Abstract

We present the theoretical and the experimental implementation of an all-optical phase modulation system in integrated Mach-Zehnder Interferometers to solve the drawbacks related to the periodic nature of the interferometric signal. Sensor phase is tuned by modulating the emission wavelength of low-cost commercial laser diodes by changing their output power. FFT deconvolution of the signal allows for direct phase readout, immune to sensitivity variations and to light intensity fluctuations. This simple phase modulation scheme increases the signal-to-noise ratio of the measurements in one order of magnitude, rendering in a sensor with a detection limit of 1.9·10−7 RIU. The viability of the all-optical modulation approach is demonstrated with an immunoassay detection as a biosensing proof of concept.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. J. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
    [CrossRef] [PubMed]
  2. M. C. Estevez, M. Álvarez, and L. M. Lechuga, “Integrated Optical devices for lab-on-a-chip biosensing applications,” Laser Photon. Rev. DOI: (2011).
    [CrossRef]
  3. A. Ymeti, J. S. Kanger, R. Wijn, P. V. Lambeck, and J. Greve, “Development of a multichannel integrated interferometer immunosensor,” Sens. Actuators B Chem. 83(1-3), 1–7 (2002).
    [CrossRef]
  4. K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosens. Bioelectron. 22(11), 2591–2597 (2007).
    [CrossRef] [PubMed]
  5. G. Heideman and P. V. Lambeck, “Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach–Zehnder interferometer system,” Sens. Actuators B Chem. 61(1-3), 100–127 (1999).
    [CrossRef]
  6. B. Sepúlveda, J. Sánchez del Río, M. Moreno, F. J. Blanco, K. Mayora, C. Domínguez, and L. M. Lechuga, “Optical biosensor micro-systems based on the integration of highly sensitive Mach-Zehnder interferometer devices,” J. Opt. A, Pure Appl. Opt. 8(7), S561–S566 (2006).
    [CrossRef]
  7. B. H. Schneider, E. L. Dickinson, M. D. Vach, J. V. Hoijer, and L. V. Howard, “Optical chip immunoassay for hCG in human whole blood,” Biosens. Bioelectron. 15(11-12), 597–604 (2000).
    [CrossRef] [PubMed]
  8. D. J. Bornhop, J. C. Latham, A. Kussrow, D. A. Markov, R. D. Jones, and H. S. Sørensen, “Free-solution, label-free molecular interactions studied by back-scattering interferometry,” Science 317(5845), 1732–1736 (2007).
    [CrossRef] [PubMed]
  9. K. E. Zinoviev, A. B. González-Guerrero, C. Domínguez, and L. M. Lechuga, “Integrated Bimodal Waveguide Interferometric Biosensor for Label-free Analysis,” J. Lightwave Technol. 29(13), 1926–1930 (2011).
    [CrossRef]
  10. B. Sepúlveda, G. Armelles, and L. M. Lechuga, “Magneto-optical phase modulation in integrated Mach–Zehnder interferometric sensors,” Sens. Actuators A Phys. 134(2), 339–347 (2007).
    [CrossRef]
  11. K. Preston, S. Manipatruni, A. Gondarenko, C. B. Poitras, and M. Lipson, “Deposited silicon high-speed integrated electro-optic modulator,” Opt. Express 17(7), 5118–5124 (2009).
    [CrossRef] [PubMed]
  12. M. B. Dühring and O. Sigmund, “Improving the acousto-optical interaction in a Mach-Zehnder interferometer,” J. Appl. Phys. 105(8), 083529 (2009).
    [CrossRef]
  13. P. Dumais, C. L. Callender, J. P. Noad, and C. J. Ledderhof, “Integrated optical sensor using a liquid-core waveguide in a Mach-Zehnder interferometer,” Opt. Express 16(22), 18164–18172 (2008).
    [CrossRef] [PubMed]
  14. V. Passaro, F. Magno, and A. Tsarev, “Investigation of thermo-optic effect and multi-reflector tunable filter/multiplexer in SOI waveguides,” Opt. Express 13(9), 3429–3437 (2005).
    [CrossRef] [PubMed]
  15. A. Dér, S. Valkai, A. Mathesz, I. Andó, E. K. Wolff, and P. Ormos, “Protein-based all-optical sensor device,” Sens. Actuators B Chem. 151(1), 26–29 (2010).
    [CrossRef]
  16. A. Dandridge and A. B. Tveten, “Phase compensation in interferometric fiber-optic sensors,” Opt. Lett. 7(6), 279–281 (1982).
    [CrossRef] [PubMed]
  17. U. Minoni, E. Sardini, E. Gelmini, F. Docchio, and D. Marioli, “A high-frequency sinusoidal phase-modulation interferometer using an electro-optic modulator: Development and evaluation,” Rev. Sci. Instrum. 62(11), 2579–2583 (1991).
    [CrossRef]
  18. D. Guo, M. Wang, and S. Tan, “Self-mixing interferometer based on sinusoidal phase modulating technique,” Opt. Express 13(5), 1537–1543 (2005).
    [CrossRef] [PubMed]
  19. F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
    [CrossRef]
  20. K. Zinoviev, L. G. Carrascosa, J. Sánchez del Río, B. Sepúlveda, C. Domínguez, and L. M. Lechuga, “Silicon Photonic Biosensors for Lab-on-a-Chip Applications,” Adv. Opt. Technol. 2008, 383927 (2008).
    [CrossRef]
  21. T. Gao and L. J. Rothberg, “Label-free sensing of binding to microarrays using Brewster angle straddle interferometry,” Anal. Chem. 79(20), 7589–7595 (2007).
    [CrossRef] [PubMed]
  22. Y. Chen, P. Xu, M. Liu, and X. Li, “Bio/chemical detection in liquid with self-sensing Pr-Oxi-Lever (piezo-resistive SiO2 cantilever) sensors,” Microelectron. Eng. 87(12), 2468–2474 (2010).
    [CrossRef]

