]

1993

J. M Arias, J. G. Pasko, M. Zandian, S. H. Shin, G. M. Williams, L. O. Bubulac, R. E. de Wames, and W. E. Tennant, “MBE HgCdTe heterostructure p-on-n planar infrared photodiodes,” J. Electron. Mater.22, 1049–1053 (1993).

M. V. Rao, “High-energy (MeV) ion implantation and its device applications in GaAs and InP,” IEEE Trans. Electron. Dev.40(6), 1053–1066 (1993).
[CrossRef]

1991

S. J. Pearton, “Ion implantation doping and isolation of III-V semiconductors,” Nucl. Instrum. Methods Phys. Res. B59–60, 970–977 (1991).
[CrossRef]

1985

A. Ezis and D. W. Langer, “Backgating characteristics of MODFET structures,” IEEE Electron Device Lett.6(10), 494–496 (1985).
[CrossRef]

1976

J. J. Hsieh, J. A. Rossi, and J. P. Donnelly, “Room‐temperature cw operation of GaInAsP/InP double‐heterostructure diode lasers emitting at 1.1 μ m,” Appl. Phys. Lett.28(12), 709–711 (1976).
[CrossRef]

1974

J. D. Speight, P. Leigh, N. Mcintyre, I. G. Groves, S. O’Hara, and P. Hemment, “High-efficiency proton-isolated GaAs IMPATT diodes,” Electron Lett.10(7), 98–99 (1974).
[CrossRef]

1970

A. G. Foyt, W. T. Lindley, and J. P. Donelly, “n‐p Junction photodetectors in InSb fabricated by proton bombardment,” Appl. Phys. Lett.16(9), 335–337 (1970).
[CrossRef]

Achour, M.

M. Achour, “Free-space optics wavelength selection: 10 μm versus shorter wavelengths,” Proc. SPIE5160, 234–246 (2004).
[CrossRef]

Ahmed, S.

P. Too, S. Ahmed, R. Gwilliam, and B. J. Sealy, “Electrical isolation of InP and InGaAs using iron and krypton,” Electron. Lett.40(20), 1302–1303 (2004).
[CrossRef]

S. Ahmed, B. J. Sealy, and R. Gwilliam, “Annealing characteristics of the implant-isolated n-type GaAs layers: effects of ion species and implant temperature,” Nucl. Instrum. Methods Phys. Res. B206, 1008–1012 (2003).
[CrossRef]

S. Ahmed, R. Gwilliam, and B. J. Sealy, “Ion-beam-induced isolation of GaAs layers by 4He+ implantation: effects of hot implants,” Semicond. Sci. Technol.16(10), L64–L67 (2001).
[CrossRef]

Andersson, H.

A. Säynätjoki, P. Kostamo, J. Sormunen, J. Riikonen, A. Lankinen, H. Lipsanen, H. Andersson, K. Banzuzi, S. Nenonen, H. Sipilä, S. Vaijärvi, and D. Lumb, “InAs pixel matrix detectors fabricated by diffusion of Zn in a metal-organic vapour-phase epitaxy reactor,” Nucl. Instrum. Methods Phys. Res. A563(1), 24–26 (2006).
[CrossRef]

Arias, J. M

J. M Arias, J. G. Pasko, M. Zandian, S. H. Shin, G. M. Williams, L. O. Bubulac, R. E. de Wames, and W. E. Tennant, “MBE HgCdTe heterostructure p-on-n planar infrared photodiodes,” J. Electron. Mater.22, 1049–1053 (1993).

Baker, I.

I. Baker, S. Duncan, and J. Copley, “A low noise, laser-gated imaging system for long range target. identification,” Proc. SPIE5406, 133–144 (2004).
[CrossRef]

Banzuzi, K.

A. Säynätjoki, P. Kostamo, J. Sormunen, J. Riikonen, A. Lankinen, H. Lipsanen, H. Andersson, K. Banzuzi, S. Nenonen, H. Sipilä, S. Vaijärvi, and D. Lumb, “InAs pixel matrix detectors fabricated by diffusion of Zn in a metal-organic vapour-phase epitaxy reactor,” Nucl. Instrum. Methods Phys. Res. A563(1), 24–26 (2006).
[CrossRef]

Bauer, A.

