G. Gouesbet, J. Lock, and G. Grehan, “Generalized lorenz-mie theories and description of electromagnetic arbitrary shaped beams: Localized approximations and localized beam models, a review,” J. Quant. Spectrosc. Radiat. Transfer 112, 1–27 (2011).
[Crossref]
D. Rings, R. Schachoff, M. Selmke, F. Cichos, and K. Kroy, “Hot Brownian Motion,” Phys. Rev. Lett. 105, 090604 (2010).
[Crossref]
[PubMed]
X. S. Xie, S. J. Lu, W. Min, S. S. Chong, and G. R. Holtom, “Label-free imaging of heme proteins with two-photon excited photothermal lens microscopy,” Appl. Phys. Lett. 96, 113701 (2010).
[Crossref]
A. Gaiduk, M. Yorulmaz, P. V. Ruijgrok, and M. Orrit, “Room-temperature detection of a single molecule’s absorption by photothermal contrast,” Science 330, 353–356 (2010).
[Crossref]
[PubMed]
G. C. K. Chen, M. Andika, and S. Vasudevan, “Excitation temporal pulse shape and probe beam size effect on pulsed photothermal lens of single particle,” J. Opt. Soc. Am. B 27, 796–805 (2010).
[Crossref]
O. Pena and U. Pal, “Scattering of electromagnetic radiation by a multilayered sphere,” Comput. Phys. Commun. 180, 2348–2354 (2009).
[Crossref]
R. Escalona, “Comparative study between interferometric and z-scan techniques for thermal lensing characterization,” Opt. Commun. 281, 1323–1330 (2008).
[Crossref]
A. Gnoli, A. M. Paoletti, G. Pennesi, G. Rossi, and M. Righini, “High-accuracy z-scan measurements of the optical nonlinearity of bis-phthalocyanines,” J. Porphyrins Phthalocyanines 11, 481–486 (2007).
[Crossref]
J. Hwang and W. E. Moerner, “Interferometry of a single nanoparticle using the gouy phase of a focused laser beam,” Opt. Commun. 280, 487–491 (2007).
[Crossref]
S. Teng, T. Zhou, and C. Cheng, “Fresnel diffraction of truncated gaussian beam,” Optik 118, 435–439 (2007).
[Crossref]
A. V. Brusnichkin, D. A. Nedosekin, M. A. Proskurnin, and V. P. Zharov, “Photothermal lens detection of gold nanoparticles: Theory and experiments,” Appl. Spectrosc. 61, 1191–1201 (2007).
[Crossref]
[PubMed]
S. Berciaud, D. Lasne, G. Blab, L. Cognet, and B. Lounis, “Photothermal heterodyne imaging of individual metallic nanoparticles: Theory versus experiment,” Phys. Rev. B 73, 045424 (2006).
[Crossref]
J. Moreau and V. Loriette, “Confocal dual-beam thermal-lens microscope: Model and experimental results,” Jpn. J. Appl. Phys. 45, 7141–7151 (2006).
[Crossref]
R. Polloni, B. F. Scremin, P. Calvelli, E. Cattaruzza, G. Battaglin, and G. Mattei, “Metal nanoparticles-silica composites: Z-scan determination of non-linear refractive index,” J. Non-Cryst. Solids 322, 300–305 (2003).
[Crossref]
Z. L. Horvath and Z. Bor, “Focusing of truncated gaussian beams,” Opt. Commun. 222, 51–68 (2003).
[Crossref]
D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297, 1160–1163 (2002).
[Crossref]
[PubMed]
S. M. Mian, S. B. McGee, and N. Melikechi, “Experimental and theoretical investigation of thermal lensing effects in mode-locked femtosecond z-scan experiments,” Opt. Commun. 207, 339–345 (2002).
[Crossref]
G. Battaglin, P. Calvelli, E. Cattaruzza, F. Gonella, R. Polloni, G. Mattei, and P. Mazzoldi, “Z-scan study on the nonlinear refractive index of copper nanocluster composite silica glass,” Appl. Phys. Lett. 78, 3953–3955 (2001).
[Crossref]
S. Sinha, A. Ray, and K. Dasgupta, “Solvent dependent nonlinear refraction in organic dye solution,” J. Appl. Phys. 87, 3222–3226 (2000).
[Crossref]
K. Uchiyama, A. Hibara, H. Kimura, T. Sawada, and T. Kitamori, “Thermal lens microscope,” Jpn. J. Appl. Phys. 39, 5316–5322 (2000).
[Crossref]
G. Gouesbet, J. A. Lock, and G. Grehan, “Partial-wave representations of laser-beams for use in light-scattering calculations,” Appl. Opt. 34, 2133–2143 (1995).
[Crossref]
[PubMed]
F. Onofri, G. Grehan, and G. Gouesbet, “Electromagnetic scattering from a multilayered sphere located in an arbitrary beam,” Appl. Opt. 34, 7113–7124 (1995).