2011 (2)

M. C. Estevez, M. Álvarez, and L. M. Lechuga, “Integrated Optical devices for lab-on-a-chip biosensing applications,” Laser Photon. Rev. DOI: (2011).
[CrossRef]

K. E. Zinoviev, A. B. González-Guerrero, C. Domínguez, and L. M. Lechuga, “Integrated Bimodal Waveguide Interferometric Biosensor for Label-free Analysis,” J. Lightwave Technol. 29(13), 1926–1930 (2011).
[CrossRef]

2010 (2)

A. Dér, S. Valkai, A. Mathesz, I. Andó, E. K. Wolff, and P. Ormos, “Protein-based all-optical sensor device,” Sens. Actuators B Chem. 151(1), 26–29 (2010).
[CrossRef]

Y. Chen, P. Xu, M. Liu, and X. Li, “Bio/chemical detection in liquid with self-sensing Pr-Oxi-Lever (piezo-resistive SiO2 cantilever) sensors,” Microelectron. Eng. 87(12), 2468–2474 (2010).
[CrossRef]

2009 (2)

M. B. Dühring and O. Sigmund, “Improving the acousto-optical interaction in a Mach-Zehnder interferometer,” J. Appl. Phys. 105(8), 083529 (2009).
[CrossRef]

K. Preston, S. Manipatruni, A. Gondarenko, C. B. Poitras, and M. Lipson, “Deposited silicon high-speed integrated electro-optic modulator,” Opt. Express 17(7), 5118–5124 (2009).
[CrossRef] [PubMed]

2008 (3)

P. Dumais, C. L. Callender, J. P. Noad, and C. J. Ledderhof, “Integrated optical sensor using a liquid-core waveguide in a Mach-Zehnder interferometer,” Opt. Express 16(22), 18164–18172 (2008).
[CrossRef] [PubMed]

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. J. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

K. Zinoviev, L. G. Carrascosa, J. Sánchez del Río, B. Sepúlveda, C. Domínguez, and L. M. Lechuga, “Silicon Photonic Biosensors for Lab-on-a-Chip Applications,” Adv. Opt. Technol. 2008, 383927 (2008).
[CrossRef]

2007 (4)

T. Gao and L. J. Rothberg, “Label-free sensing of binding to microarrays using Brewster angle straddle interferometry,” Anal. Chem. 79(20), 7589–7595 (2007).
[CrossRef] [PubMed]

K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosens. Bioelectron. 22(11), 2591–2597 (2007).
[CrossRef] [PubMed]