R. Wollrab, A. Bauer, H. Bitterlich, M. Bruder, S. Hanna, H. Lutz, K.-M. Mahlein, T. Schallenberg, and J. Ziegler, “Planar n-on-p HgCdTe FPAs for LWIR and VLWIR applications,” J. Electron. Mater.40(8), 1618–1623 (2011).
[CrossRef]

Bitterlich, H.

R. Wollrab, A. Bauer, H. Bitterlich, M. Bruder, S. Hanna, H. Lutz, K.-M. Mahlein, T. Schallenberg, and J. Ziegler, “Planar n-on-p HgCdTe FPAs for LWIR and VLWIR applications,” J. Electron. Mater.40(8), 1618–1623 (2011).
[CrossRef]

Boudinov, H.

H. Boudinov, H. H. Tan, and C. Jagadish, “Electrical isolation of n-type and p-type InP layers by proton bombardment,” J. Appl. Phys.89(10), 5343–5347 (2001).
[CrossRef]

Bruder, M.

R. Wollrab, A. Bauer, H. Bitterlich, M. Bruder, S. Hanna, H. Lutz, K.-M. Mahlein, T. Schallenberg, and J. Ziegler, “Planar n-on-p HgCdTe FPAs for LWIR and VLWIR applications,” J. Electron. Mater.40(8), 1618–1623 (2011).
[CrossRef]

Bubulac, L. O.

J. M Arias, J. G. Pasko, M. Zandian, S. H. Shin, G. M. Williams, L. O. Bubulac, R. E. de Wames, and W. E. Tennant, “MBE HgCdTe heterostructure p-on-n planar infrared photodiodes,” J. Electron. Mater.22, 1049–1053 (1993).

Copley, J.

I. Baker, S. Duncan, and J. Copley, “A low noise, laser-gated imaging system for long range target. identification,” Proc. SPIE5406, 133–144 (2004).
[CrossRef]

David, J. P. R.

A. R. J. Marshall, P. Vines, P. J. Ker, J. P. R. David, and C. H. Tan, “Avalanche multiplication and excess noise in InAs electron avalanche photodiodes at 77 K,” IEEE J. Quantum Electron.47(6), 858–864 (2011).
[CrossRef]

P. J. Ker, A. R. J. Marshall, A. B. Krysa, J. P. R. David, and C. H. Tan, “Temperature dependence of leakage current in InAs avalanche photodiodes,” IEEE J. Quantum Electron.47(8), 1123–1128 (2011).
[CrossRef]

A. R. J. Marshall, C. H. Tan, M. J. Steer, and J. P. R. David, “Electron dominated impact ionization and avalanche gain characteristics in InAs photodiodes,” Appl. Phys. Lett.93(11), 111107 (2008).
[CrossRef]

de Wames, R. E.

J. M Arias, J. G. Pasko, M. Zandian, S. H. Shin, G. M. Williams, L. O. Bubulac, R. E. de Wames, and W. E. Tennant, “MBE HgCdTe heterostructure p-on-n planar infrared photodiodes,” J. Electron. Mater.22, 1049–1053 (1993).

Donelly, J. P.

A. G. Foyt, W. T. Lindley, and J. P. Donelly, “n‐p Junction photodetectors in InSb fabricated by proton bombardment,” Appl. Phys. Lett.16(9), 335–337 (1970).
[CrossRef]

Donnelly, J. P.

J. J. Hsieh, J. A. Rossi, and J. P. Donnelly, “Room‐temperature cw operation of GaInAsP/InP double‐heterostructure diode lasers emitting at 1.1 μ m,” Appl. Phys. Lett.28(12), 709–711 (1976).
[CrossRef]

Duncan, S.

I. Baker, S. Duncan, and J. Copley, “A low noise, laser-gated imaging system for long range target. identification,” Proc. SPIE5406, 133–144 (2004).
[CrossRef]

Ezis, A.

A. Ezis and D. W. Langer, “Backgating characteristics of MODFET structures,” IEEE Electron Device Lett.6(10), 494–496 (1985).
[CrossRef]

Foyt, A. G.

A. G. Foyt, W. T. Lindley, and J. P. Donelly, “n‐p Junction photodetectors in InSb fabricated by proton bombardment,” Appl. Phys. Lett.16(9), 335–337 (1970).
[CrossRef]

Gao, H. H.

A. Krier, H. H. Gao, and Y. Mao, “A room temperature photovoltaic detector for the mid -infrared (1.8–3.4 μm) wavelength region,” Semicond. Sci. Technol.13(8), 950–956 (1998).
[CrossRef]

Groves, I. G.