[Crossref]
[PubMed]
F. Jurgensen and W. Schroer, “Studies on the diffraction image of a thermal lens,” Appl. Opt. 34, 41–50 (1995).
[Crossref]
[PubMed]
M. Harada, M. Shibata, T. Kitamori, and T. Sawada, “Application of coaxial beam photothermal microscopy to the analysis of a single biological cell in water,” Anal. Chim. Acta. 299, 343–347 (1995).
[Crossref]
M. Harada, K. Iwamotok, T. Kitamori, and T. Sawada, “Photothermal microscopy with excitation and probe beams coaxial under the microscope and its application to microparticle ananlysis,” Anal. Chem. 65, 2938–2940 (1993).
[Crossref]
M. Harada, T. Kitamori, and T. Sawada, “Phase signal of optical beam deflection from single microparticles -theory and experiment,” J. Appl. Phys. 73, 2264–2271 (1993).
[Crossref]
J. A. Lock and E. A. Hovenac, “Diffraction of a gaussian-beam by a spherical obstacle,” Am. J. Phys. 61, 698–707 (1993).
[Crossref]
J. Q. Wu, T. Kitamori, and T. Sawada, “Theory of optical beam deflection for single microparticles,” J. of Appl. Phys. 69, 7015–7020 (1991).
[Crossref]
G. Gouesbet, G. Grehan, and B. Maheu, “Scattering of a gaussian-beam by a mie scatter center using a bromwich formalism,” J. Optics-Nouvelle Revue D Optique 16, 83–93 (1985).
G. H. Meeten, “Computation of s1–s2 in mie scattering-theory,” J. Phys. D: Appl. Phys. 17, L89–L91 (1984).
[Crossref]
A. A. Vigasin, “Diffraction of light by absorbing inclusions in solids,” Kvant. Elektron. (Moscow) [Sov. J. Quantum Electron.] 4, 662–666 (1977).
G. Baffou, P. Bon, J. Savatier, J. Polleux, M. Zhu, M. Merlin, H. Rigneault, and S. Monneret, “Thermal Imaging of Nanostructures by Quantitative Optical Phase Analysis,” ACS Nano, DOI:
[Crossref]
[PubMed]
R. Polloni, B. F. Scremin, P. Calvelli, E. Cattaruzza, G. Battaglin, and G. Mattei, “Metal nanoparticles-silica composites: Z-scan determination of non-linear refractive index,” J. Non-Cryst. Solids 322, 300–305 (2003).
[Crossref]
G. Battaglin, P. Calvelli, E. Cattaruzza, F. Gonella, R. Polloni, G. Mattei, and P. Mazzoldi, “Z-scan study on the nonlinear refractive index of copper nanocluster composite silica glass,” Appl. Phys. Lett. 78, 3953–3955 (2001).
[Crossref]
S. Berciaud, D. Lasne, G. Blab, L. Cognet, and B. Lounis, “Photothermal heterodyne imaging of individual metallic nanoparticles: Theory versus experiment,” Phys. Rev. B 73, 045424 (2006).
[Crossref]
S. Berciaud, L. Cognet, G. Blab, and B. Lounis, “Photothermal heterodyne imaging of individual nonfluorescent nanoclusters and nanocrystals,” Phys. Rev. Lett. 93, 257402 (2004).
[Crossref]
S. Berciaud, D. Lasne, G. Blab, L. Cognet, and B. Lounis, “Photothermal heterodyne imaging of individual metallic nanoparticles: Theory versus experiment,” Phys. Rev. B 73, 045424 (2006).
[Crossref]
S. Berciaud, L. Cognet, G. Blab, and B. Lounis, “Photothermal heterodyne imaging of individual nonfluorescent nanoclusters and nanocrystals,” Phys. Rev. Lett. 93, 257402 (2004).
[Crossref]
G. Baffou, P. Bon, J. Savatier, J. Polleux, M. Zhu, M. Merlin, H. Rigneault, and S. Monneret, “Thermal Imaging of Nanostructures by Quantitative Optical Phase Analysis,” ACS Nano, DOI:
[Crossref]
[PubMed]
Z. L. Horvath and Z. Bor, “Focusing of truncated gaussian beams,” Opt. Commun. 222, 51–68 (2003).
[Crossref]
D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297, 1160–1163 (2002).
[Crossref]
[PubMed]
M. Selmke, M. Braun, and F. Cichos, “Photonic Rutherford Scattering,” in preparation (2012).
M. Selmke, M. Braun, and F. Cichos, “Photothermal Single Particle Microscopy: Detection of a Nano-Lens,” ACS Nano, DOI:
[Crossref]
[PubMed]
R. Polloni, B. F. Scremin, P. Calvelli, E. Cattaruzza, G. Battaglin, and G. Mattei, “Metal nanoparticles-silica composites: Z-scan determination of non-linear refractive index,” J. Non-Cryst. Solids 322, 300–305 (2003).
[Crossref]
G. Battaglin, P. Calvelli, E. Cattaruzza, F. Gonella, R. Polloni, G. Mattei, and P. Mazzoldi, “Z-scan study on the nonlinear refractive index of copper nanocluster composite silica glass,” Appl. Phys. Lett. 78, 3953–3955 (2001).