D. J. Bornhop, J. C. Latham, A. Kussrow, D. A. Markov, R. D. Jones, and H. S. Sørensen, “Free-solution, label-free molecular interactions studied by back-scattering interferometry,” Science 317(5845), 1732–1736 (2007).
[CrossRef] [PubMed]

B. Sepúlveda, G. Armelles, and L. M. Lechuga, “Magneto-optical phase modulation in integrated Mach–Zehnder interferometric sensors,” Sens. Actuators A Phys. 134(2), 339–347 (2007).
[CrossRef]

2006 (1)

B. Sepúlveda, J. Sánchez del Río, M. Moreno, F. J. Blanco, K. Mayora, C. Domínguez, and L. M. Lechuga, “Optical biosensor micro-systems based on the integration of highly sensitive Mach-Zehnder interferometer devices,” J. Opt. A, Pure Appl. Opt. 8(7), S561–S566 (2006).
[CrossRef]

2005 (2)

2003 (1)

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
[CrossRef]

2002 (1)

A. Ymeti, J. S. Kanger, R. Wijn, P. V. Lambeck, and J. Greve, “Development of a multichannel integrated interferometer immunosensor,” Sens. Actuators B Chem. 83(1-3), 1–7 (2002).
[CrossRef]

2000 (1)

B. H. Schneider, E. L. Dickinson, M. D. Vach, J. V. Hoijer, and L. V. Howard, “Optical chip immunoassay for hCG in human whole blood,” Biosens. Bioelectron. 15(11-12), 597–604 (2000).
[CrossRef] [PubMed]

1999 (1)

G. Heideman and P. V. Lambeck, “Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach–Zehnder interferometer system,” Sens. Actuators B Chem. 61(1-3), 100–127 (1999).
[CrossRef]

1991 (1)

U. Minoni, E. Sardini, E. Gelmini, F. Docchio, and D. Marioli, “A high-frequency sinusoidal phase-modulation interferometer using an electro-optic modulator: Development and evaluation,” Rev. Sci. Instrum. 62(11), 2579–2583 (1991).
[CrossRef]

1982 (1)

Abad, A.

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
[CrossRef]

Álvarez, M.

M. C. Estevez, M. Álvarez, and L. M. Lechuga, “Integrated Optical devices for lab-on-a-chip biosensing applications,” Laser Photon. Rev. DOI: (2011).
[CrossRef]

Andó, I.

A. Dér, S. Valkai, A. Mathesz, I. Andó, E. K. Wolff, and P. Ormos, “Protein-based all-optical sensor device,” Sens. Actuators B Chem. 151(1), 26–29 (2010).
[CrossRef]

Armelles, G.

B. Sepúlveda, G. Armelles, and L. M. Lechuga, “Magneto-optical phase modulation in integrated Mach–Zehnder interferometric sensors,” Sens. Actuators A Phys. 134(2), 339–347 (2007).
[CrossRef]

Blanco, F. J.

B. Sepúlveda, J. Sánchez del Río, M. Moreno, F. J. Blanco, K. Mayora, C. Domínguez, and L. M. Lechuga, “Optical biosensor micro-systems based on the integration of highly sensitive Mach-Zehnder interferometer devices,” J. Opt. A, Pure Appl. Opt. 8(7), S561–S566 (2006).
[CrossRef]

Bornhop, D. J.

D. J. Bornhop, J. C. Latham, A. Kussrow, D. A. Markov, R. D. Jones, and H. S. Sørensen, “Free-solution, label-free molecular interactions studied by back-scattering interferometry,” Science 317(5845), 1732–1736 (2007).
[CrossRef] [PubMed]

Brandenburg, A.

K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosens. Bioelectron. 22(11), 2591–2597 (2007).
[CrossRef] [PubMed]

Calle, A.

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
[CrossRef]

Callender, C. L.

Carrascosa, L. G.

K. Zinoviev, L. G. Carrascosa, J. Sánchez del Río, B. Sepúlveda, C. Domínguez, and L. M. Lechuga, “Silicon Photonic Biosensors for Lab-on-a-Chip Applications,” Adv. Opt. Technol. 2008, 383927 (2008).
[CrossRef]

Chen, Y.

Y. Chen, P. Xu, M. Liu, and X. Li, “Bio/chemical detection in liquid with self-sensing Pr-Oxi-Lever (piezo-resistive SiO2 cantilever) sensors,” Microelectron. Eng. 87(12), 2468–2474 (2010).
[CrossRef]

Dandridge, A.