J. D. Speight, P. Leigh, N. Mcintyre, I. G. Groves, S. O’Hara, and P. Hemment, “High-efficiency proton-isolated GaAs IMPATT diodes,” Electron Lett.10(7), 98–99 (1974).
[CrossRef]

Gwilliam, R.

P. Too, S. Ahmed, R. Gwilliam, and B. J. Sealy, “Electrical isolation of InP and InGaAs using iron and krypton,” Electron. Lett.40(20), 1302–1303 (2004).
[CrossRef]

S. Ahmed, B. J. Sealy, and R. Gwilliam, “Annealing characteristics of the implant-isolated n-type GaAs layers: effects of ion species and implant temperature,” Nucl. Instrum. Methods Phys. Res. B206, 1008–1012 (2003).
[CrossRef]

S. Ahmed, R. Gwilliam, and B. J. Sealy, “Ion-beam-induced isolation of GaAs layers by 4He+ implantation: effects of hot implants,” Semicond. Sci. Technol.16(10), L64–L67 (2001).
[CrossRef]

Hanna, S.

R. Wollrab, A. Bauer, H. Bitterlich, M. Bruder, S. Hanna, H. Lutz, K.-M. Mahlein, T. Schallenberg, and J. Ziegler, “Planar n-on-p HgCdTe FPAs for LWIR and VLWIR applications,” J. Electron. Mater.40(8), 1618–1623 (2011).
[CrossRef]

Hemment, P.

J. D. Speight, P. Leigh, N. Mcintyre, I. G. Groves, S. O’Hara, and P. Hemment, “High-efficiency proton-isolated GaAs IMPATT diodes,” Electron Lett.10(7), 98–99 (1974).
[CrossRef]

Hsieh, J. J.

J. J. Hsieh, J. A. Rossi, and J. P. Donnelly, “Room‐temperature cw operation of GaInAsP/InP double‐heterostructure diode lasers emitting at 1.1 μ m,” Appl. Phys. Lett.28(12), 709–711 (1976).
[CrossRef]

Huang, B. R.

J. W. Shi, F. M. Kuo, and B. R. Huang, “Zn-diffusion InAs photodiodes on a semi-insulating GaAs substrate for high-speed and low dark-current performance,” IEEE Photon. Technol. Lett.23(2), 100–102 (2011).
[CrossRef]

Jagadish, C.

H. Boudinov, H. H. Tan, and C. Jagadish, “Electrical isolation of n-type and p-type InP layers by proton bombardment,” J. Appl. Phys.89(10), 5343–5347 (2001).
[CrossRef]

Ker, P. J.

A. R. J. Marshall, P. Vines, P. J. Ker, J. P. R. David, and C. H. Tan, “Avalanche multiplication and excess noise in InAs electron avalanche photodiodes at 77 K,” IEEE J. Quantum Electron.47(6), 858–864 (2011).
[CrossRef]

P. J. Ker, A. R. J. Marshall, A. B. Krysa, J. P. R. David, and C. H. Tan, “Temperature dependence of leakage current in InAs avalanche photodiodes,” IEEE J. Quantum Electron.47(8), 1123–1128 (2011).
[CrossRef]

Kostamo, P.

A. Säynätjoki, P. Kostamo, J. Sormunen, J. Riikonen, A. Lankinen, H. Lipsanen, H. Andersson, K. Banzuzi, S. Nenonen, H. Sipilä, S. Vaijärvi, and D. Lumb, “InAs pixel matrix detectors fabricated by diffusion of Zn in a metal-organic vapour-phase epitaxy reactor,” Nucl. Instrum. Methods Phys. Res. A563(1), 24–26 (2006).
[CrossRef]

Krier, A.

A. Krier, H. H. Gao, and Y. Mao, “A room temperature photovoltaic detector for the mid -infrared (1.8–3.4 μm) wavelength region,” Semicond. Sci. Technol.13(8), 950–956 (1998).
[CrossRef]

Krysa, A. B.

P. J. Ker, A. R. J. Marshall, A. B. Krysa, J. P. R. David, and C. H. Tan, “Temperature dependence of leakage current in InAs avalanche photodiodes,” IEEE J. Quantum Electron.47(8), 1123–1128 (2011).
[CrossRef]

Kuo, F. M.