[Crossref]
R. Polloni, B. F. Scremin, P. Calvelli, E. Cattaruzza, G. Battaglin, and G. Mattei, “Metal nanoparticles-silica composites: Z-scan determination of non-linear refractive index,” J. Non-Cryst. Solids 322, 300–305 (2003).
[Crossref]
G. Battaglin, P. Calvelli, E. Cattaruzza, F. Gonella, R. Polloni, G. Mattei, and P. Mazzoldi, “Z-scan study on the nonlinear refractive index of copper nanocluster composite silica glass,” Appl. Phys. Lett. 78, 3953–3955 (2001).
[Crossref]
S. Teng, T. Zhou, and C. Cheng, “Fresnel diffraction of truncated gaussian beam,” Optik 118, 435–439 (2007).
[Crossref]
X. S. Xie, S. J. Lu, W. Min, S. S. Chong, and G. R. Holtom, “Label-free imaging of heme proteins with two-photon excited photothermal lens microscopy,” Appl. Phys. Lett. 96, 113701 (2010).
[Crossref]
D. Rings, R. Schachoff, M. Selmke, F. Cichos, and K. Kroy, “Hot Brownian Motion,” Phys. Rev. Lett. 105, 090604 (2010).
[Crossref]
[PubMed]
M. Selmke, M. Braun, and F. Cichos, “Photothermal Single Particle Microscopy: Detection of a Nano-Lens,” ACS Nano, DOI:
[Crossref]
[PubMed]
M. Selmke, M. Braun, and F. Cichos, “Photonic Rutherford Scattering,” in preparation (2012).
S. Berciaud, D. Lasne, G. Blab, L. Cognet, and B. Lounis, “Photothermal heterodyne imaging of individual metallic nanoparticles: Theory versus experiment,” Phys. Rev. B 73, 045424 (2006).
[Crossref]
S. Berciaud, L. Cognet, G. Blab, and B. Lounis, “Photothermal heterodyne imaging of individual nonfluorescent nanoclusters and nanocrystals,” Phys. Rev. Lett. 93, 257402 (2004).
[Crossref]
S. Sinha, A. Ray, and K. Dasgupta, “Solvent dependent nonlinear refraction in organic dye solution,” J. Appl. Phys. 87, 3222–3226 (2000).
[Crossref]
R. Escalona, “Comparative study between interferometric and z-scan techniques for thermal lensing characterization,” Opt. Commun. 281, 1323–1330 (2008).
[Crossref]
A. Gaiduk, M. Yorulmaz, P. V. Ruijgrok, and M. Orrit, “Room-temperature detection of a single molecule’s absorption by photothermal contrast,” Science 330, 353–356 (2010).
[Crossref]
[PubMed]
A. Gnoli, A. M. Paoletti, G. Pennesi, G. Rossi, and M. Righini, “High-accuracy z-scan measurements of the optical nonlinearity of bis-phthalocyanines,” J. Porphyrins Phthalocyanines 11, 481–486 (2007).
[Crossref]
A. Gnoli, L. Razzari, and M. Righini, “Z-scan measurements using high repetition rate lasers: how to manage thermal effects,” Opt. Express 13, 7976–7981 (2005).
[Crossref]
[PubMed]
G. Battaglin, P. Calvelli, E. Cattaruzza, F. Gonella, R. Polloni, G. Mattei, and P. Mazzoldi, “Z-scan study on the nonlinear refractive index of copper nanocluster composite silica glass,” Appl. Phys. Lett. 78, 3953–3955 (2001).
[Crossref]
G. Gouesbet, J. Lock, and G. Grehan, “Generalized lorenz-mie theories and description of electromagnetic arbitrary shaped beams: Localized approximations and localized beam models, a review,” J. Quant. Spectrosc. Radiat. Transfer 112, 1–27 (2011).
[Crossref]
F. Onofri, G. Grehan, and G. Gouesbet, “Electromagnetic scattering from a multilayered sphere located in an arbitrary beam,” Appl. Opt. 34, 7113–7124 (1995).
[Crossref]
[PubMed]
G. Gouesbet, J. A. Lock, and G. Grehan, “Partial-wave representations of laser-beams for use in light-scattering calculations,” Appl. Opt. 34, 2133–2143 (1995).
[Crossref]
[PubMed]
G. Gouesbet, B. Maheu, and G. Grehan, “Light-scattering from a sphere arbitrarily located in a gaussian-beam, using a bromwich formulation,” J. Opt. Soc. Am. A 5, 1427–1443 (1988).
[Crossref]
G. Gouesbet, G. Grehan, and B. Maheu, “Scattering of a gaussian-beam by a mie scatter center using a bromwich formalism,” J. Optics-Nouvelle Revue D Optique 16, 83–93 (1985).
G. Gouesbet, J. Lock, and G. Grehan, “Generalized lorenz-mie theories and description of electromagnetic arbitrary shaped beams: Localized approximations and localized beam models, a review,” J. Quant. Spectrosc. Radiat. Transfer 112, 1–27 (2011).
[Crossref]
G. Gouesbet, J. A. Lock, and G. Grehan, “Partial-wave representations of laser-beams for use in light-scattering calculations,” Appl. Opt. 34, 2133–2143 (1995).