Dér, A.

A. Dér, S. Valkai, A. Mathesz, I. Andó, E. K. Wolff, and P. Ormos, “Protein-based all-optical sensor device,” Sens. Actuators B Chem. 151(1), 26–29 (2010).
[CrossRef]

Dickinson, E. L.

B. H. Schneider, E. L. Dickinson, M. D. Vach, J. V. Hoijer, and L. V. Howard, “Optical chip immunoassay for hCG in human whole blood,” Biosens. Bioelectron. 15(11-12), 597–604 (2000).
[CrossRef] [PubMed]

Docchio, F.

U. Minoni, E. Sardini, E. Gelmini, F. Docchio, and D. Marioli, “A high-frequency sinusoidal phase-modulation interferometer using an electro-optic modulator: Development and evaluation,” Rev. Sci. Instrum. 62(11), 2579–2583 (1991).
[CrossRef]

Domínguez, C.

K. E. Zinoviev, A. B. González-Guerrero, C. Domínguez, and L. M. Lechuga, “Integrated Bimodal Waveguide Interferometric Biosensor for Label-free Analysis,” J. Lightwave Technol. 29(13), 1926–1930 (2011).
[CrossRef]

K. Zinoviev, L. G. Carrascosa, J. Sánchez del Río, B. Sepúlveda, C. Domínguez, and L. M. Lechuga, “Silicon Photonic Biosensors for Lab-on-a-Chip Applications,” Adv. Opt. Technol. 2008, 383927 (2008).
[CrossRef]

B. Sepúlveda, J. Sánchez del Río, M. Moreno, F. J. Blanco, K. Mayora, C. Domínguez, and L. M. Lechuga, “Optical biosensor micro-systems based on the integration of highly sensitive Mach-Zehnder interferometer devices,” J. Opt. A, Pure Appl. Opt. 8(7), S561–S566 (2006).
[CrossRef]

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
[CrossRef]

Dühring, M. B.

M. B. Dühring and O. Sigmund, “Improving the acousto-optical interaction in a Mach-Zehnder interferometer,” J. Appl. Phys. 105(8), 083529 (2009).
[CrossRef]

Dumais, P.

Estevez, M. C.

M. C. Estevez, M. Álvarez, and L. M. Lechuga, “Integrated Optical devices for lab-on-a-chip biosensing applications,” Laser Photon. Rev. DOI: (2011).
[CrossRef]

Fan, X.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. J. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Gao, T.

T. Gao and L. J. Rothberg, “Label-free sensing of binding to microarrays using Brewster angle straddle interferometry,” Anal. Chem. 79(20), 7589–7595 (2007).
[CrossRef] [PubMed]

Gelmini, E.

U. Minoni, E. Sardini, E. Gelmini, F. Docchio, and D. Marioli, “A high-frequency sinusoidal phase-modulation interferometer using an electro-optic modulator: Development and evaluation,” Rev. Sci. Instrum. 62(11), 2579–2583 (1991).
[CrossRef]

Gondarenko, A.

González-Guerrero, A. B.

Greve, J.

A. Ymeti, J. S. Kanger, R. Wijn, P. V. Lambeck, and J. Greve, “Development of a multichannel integrated interferometer immunosensor,” Sens. Actuators B Chem. 83(1-3), 1–7 (2002).
[CrossRef]

Guo, D.

Heideman, G.

G. Heideman and P. V. Lambeck, “Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach–Zehnder interferometer system,” Sens. Actuators B Chem. 61(1-3), 100–127 (1999).
[CrossRef]

Hoffmann, C.

K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosens. Bioelectron. 22(11), 2591–2597 (2007).
[CrossRef] [PubMed]

Hoijer, J. V.

B. H. Schneider, E. L. Dickinson, M. D. Vach, J. V. Hoijer, and L. V. Howard, “Optical chip immunoassay for hCG in human whole blood,” Biosens. Bioelectron. 15(11-12), 597–604 (2000).
[CrossRef] [PubMed]

Howard, L. V.

B. H. Schneider, E. L. Dickinson, M. D. Vach, J. V. Hoijer, and L. V. Howard, “Optical chip immunoassay for hCG in human whole blood,” Biosens. Bioelectron. 15(11-12), 597–604 (2000).
[CrossRef] [PubMed]

Jones, R. D.