J. W. Shi, F. M. Kuo, and B. R. Huang, “Zn-diffusion InAs photodiodes on a semi-insulating GaAs substrate for high-speed and low dark-current performance,” IEEE Photon. Technol. Lett.23(2), 100–102 (2011).
[CrossRef]

Langer, D. W.

A. Ezis and D. W. Langer, “Backgating characteristics of MODFET structures,” IEEE Electron Device Lett.6(10), 494–496 (1985).
[CrossRef]

Lankinen, A.

A. Säynätjoki, P. Kostamo, J. Sormunen, J. Riikonen, A. Lankinen, H. Lipsanen, H. Andersson, K. Banzuzi, S. Nenonen, H. Sipilä, S. Vaijärvi, and D. Lumb, “InAs pixel matrix detectors fabricated by diffusion of Zn in a metal-organic vapour-phase epitaxy reactor,” Nucl. Instrum. Methods Phys. Res. A563(1), 24–26 (2006).
[CrossRef]

Leigh, P.

J. D. Speight, P. Leigh, N. Mcintyre, I. G. Groves, S. O’Hara, and P. Hemment, “High-efficiency proton-isolated GaAs IMPATT diodes,” Electron Lett.10(7), 98–99 (1974).
[CrossRef]

Lindley, W. T.

A. G. Foyt, W. T. Lindley, and J. P. Donelly, “n‐p Junction photodetectors in InSb fabricated by proton bombardment,” Appl. Phys. Lett.16(9), 335–337 (1970).
[CrossRef]

Lipsanen, H.

A. Säynätjoki, P. Kostamo, J. Sormunen, J. Riikonen, A. Lankinen, H. Lipsanen, H. Andersson, K. Banzuzi, S. Nenonen, H. Sipilä, S. Vaijärvi, and D. Lumb, “InAs pixel matrix detectors fabricated by diffusion of Zn in a metal-organic vapour-phase epitaxy reactor,” Nucl. Instrum. Methods Phys. Res. A563(1), 24–26 (2006).
[CrossRef]

Lumb, D.

A. Säynätjoki, P. Kostamo, J. Sormunen, J. Riikonen, A. Lankinen, H. Lipsanen, H. Andersson, K. Banzuzi, S. Nenonen, H. Sipilä, S. Vaijärvi, and D. Lumb, “InAs pixel matrix detectors fabricated by diffusion of Zn in a metal-organic vapour-phase epitaxy reactor,” Nucl. Instrum. Methods Phys. Res. A563(1), 24–26 (2006).
[CrossRef]

Lutz, H.

R. Wollrab, A. Bauer, H. Bitterlich, M. Bruder, S. Hanna, H. Lutz, K.-M. Mahlein, T. Schallenberg, and J. Ziegler, “Planar n-on-p HgCdTe FPAs for LWIR and VLWIR applications,” J. Electron. Mater.40(8), 1618–1623 (2011).
[CrossRef]

Mahlein, K.-M.

R. Wollrab, A. Bauer, H. Bitterlich, M. Bruder, S. Hanna, H. Lutz, K.-M. Mahlein, T. Schallenberg, and J. Ziegler, “Planar n-on-p HgCdTe FPAs for LWIR and VLWIR applications,” J. Electron. Mater.40(8), 1618–1623 (2011).
[CrossRef]

Mao, Y.

A. Krier, H. H. Gao, and Y. Mao, “A room temperature photovoltaic detector for the mid -infrared (1.8–3.4 μm) wavelength region,” Semicond. Sci. Technol.13(8), 950–956 (1998).
[CrossRef]

Marshall, A. R. J.

A. R. J. Marshall, P. Vines, P. J. Ker, J. P. R. David, and C. H. Tan, “Avalanche multiplication and excess noise in InAs electron avalanche photodiodes at 77 K,” IEEE J. Quantum Electron.47(6), 858–864 (2011).
[CrossRef]

P. J. Ker, A. R. J. Marshall, A. B. Krysa, J. P. R. David, and C. H. Tan, “Temperature dependence of leakage current in InAs avalanche photodiodes,” IEEE J. Quantum Electron.47(8), 1123–1128 (2011).
[CrossRef]

A. R. J. Marshall, C. H. Tan, M. J. Steer, and J. P. R. David, “Electron dominated impact ionization and avalanche gain characteristics in InAs photodiodes,” Appl. Phys. Lett.93(11), 111107 (2008).
[CrossRef]

Mcintyre, N.