[Crossref]
[PubMed]
F. Onofri, G. Grehan, and G. Gouesbet, “Electromagnetic scattering from a multilayered sphere located in an arbitrary beam,” Appl. Opt. 34, 7113–7124 (1995).
[Crossref]
[PubMed]
G. Gouesbet, B. Maheu, and G. Grehan, “Light-scattering from a sphere arbitrarily located in a gaussian-beam, using a bromwich formulation,” J. Opt. Soc. Am. A 5, 1427–1443 (1988).
[Crossref]
G. Gouesbet, G. Grehan, and B. Maheu, “Scattering of a gaussian-beam by a mie scatter center using a bromwich formalism,” J. Optics-Nouvelle Revue D Optique 16, 83–93 (1985).
M. Harada, M. Shibata, T. Kitamori, and T. Sawada, “Application of coaxial beam photothermal microscopy to the analysis of a single biological cell in water,” Anal. Chim. Acta. 299, 343–347 (1995).
[Crossref]
M. Harada, T. Kitamori, and T. Sawada, “Phase signal of optical beam deflection from single microparticles -theory and experiment,” J. Appl. Phys. 73, 2264–2271 (1993).
[Crossref]
M. Harada, K. Iwamotok, T. Kitamori, and T. Sawada, “Photothermal microscopy with excitation and probe beams coaxial under the microscope and its application to microparticle ananlysis,” Anal. Chem. 65, 2938–2940 (1993).
[Crossref]
K. Uchiyama, A. Hibara, H. Kimura, T. Sawada, and T. Kitamori, “Thermal lens microscope,” Jpn. J. Appl. Phys. 39, 5316–5322 (2000).
[Crossref]
X. S. Xie, S. J. Lu, W. Min, S. S. Chong, and G. R. Holtom, “Label-free imaging of heme proteins with two-photon excited photothermal lens microscopy,” Appl. Phys. Lett. 96, 113701 (2010).
[Crossref]
Z. L. Horvath and Z. Bor, “Focusing of truncated gaussian beams,” Opt. Commun. 222, 51–68 (2003).
[Crossref]
J. A. Lock and E. A. Hovenac, “Diffraction of a gaussian-beam by a spherical obstacle,” Am. J. Phys. 61, 698–707 (1993).
[Crossref]
J. Hwang and W. E. Moerner, “Interferometry of a single nanoparticle using the gouy phase of a focused laser beam,” Opt. Commun. 280, 487–491 (2007).
[Crossref]
M. Harada, K. Iwamotok, T. Kitamori, and T. Sawada, “Photothermal microscopy with excitation and probe beams coaxial under the microscope and its application to microparticle ananlysis,” Anal. Chem. 65, 2938–2940 (1993).
[Crossref]
K. Uchiyama, A. Hibara, H. Kimura, T. Sawada, and T. Kitamori, “Thermal lens microscope,” Jpn. J. Appl. Phys. 39, 5316–5322 (2000).
[Crossref]
K. Uchiyama, A. Hibara, H. Kimura, T. Sawada, and T. Kitamori, “Thermal lens microscope,” Jpn. J. Appl. Phys. 39, 5316–5322 (2000).
[Crossref]
M. Harada, M. Shibata, T. Kitamori, and T. Sawada, “Application of coaxial beam photothermal microscopy to the analysis of a single biological cell in water,” Anal. Chim. Acta. 299, 343–347 (1995).
[Crossref]
M. Harada, T. Kitamori, and T. Sawada, “Phase signal of optical beam deflection from single microparticles -theory and experiment,” J. Appl. Phys. 73, 2264–2271 (1993).
[Crossref]
M. Harada, K. Iwamotok, T. Kitamori, and T. Sawada, “Photothermal microscopy with excitation and probe beams coaxial under the microscope and its application to microparticle ananlysis,” Anal. Chem. 65, 2938–2940 (1993).
[Crossref]
J. Q. Wu, T. Kitamori, and T. Sawada, “Theory of optical beam deflection for single microparticles,” J. of Appl. Phys. 69, 7015–7020 (1991).
[Crossref]
D. Rings, R. Schachoff, M. Selmke, F. Cichos, and K. Kroy, “Hot Brownian Motion,” Phys. Rev. Lett. 105, 090604 (2010).
[Crossref]
[PubMed]
S. Berciaud, D. Lasne, G. Blab, L. Cognet, and B. Lounis, “Photothermal heterodyne imaging of individual metallic nanoparticles: Theory versus experiment,” Phys. Rev. B 73, 045424 (2006).
[Crossref]
G. Gouesbet, J. Lock, and G. Grehan, “Generalized lorenz-mie theories and description of electromagnetic arbitrary shaped beams: Localized approximations and localized beam models, a review,” J. Quant. Spectrosc. Radiat. Transfer 112, 1–27 (2011).
[Crossref]
S. Berciaud, D. Lasne, G. Blab, L. Cognet, and B. Lounis, “Photothermal heterodyne imaging of individual metallic nanoparticles: Theory versus experiment,” Phys. Rev. B 73, 045424 (2006).
[Crossref]
S. Berciaud, L. Cognet, G. Blab, and B. Lounis, “Photothermal heterodyne imaging of individual nonfluorescent nanoclusters and nanocrystals,” Phys. Rev. Lett. 93, 257402 (2004).
[Crossref]
D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297, 1160–1163 (2002).
[Crossref]
[PubMed]
X. S. Xie, S. J. Lu, W. Min, S. S. Chong, and G. R. Holtom, “Label-free imaging of heme proteins with two-photon excited photothermal lens microscopy,” Appl. Phys. Lett. 96, 113701 (2010).
[Crossref]
D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297, 1160–1163 (2002).
[Crossref]
[PubMed]
G. Gouesbet, B. Maheu, and G. Grehan, “Light-scattering from a sphere arbitrarily located in a gaussian-beam, using a bromwich formulation,” J. Opt. Soc. Am. A 5, 1427–1443 (1988).
[Crossref]
G. Gouesbet, G. Grehan, and B. Maheu, “Scattering of a gaussian-beam by a mie scatter center using a bromwich formalism,” J. Optics-Nouvelle Revue D Optique 16, 83–93 (1985).
R. Polloni, B. F. Scremin, P. Calvelli, E. Cattaruzza, G. Battaglin, and G. Mattei, “Metal nanoparticles-silica composites: Z-scan determination of non-linear refractive index,” J. Non-Cryst. Solids 322, 300–305 (2003).
[Crossref]
G. Battaglin, P. Calvelli, E. Cattaruzza, F. Gonella, R. Polloni, G. Mattei, and P. Mazzoldi, “Z-scan study on the nonlinear refractive index of copper nanocluster composite silica glass,” Appl. Phys. Lett. 78, 3953–3955 (2001).
[Crossref]
G. Battaglin, P. Calvelli, E. Cattaruzza, F. Gonella, R. Polloni, G. Mattei, and P. Mazzoldi, “Z-scan study on the nonlinear refractive index of copper nanocluster composite silica glass,” Appl. Phys. Lett. 78, 3953–3955 (2001).
[Crossref]
S. M. Mian, S. B. McGee, and N. Melikechi, “Experimental and theoretical investigation of thermal lensing effects in mode-locked femtosecond z-scan experiments,” Opt. Commun. 207, 339–345 (2002).
[Crossref]
G. H. Meeten, “Computation of s1–s2 in mie scattering-theory,” J. Phys. D: Appl. Phys. 17, L89–L91 (1984).
[Crossref]
S. M. Mian, S. B. McGee, and N. Melikechi, “Experimental and theoretical investigation of thermal lensing effects in mode-locked femtosecond z-scan experiments,” Opt. Commun. 207, 339–345 (2002).
[Crossref]
G. Baffou, P. Bon, J. Savatier, J. Polleux, M. Zhu, M. Merlin, H. Rigneault, and S. Monneret, “Thermal Imaging of Nanostructures by Quantitative Optical Phase Analysis,” ACS Nano, DOI:
[Crossref]
[PubMed]
S. M. Mian, S. B. McGee, and N. Melikechi, “Experimental and theoretical investigation of thermal lensing effects in mode-locked femtosecond z-scan experiments,” Opt. Commun. 207, 339–345 (2002).
[Crossref]
X. S. Xie, S. J. Lu, W. Min, S. S. Chong, and G. R. Holtom, “Label-free imaging of heme proteins with two-photon excited photothermal lens microscopy,” Appl. Phys. Lett. 96, 113701 (2010).
[Crossref]
J. Hwang and W. E. Moerner, “Interferometry of a single nanoparticle using the gouy phase of a focused laser beam,” Opt. Commun. 280, 487–491 (2007).
[Crossref]
G. Baffou, P. Bon, J. Savatier, J. Polleux, M. Zhu, M. Merlin, H. Rigneault, and S. Monneret, “Thermal Imaging of Nanostructures by Quantitative Optical Phase Analysis,” ACS Nano, DOI:
[Crossref]
[PubMed]
A. Gaiduk, M. Yorulmaz, P. V. Ruijgrok, and M. Orrit, “Room-temperature detection of a single molecule’s absorption by photothermal contrast,” Science 330, 353–356 (2010).
[Crossref]
[PubMed]
D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297, 1160–1163 (2002).
[Crossref]
[PubMed]
O. Pena and U. Pal, “Scattering of electromagnetic radiation by a multilayered sphere,” Comput. Phys. Commun. 180, 2348–2354 (2009).
[Crossref]
A. Gnoli, A. M. Paoletti, G. Pennesi, G. Rossi, and M. Righini, “High-accuracy z-scan measurements of the optical nonlinearity of bis-phthalocyanines,” J. Porphyrins Phthalocyanines 11, 481–486 (2007).
[Crossref]
O. Pena and U. Pal, “Scattering of electromagnetic radiation by a multilayered sphere,” Comput. Phys. Commun. 180, 2348–2354 (2009).