J. D. Speight, P. Leigh, N. Mcintyre, I. G. Groves, S. O’Hara, and P. Hemment, “High-efficiency proton-isolated GaAs IMPATT diodes,” Electron Lett.10(7), 98–99 (1974).
[CrossRef]

Nenonen, S.

A. Säynätjoki, P. Kostamo, J. Sormunen, J. Riikonen, A. Lankinen, H. Lipsanen, H. Andersson, K. Banzuzi, S. Nenonen, H. Sipilä, S. Vaijärvi, and D. Lumb, “InAs pixel matrix detectors fabricated by diffusion of Zn in a metal-organic vapour-phase epitaxy reactor,” Nucl. Instrum. Methods Phys. Res. A563(1), 24–26 (2006).
[CrossRef]

O’Hara, S.

J. D. Speight, P. Leigh, N. Mcintyre, I. G. Groves, S. O’Hara, and P. Hemment, “High-efficiency proton-isolated GaAs IMPATT diodes,” Electron Lett.10(7), 98–99 (1974).
[CrossRef]

Pasko, J. G.

J. M Arias, J. G. Pasko, M. Zandian, S. H. Shin, G. M. Williams, L. O. Bubulac, R. E. de Wames, and W. E. Tennant, “MBE HgCdTe heterostructure p-on-n planar infrared photodiodes,” J. Electron. Mater.22, 1049–1053 (1993).

Pearton, S. J.

S. J. Pearton, “Ion implantation doping and isolation of III-V semiconductors,” Nucl. Instrum. Methods Phys. Res. B59–60, 970–977 (1991).
[CrossRef]

Rao, M. V.

M. V. Rao, “High-energy (MeV) ion implantation and its device applications in GaAs and InP,” IEEE Trans. Electron. Dev.40(6), 1053–1066 (1993).
[CrossRef]

Riikonen, J.

A. Säynätjoki, P. Kostamo, J. Sormunen, J. Riikonen, A. Lankinen, H. Lipsanen, H. Andersson, K. Banzuzi, S. Nenonen, H. Sipilä, S. Vaijärvi, and D. Lumb, “InAs pixel matrix detectors fabricated by diffusion of Zn in a metal-organic vapour-phase epitaxy reactor,” Nucl. Instrum. Methods Phys. Res. A563(1), 24–26 (2006).
[CrossRef]

Rossi, J. A.

J. J. Hsieh, J. A. Rossi, and J. P. Donnelly, “Room‐temperature cw operation of GaInAsP/InP double‐heterostructure diode lasers emitting at 1.1 μ m,” Appl. Phys. Lett.28(12), 709–711 (1976).
[CrossRef]

Säynätjoki, A.

A. Säynätjoki, P. Kostamo, J. Sormunen, J. Riikonen, A. Lankinen, H. Lipsanen, H. Andersson, K. Banzuzi, S. Nenonen, H. Sipilä, S. Vaijärvi, and D. Lumb, “InAs pixel matrix detectors fabricated by diffusion of Zn in a metal-organic vapour-phase epitaxy reactor,” Nucl. Instrum. Methods Phys. Res. A563(1), 24–26 (2006).
[CrossRef]

Schallenberg, T.

R. Wollrab, A. Bauer, H. Bitterlich, M. Bruder, S. Hanna, H. Lutz, K.-M. Mahlein, T. Schallenberg, and J. Ziegler, “Planar n-on-p HgCdTe FPAs for LWIR and VLWIR applications,” J. Electron. Mater.40(8), 1618–1623 (2011).
[CrossRef]

Sealy, B. J.

P. Too, S. Ahmed, R. Gwilliam, and B. J. Sealy, “Electrical isolation of InP and InGaAs using iron and krypton,” Electron. Lett.40(20), 1302–1303 (2004).
[CrossRef]

S. Ahmed, B. J. Sealy, and R. Gwilliam, “Annealing characteristics of the implant-isolated n-type GaAs layers: effects of ion species and implant temperature,” Nucl. Instrum. Methods Phys. Res. B206, 1008–1012 (2003).
[CrossRef]

S. Ahmed, R. Gwilliam, and B. J. Sealy, “Ion-beam-induced isolation of GaAs layers by 4He+ implantation: effects of hot implants,” Semicond. Sci. Technol.16(10), L64–L67 (2001).
[CrossRef]

Shi, J. W.