[Crossref]
A. Gnoli, A. M. Paoletti, G. Pennesi, G. Rossi, and M. Righini, “High-accuracy z-scan measurements of the optical nonlinearity of bis-phthalocyanines,” J. Porphyrins Phthalocyanines 11, 481–486 (2007).
[Crossref]
G. Baffou, P. Bon, J. Savatier, J. Polleux, M. Zhu, M. Merlin, H. Rigneault, and S. Monneret, “Thermal Imaging of Nanostructures by Quantitative Optical Phase Analysis,” ACS Nano, DOI:
[Crossref]
[PubMed]
R. Polloni, B. F. Scremin, P. Calvelli, E. Cattaruzza, G. Battaglin, and G. Mattei, “Metal nanoparticles-silica composites: Z-scan determination of non-linear refractive index,” J. Non-Cryst. Solids 322, 300–305 (2003).
[Crossref]
G. Battaglin, P. Calvelli, E. Cattaruzza, F. Gonella, R. Polloni, G. Mattei, and P. Mazzoldi, “Z-scan study on the nonlinear refractive index of copper nanocluster composite silica glass,” Appl. Phys. Lett. 78, 3953–3955 (2001).
[Crossref]
S. Sinha, A. Ray, and K. Dasgupta, “Solvent dependent nonlinear refraction in organic dye solution,” J. Appl. Phys. 87, 3222–3226 (2000).
[Crossref]
A. Gnoli, A. M. Paoletti, G. Pennesi, G. Rossi, and M. Righini, “High-accuracy z-scan measurements of the optical nonlinearity of bis-phthalocyanines,” J. Porphyrins Phthalocyanines 11, 481–486 (2007).
[Crossref]
A. Gnoli, L. Razzari, and M. Righini, “Z-scan measurements using high repetition rate lasers: how to manage thermal effects,” Opt. Express 13, 7976–7981 (2005).
[Crossref]
[PubMed]
G. Baffou, P. Bon, J. Savatier, J. Polleux, M. Zhu, M. Merlin, H. Rigneault, and S. Monneret, “Thermal Imaging of Nanostructures by Quantitative Optical Phase Analysis,” ACS Nano, DOI:
[Crossref]
[PubMed]
D. Rings, R. Schachoff, M. Selmke, F. Cichos, and K. Kroy, “Hot Brownian Motion,” Phys. Rev. Lett. 105, 090604 (2010).
[Crossref]
[PubMed]
A. Gnoli, A. M. Paoletti, G. Pennesi, G. Rossi, and M. Righini, “High-accuracy z-scan measurements of the optical nonlinearity of bis-phthalocyanines,” J. Porphyrins Phthalocyanines 11, 481–486 (2007).
[Crossref]
A. Gaiduk, M. Yorulmaz, P. V. Ruijgrok, and M. Orrit, “Room-temperature detection of a single molecule’s absorption by photothermal contrast,” Science 330, 353–356 (2010).
[Crossref]
[PubMed]
B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (John Wiley and Sons, Inc., 1991).
[Crossref]
G. Baffou, P. Bon, J. Savatier, J. Polleux, M. Zhu, M. Merlin, H. Rigneault, and S. Monneret, “Thermal Imaging of Nanostructures by Quantitative Optical Phase Analysis,” ACS Nano, DOI:
[Crossref]
[PubMed]
K. Uchiyama, A. Hibara, H. Kimura, T. Sawada, and T. Kitamori, “Thermal lens microscope,” Jpn. J. Appl. Phys. 39, 5316–5322 (2000).
[Crossref]
M. Harada, M. Shibata, T. Kitamori, and T. Sawada, “Application of coaxial beam photothermal microscopy to the analysis of a single biological cell in water,” Anal. Chim. Acta. 299, 343–347 (1995).
[Crossref]
M. Harada, T. Kitamori, and T. Sawada, “Phase signal of optical beam deflection from single microparticles -theory and experiment,” J. Appl. Phys. 73, 2264–2271 (1993).
[Crossref]
M. Harada, K. Iwamotok, T. Kitamori, and T. Sawada, “Photothermal microscopy with excitation and probe beams coaxial under the microscope and its application to microparticle ananlysis,” Anal. Chem. 65, 2938–2940 (1993).
[Crossref]
J. Q. Wu, T. Kitamori, and T. Sawada, “Theory of optical beam deflection for single microparticles,” J. of Appl. Phys. 69, 7015–7020 (1991).
[Crossref]
D. Rings, R. Schachoff, M. Selmke, F. Cichos, and K. Kroy, “Hot Brownian Motion,” Phys. Rev. Lett. 105, 090604 (2010).
[Crossref]
[PubMed]
R. Polloni, B. F. Scremin, P. Calvelli, E. Cattaruzza, G. Battaglin, and G. Mattei, “Metal nanoparticles-silica composites: Z-scan determination of non-linear refractive index,” J. Non-Cryst. Solids 322, 300–305 (2003).