J. W. Shi, F. M. Kuo, and B. R. Huang, “Zn-diffusion InAs photodiodes on a semi-insulating GaAs substrate for high-speed and low dark-current performance,” IEEE Photon. Technol. Lett.23(2), 100–102 (2011).
[CrossRef]

Shin, S. H.

J. M Arias, J. G. Pasko, M. Zandian, S. H. Shin, G. M. Williams, L. O. Bubulac, R. E. de Wames, and W. E. Tennant, “MBE HgCdTe heterostructure p-on-n planar infrared photodiodes,” J. Electron. Mater.22, 1049–1053 (1993).

Sipilä, H.

A. Säynätjoki, P. Kostamo, J. Sormunen, J. Riikonen, A. Lankinen, H. Lipsanen, H. Andersson, K. Banzuzi, S. Nenonen, H. Sipilä, S. Vaijärvi, and D. Lumb, “InAs pixel matrix detectors fabricated by diffusion of Zn in a metal-organic vapour-phase epitaxy reactor,” Nucl. Instrum. Methods Phys. Res. A563(1), 24–26 (2006).
[CrossRef]

Sormunen, J.

A. Säynätjoki, P. Kostamo, J. Sormunen, J. Riikonen, A. Lankinen, H. Lipsanen, H. Andersson, K. Banzuzi, S. Nenonen, H. Sipilä, S. Vaijärvi, and D. Lumb, “InAs pixel matrix detectors fabricated by diffusion of Zn in a metal-organic vapour-phase epitaxy reactor,” Nucl. Instrum. Methods Phys. Res. A563(1), 24–26 (2006).
[CrossRef]

Speight, J. D.

J. D. Speight, P. Leigh, N. Mcintyre, I. G. Groves, S. O’Hara, and P. Hemment, “High-efficiency proton-isolated GaAs IMPATT diodes,” Electron Lett.10(7), 98–99 (1974).
[CrossRef]

Steer, M. J.

A. R. J. Marshall, C. H. Tan, M. J. Steer, and J. P. R. David, “Electron dominated impact ionization and avalanche gain characteristics in InAs photodiodes,” Appl. Phys. Lett.93(11), 111107 (2008).
[CrossRef]

Tan, C. H.

A. R. J. Marshall, P. Vines, P. J. Ker, J. P. R. David, and C. H. Tan, “Avalanche multiplication and excess noise in InAs electron avalanche photodiodes at 77 K,” IEEE J. Quantum Electron.47(6), 858–864 (2011).
[CrossRef]

P. J. Ker, A. R. J. Marshall, A. B. Krysa, J. P. R. David, and C. H. Tan, “Temperature dependence of leakage current in InAs avalanche photodiodes,” IEEE J. Quantum Electron.47(8), 1123–1128 (2011).
[CrossRef]

A. R. J. Marshall, C. H. Tan, M. J. Steer, and J. P. R. David, “Electron dominated impact ionization and avalanche gain characteristics in InAs photodiodes,” Appl. Phys. Lett.93(11), 111107 (2008).
[CrossRef]

Tan, H. H.

H. Boudinov, H. H. Tan, and C. Jagadish, “Electrical isolation of n-type and p-type InP layers by proton bombardment,” J. Appl. Phys.89(10), 5343–5347 (2001).
[CrossRef]

Tennant, W. E.

J. M Arias, J. G. Pasko, M. Zandian, S. H. Shin, G. M. Williams, L. O. Bubulac, R. E. de Wames, and W. E. Tennant, “MBE HgCdTe heterostructure p-on-n planar infrared photodiodes,” J. Electron. Mater.22, 1049–1053 (1993).

Too, P.

P. Too, S. Ahmed, R. Gwilliam, and B. J. Sealy, “Electrical isolation of InP and InGaAs using iron and krypton,” Electron. Lett.40(20), 1302–1303 (2004).
[CrossRef]

Vaijärvi, S.

A. Säynätjoki, P. Kostamo, J. Sormunen, J. Riikonen, A. Lankinen, H. Lipsanen, H. Andersson, K. Banzuzi, S. Nenonen, H. Sipilä, S. Vaijärvi, and D. Lumb, “InAs pixel matrix detectors fabricated by diffusion of Zn in a metal-organic vapour-phase epitaxy reactor,” Nucl. Instrum. Methods Phys. Res. A563(1), 24–26 (2006).
[CrossRef]

Vines, P.

A. R. J. Marshall, P. Vines, P. J. Ker, J. P. R. David, and C. H. Tan, “Avalanche multiplication and excess noise in InAs electron avalanche photodiodes at 77 K,” IEEE J. Quantum Electron.47(6), 858–864 (2011).
[CrossRef]

Williams, G. M.

J. M Arias, J. G. Pasko, M. Zandian, S. H. Shin, G. M. Williams, L. O. Bubulac, R. E. de Wames, and W. E. Tennant, “MBE HgCdTe heterostructure p-on-n planar infrared photodiodes,” J. Electron. Mater.22, 1049–1053 (1993).

Wollrab, R.

R. Wollrab, A. Bauer, H. Bitterlich, M. Bruder, S. Hanna, H. Lutz, K.-M. Mahlein, T. Schallenberg, and J. Ziegler, “Planar n-on-p HgCdTe FPAs for LWIR and VLWIR applications,” J. Electron. Mater.40(8), 1618–1623 (2011).
[CrossRef]

Zandian, M.

J. M Arias, J. G. Pasko, M. Zandian, S. H. Shin, G. M. Williams, L. O. Bubulac, R. E. de Wames, and W. E. Tennant, “MBE HgCdTe heterostructure p-on-n planar infrared photodiodes,” J. Electron. Mater.22, 1049–1053 (1993).

Ziegler, J.

R. Wollrab, A. Bauer, H. Bitterlich, M. Bruder, S. Hanna, H. Lutz, K.-M. Mahlein, T. Schallenberg, and J. Ziegler, “Planar n-on-p HgCdTe FPAs for LWIR and VLWIR applications,” J. Electron. Mater.40(8), 1618–1623 (2011).
[CrossRef]

Appl. Phys. Lett.

A. R. J. Marshall, C. H. Tan, M. J. Steer, and J. P. R. David, “Electron dominated impact ionization and avalanche gain characteristics in InAs photodiodes,” Appl. Phys. Lett.93(11), 111107 (2008).
[CrossRef]

J. J. Hsieh, J. A. Rossi, and J. P. Donnelly, “Room‐temperature cw operation of GaInAsP/InP double‐heterostructure diode lasers emitting at 1.1 μ m,” Appl. Phys. Lett.28(12), 709–711 (1976).
[CrossRef]

A. G. Foyt, W. T. Lindley, and J. P. Donelly, “n‐p Junction photodetectors in InSb fabricated by proton bombardment,” Appl. Phys. Lett.16(9), 335–337 (1970).
[CrossRef]

Electron Lett.

J. D. Speight, P. Leigh, N. Mcintyre, I. G. Groves, S. O’Hara, and P. Hemment, “High-efficiency proton-isolated GaAs IMPATT diodes,” Electron Lett.10(7), 98–99 (1974).
[CrossRef]

Electron. Lett.

P. Too, S. Ahmed, R. Gwilliam, and B. J. Sealy, “Electrical isolation of InP and InGaAs using iron and krypton,” Electron. Lett.40(20), 1302–1303 (2004).
[CrossRef]

IEEE Electron Device Lett.

A. Ezis and D. W. Langer, “Backgating characteristics of MODFET structures,” IEEE Electron Device Lett.6(10), 494–496 (1985).
[CrossRef]

IEEE J. Quantum Electron.

A. R. J. Marshall, P. Vines, P. J. Ker, J. P. R. David, and C. H. Tan, “Avalanche multiplication and excess noise in InAs electron avalanche photodiodes at 77 K,” IEEE J. Quantum Electron.47(6), 858–864 (2011).
[CrossRef]

P. J. Ker, A. R. J. Marshall, A. B. Krysa, J. P. R. David, and C. H. Tan, “Temperature dependence of leakage current in InAs avalanche photodiodes,” IEEE J. Quantum Electron.47(8), 1123–1128 (2011).
[CrossRef]

IEEE Photon. Technol. Lett.

J. W. Shi, F. M. Kuo, and B. R. Huang, “Zn-diffusion InAs photodiodes on a semi-insulating GaAs substrate for high-speed and low dark-current performance,” IEEE Photon. Technol. Lett.23(2), 100–102 (2011).
[CrossRef]

IEEE Trans. Electron. Dev.