[Crossref]
D. Rings, R. Schachoff, M. Selmke, F. Cichos, and K. Kroy, “Hot Brownian Motion,” Phys. Rev. Lett. 105, 090604 (2010).
[Crossref]
[PubMed]
M. Selmke, M. Braun, and F. Cichos, “Photonic Rutherford Scattering,” in preparation (2012).
M. Selmke, M. Braun, and F. Cichos, “Photothermal Single Particle Microscopy: Detection of a Nano-Lens,” ACS Nano, DOI:
[Crossref]
[PubMed]
M. Harada, M. Shibata, T. Kitamori, and T. Sawada, “Application of coaxial beam photothermal microscopy to the analysis of a single biological cell in water,” Anal. Chim. Acta. 299, 343–347 (1995).
[Crossref]
S. Sinha, A. Ray, and K. Dasgupta, “Solvent dependent nonlinear refraction in organic dye solution,” J. Appl. Phys. 87, 3222–3226 (2000).
[Crossref]
D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297, 1160–1163 (2002).
[Crossref]
[PubMed]
B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (John Wiley and Sons, Inc., 1991).
[Crossref]
S. Teng, T. Zhou, and C. Cheng, “Fresnel diffraction of truncated gaussian beam,” Optik 118, 435–439 (2007).
[Crossref]
K. Uchiyama, A. Hibara, H. Kimura, T. Sawada, and T. Kitamori, “Thermal lens microscope,” Jpn. J. Appl. Phys. 39, 5316–5322 (2000).
[Crossref]
A. A. Vigasin, “Diffraction of light by absorbing inclusions in solids,” Kvant. Elektron. (Moscow) [Sov. J. Quantum Electron.] 4, 662–666 (1977).
J. Q. Wu, T. Kitamori, and T. Sawada, “Theory of optical beam deflection for single microparticles,” J. of Appl. Phys. 69, 7015–7020 (1991).
[Crossref]
X. S. Xie, S. J. Lu, W. Min, S. S. Chong, and G. R. Holtom, “Label-free imaging of heme proteins with two-photon excited photothermal lens microscopy,” Appl. Phys. Lett. 96, 113701 (2010).
[Crossref]
A. Gaiduk, M. Yorulmaz, P. V. Ruijgrok, and M. Orrit, “Room-temperature detection of a single molecule’s absorption by photothermal contrast,” Science 330, 353–356 (2010).
[Crossref]
[PubMed]
S. Teng, T. Zhou, and C. Cheng, “Fresnel diffraction of truncated gaussian beam,” Optik 118, 435–439 (2007).
[Crossref]
G. Baffou, P. Bon, J. Savatier, J. Polleux, M. Zhu, M. Merlin, H. Rigneault, and S. Monneret, “Thermal Imaging of Nanostructures by Quantitative Optical Phase Analysis,” ACS Nano, DOI:
[Crossref]
[PubMed]
G. Baffou, P. Bon, J. Savatier, J. Polleux, M. Zhu, M. Merlin, H. Rigneault, and S. Monneret, “Thermal Imaging of Nanostructures by Quantitative Optical Phase Analysis,” ACS Nano, DOI:
[Crossref]
[PubMed]
J. A. Lock and E. A. Hovenac, “Diffraction of a gaussian-beam by a spherical obstacle,” Am. J. Phys. 61, 698–707 (1993).
[Crossref]
M. Harada, K. Iwamotok, T. Kitamori, and T. Sawada, “Photothermal microscopy with excitation and probe beams coaxial under the microscope and its application to microparticle ananlysis,” Anal. Chem. 65, 2938–2940 (1993).
[Crossref]
M. Harada, M. Shibata, T. Kitamori, and T. Sawada, “Application of coaxial beam photothermal microscopy to the analysis of a single biological cell in water,” Anal. Chim. Acta. 299, 343–347 (1995).
[Crossref]
W. B. Jackson, N. M. Amer, A. C. Boccara, and D. Fournier, “Photothermal deflection spectroscopy and detection,” Appl. Opt. 20, 1333–1344 (1981).
[Crossref]
[PubMed]
G. Gouesbet, J. A. Lock, and G. Grehan, “Partial-wave representations of laser-beams for use in light-scattering calculations,” Appl. Opt. 34, 2133–2143 (1995).
[Crossref]
[PubMed]
F. Onofri, G. Grehan, and G. Gouesbet, “Electromagnetic scattering from a multilayered sphere located in an arbitrary beam,” Appl. Opt. 34, 7113–7124 (1995).
[Crossref]
[PubMed]
F. Jurgensen and W. Schroer, “Studies on the diffraction image of a thermal lens,” Appl. Opt. 34, 41–50 (1995).
[Crossref]
[PubMed]
C. Hu and J. R. Whinnery, “New thermooptical measurement method and a comparison with other methods,” Appl. Opt. 12, 72–79 (1973).
[Crossref]
[PubMed]
X. S. Xie, S. J. Lu, W. Min, S. S. Chong, and G. R. Holtom, “Label-free imaging of heme proteins with two-photon excited photothermal lens microscopy,” Appl. Phys. Lett. 96, 113701 (2010).
[Crossref]
G. Battaglin, P. Calvelli, E. Cattaruzza, F. Gonella, R. Polloni, G. Mattei, and P. Mazzoldi, “Z-scan study on the nonlinear refractive index of copper nanocluster composite silica glass,” Appl. Phys. Lett. 78, 3953–3955 (2001).
[Crossref]
O. Pena and U. Pal, “Scattering of electromagnetic radiation by a multilayered sphere,” Comput. Phys. Commun. 180, 2348–2354 (2009).
[Crossref]
S. Sinha, A. Ray, and K. Dasgupta, “Solvent dependent nonlinear refraction in organic dye solution,” J. Appl. Phys. 87, 3222–3226 (2000).
[Crossref]
M. Harada, T. Kitamori, and T. Sawada, “Phase signal of optical beam deflection from single microparticles -theory and experiment,” J. Appl. Phys. 73, 2264–2271 (1993).
[Crossref]
R. Polloni, B. F. Scremin, P. Calvelli, E. Cattaruzza, G. Battaglin, and G. Mattei, “Metal nanoparticles-silica composites: Z-scan determination of non-linear refractive index,” J. Non-Cryst. Solids 322, 300–305 (2003).
[Crossref]
J. Q. Wu, T. Kitamori, and T. Sawada, “Theory of optical beam deflection for single microparticles,” J. of Appl. Phys. 69, 7015–7020 (1991).
[Crossref]
G. Gouesbet, G. Grehan, and B. Maheu, “Scattering of a gaussian-beam by a mie scatter center using a bromwich formalism,” J. Optics-Nouvelle Revue D Optique 16, 83–93 (1985).
G. H. Meeten, “Computation of s1–s2 in mie scattering-theory,” J. Phys. D: Appl. Phys. 17, L89–L91 (1984).
[Crossref]
A. Gnoli, A. M. Paoletti, G. Pennesi, G. Rossi, and M. Righini, “High-accuracy z-scan measurements of the optical nonlinearity of bis-phthalocyanines,” J. Porphyrins Phthalocyanines 11, 481–486 (2007).
[Crossref]
G. Gouesbet, J. Lock, and G. Grehan, “Generalized lorenz-mie theories and description of electromagnetic arbitrary shaped beams: Localized approximations and localized beam models, a review,” J. Quant. Spectrosc. Radiat. Transfer 112, 1–27 (2011).
[Crossref]
K. Uchiyama, A. Hibara, H. Kimura, T. Sawada, and T. Kitamori, “Thermal lens microscope,” Jpn. J. Appl. Phys. 39, 5316–5322 (2000).
[Crossref]
J. Moreau and V. Loriette, “Confocal dual-beam thermal-lens microscope: Model and experimental results,” Jpn. J. Appl. Phys. 45, 7141–7151 (2006).
[Crossref]
A. A. Vigasin, “Diffraction of light by absorbing inclusions in solids,” Kvant. Elektron. (Moscow) [Sov. J. Quantum Electron.] 4, 662–666 (1977).
R. Escalona, “Comparative study between interferometric and z-scan techniques for thermal lensing characterization,” Opt. Commun. 281, 1323–1330 (2008).
[Crossref]
S. M. Mian, S. B. McGee, and N. Melikechi, “Experimental and theoretical investigation of thermal lensing effects in mode-locked femtosecond z-scan experiments,” Opt. Commun. 207, 339–345 (2002).
[Crossref]
J. Hwang and W. E. Moerner, “Interferometry of a single nanoparticle using the gouy phase of a focused laser beam,” Opt. Commun. 280, 487–491 (2007).
[Crossref]
Z. L. Horvath and Z. Bor, “Focusing of truncated gaussian beams,” Opt. Commun. 222, 51–68 (2003).
[Crossref]
S. Teng, T. Zhou, and C. Cheng, “Fresnel diffraction of truncated gaussian beam,” Optik 118, 435–439 (2007).
[Crossref]
S. Berciaud, D. Lasne, G. Blab, L. Cognet, and B. Lounis, “Photothermal heterodyne imaging of individual metallic nanoparticles: Theory versus experiment,” Phys. Rev. B 73, 045424 (2006).
[Crossref]
S. Berciaud, L. Cognet, G. Blab, and B. Lounis, “Photothermal heterodyne imaging of individual nonfluorescent nanoclusters and nanocrystals,” Phys. Rev. Lett. 93, 257402 (2004).
[Crossref]
D. Rings, R. Schachoff, M. Selmke, F. Cichos, and K. Kroy, “Hot Brownian Motion,” Phys. Rev. Lett. 105, 090604 (2010).
[Crossref]
[PubMed]
A. Gaiduk, M. Yorulmaz, P. V. Ruijgrok, and M. Orrit, “Room-temperature detection of a single molecule’s absorption by photothermal contrast,” Science 330, 353–356 (2010).
[Crossref]
[PubMed]
D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297, 1160–1163 (2002).
[Crossref]
[PubMed]
M. Selmke, M. Braun, and F. Cichos, “Photothermal Single Particle Microscopy: Detection of a Nano-Lens,” ACS Nano, DOI:
[Crossref]
[PubMed]
B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (John Wiley and Sons, Inc., 1991).
[Crossref]
M. Selmke, M. Braun, and F. Cichos, “Photonic Rutherford Scattering,” in preparation (2012).