M. V. Rao, “High-energy (MeV) ion implantation and its device applications in GaAs and InP,” IEEE Trans. Electron. Dev.40(6), 1053–1066 (1993).
[CrossRef]

J. Appl. Phys.

H. Boudinov, H. H. Tan, and C. Jagadish, “Electrical isolation of n-type and p-type InP layers by proton bombardment,” J. Appl. Phys.89(10), 5343–5347 (2001).
[CrossRef]

J. Electron. Mater.

J. M Arias, J. G. Pasko, M. Zandian, S. H. Shin, G. M. Williams, L. O. Bubulac, R. E. de Wames, and W. E. Tennant, “MBE HgCdTe heterostructure p-on-n planar infrared photodiodes,” J. Electron. Mater.22, 1049–1053 (1993).

R. Wollrab, A. Bauer, H. Bitterlich, M. Bruder, S. Hanna, H. Lutz, K.-M. Mahlein, T. Schallenberg, and J. Ziegler, “Planar n-on-p HgCdTe FPAs for LWIR and VLWIR applications,” J. Electron. Mater.40(8), 1618–1623 (2011).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. A

A. Säynätjoki, P. Kostamo, J. Sormunen, J. Riikonen, A. Lankinen, H. Lipsanen, H. Andersson, K. Banzuzi, S. Nenonen, H. Sipilä, S. Vaijärvi, and D. Lumb, “InAs pixel matrix detectors fabricated by diffusion of Zn in a metal-organic vapour-phase epitaxy reactor,” Nucl. Instrum. Methods Phys. Res. A563(1), 24–26 (2006).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. B

S. Ahmed, B. J. Sealy, and R. Gwilliam, “Annealing characteristics of the implant-isolated n-type GaAs layers: effects of ion species and implant temperature,” Nucl. Instrum. Methods Phys. Res. B206, 1008–1012 (2003).
[CrossRef]

S. J. Pearton, “Ion implantation doping and isolation of III-V semiconductors,” Nucl. Instrum. Methods Phys. Res. B59–60, 970–977 (1991).
[CrossRef]

Proc. SPIE

M. Achour, “Free-space optics wavelength selection: 10 μm versus shorter wavelengths,” Proc. SPIE5160, 234–246 (2004).
[CrossRef]

I. Baker, S. Duncan, and J. Copley, “A low noise, laser-gated imaging system for long range target. identification,” Proc. SPIE5406, 133–144 (2004).
[CrossRef]

Semicond. Sci. Technol.

A. Krier, H. H. Gao, and Y. Mao, “A room temperature photovoltaic detector for the mid -infrared (1.8–3.4 μm) wavelength region,” Semicond. Sci. Technol.13(8), 950–956 (1998).
[CrossRef]

S. Ahmed, R. Gwilliam, and B. J. Sealy, “Ion-beam-induced isolation of GaAs layers by 4He+ implantation: effects of hot implants,” Semicond. Sci. Technol.16(10), L64–L67 (2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Schematic of an implanted p-i-n diode, indicating the He implanted regions and (b) representative image of fabricated diodes of various sizes.

Fig. 2
Fig. 2

Resistivity of the He implanted p+ InAs sample as a function of annealing temperature. The dotted line shows the initial resistivity of an as grown p+ sample.

Fig. 3
Fig. 3

Dark currents for various ‘as-implanted’ diodes with radii of 200 (circles), 100 (triangles), 50 (squares).

Fig. 4
Fig. 4

(a) Measured dark currents and (b) Forward current characteristics for ‘as-implanted’ (circles), annealed at 350 °C (triangles), 450 °C (diamonds) and 550 °C (squares) diodes with radii of 200 µm. The dashed line shows the dark current from a reference mesa diode fabricated using wet etching, while the solid line shows the dark current from a commercial Judson InAs photodiode (model number: J12-18C-R250U).

Fig. 5
Fig. 5

Dark currents for samples annealed at 350 °C (closed symbols) and 450 °C (open symbols) with different radii diodes sizes (200 (circles), 100 (triangles), 50 (squares)).

Fig. 6
Fig. 6

External Quantum efficiency as a function of voltage at an excitation wavelength of 1064 nm for the as implanted device (circles) and devices annealed at 350 °C (triangles), 450 °C (diamonds) and 550 °C (squares). The dashed line shows the efficiency from a reference mesa diode.

Fig. 7
Fig. 7

Equivalent electrical circuit for 3 diodes.

Fig. 8
Fig. 8

Photocurrent measured at 0.5 V when light is focused onto an adjacent mesa.

Fig. 9
Fig. 9

Simulated electric field for InAs mesa with He implanted regions and annealed at a temperature of 450 °C for a reverse bias of 1 V.

Metrics