D. J. Bornhop, J. C. Latham, A. Kussrow, D. A. Markov, R. D. Jones, and H. S. Sørensen, “Free-solution, label-free molecular interactions studied by back-scattering interferometry,” Science 317(5845), 1732–1736 (2007).
[CrossRef] [PubMed]

Kanger, J. S.

A. Ymeti, J. S. Kanger, R. Wijn, P. V. Lambeck, and J. Greve, “Development of a multichannel integrated interferometer immunosensor,” Sens. Actuators B Chem. 83(1-3), 1–7 (2002).
[CrossRef]

Kussrow, A.

D. J. Bornhop, J. C. Latham, A. Kussrow, D. A. Markov, R. D. Jones, and H. S. Sørensen, “Free-solution, label-free molecular interactions studied by back-scattering interferometry,” Science 317(5845), 1732–1736 (2007).
[CrossRef] [PubMed]

Lambeck, P. V.

A. Ymeti, J. S. Kanger, R. Wijn, P. V. Lambeck, and J. Greve, “Development of a multichannel integrated interferometer immunosensor,” Sens. Actuators B Chem. 83(1-3), 1–7 (2002).
[CrossRef]

G. Heideman and P. V. Lambeck, “Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach–Zehnder interferometer system,” Sens. Actuators B Chem. 61(1-3), 100–127 (1999).
[CrossRef]

Latham, J. C.

D. J. Bornhop, J. C. Latham, A. Kussrow, D. A. Markov, R. D. Jones, and H. S. Sørensen, “Free-solution, label-free molecular interactions studied by back-scattering interferometry,” Science 317(5845), 1732–1736 (2007).
[CrossRef] [PubMed]

Lechuga, L. M.

K. E. Zinoviev, A. B. González-Guerrero, C. Domínguez, and L. M. Lechuga, “Integrated Bimodal Waveguide Interferometric Biosensor for Label-free Analysis,” J. Lightwave Technol. 29(13), 1926–1930 (2011).
[CrossRef]

M. C. Estevez, M. Álvarez, and L. M. Lechuga, “Integrated Optical devices for lab-on-a-chip biosensing applications,” Laser Photon. Rev. DOI: (2011).
[CrossRef]

K. Zinoviev, L. G. Carrascosa, J. Sánchez del Río, B. Sepúlveda, C. Domínguez, and L. M. Lechuga, “Silicon Photonic Biosensors for Lab-on-a-Chip Applications,” Adv. Opt. Technol. 2008, 383927 (2008).
[CrossRef]

B. Sepúlveda, G. Armelles, and L. M. Lechuga, “Magneto-optical phase modulation in integrated Mach–Zehnder interferometric sensors,” Sens. Actuators A Phys. 134(2), 339–347 (2007).
[CrossRef]

B. Sepúlveda, J. Sánchez del Río, M. Moreno, F. J. Blanco, K. Mayora, C. Domínguez, and L. M. Lechuga, “Optical biosensor micro-systems based on the integration of highly sensitive Mach-Zehnder interferometer devices,” J. Opt. A, Pure Appl. Opt. 8(7), S561–S566 (2006).
[CrossRef]

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
[CrossRef]

Ledderhof, C. J.

Li, X.

Y. Chen, P. Xu, M. Liu, and X. Li, “Bio/chemical detection in liquid with self-sensing Pr-Oxi-Lever (piezo-resistive SiO2 cantilever) sensors,” Microelectron. Eng. 87(12), 2468–2474 (2010).
[CrossRef]

Lipson, M.

Liu, M.

Y. Chen, P. Xu, M. Liu, and X. Li, “Bio/chemical detection in liquid with self-sensing Pr-Oxi-Lever (piezo-resistive SiO2 cantilever) sensors,” Microelectron. Eng. 87(12), 2468–2474 (2010).
[CrossRef]

Llobera, A.

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
[CrossRef]

Magno, F.

Manipatruni, S.

Marioli, D.

U. Minoni, E. Sardini, E. Gelmini, F. Docchio, and D. Marioli, “A high-frequency sinusoidal phase-modulation interferometer using an electro-optic modulator: Development and evaluation,” Rev. Sci. Instrum. 62(11), 2579–2583 (1991).
[CrossRef]

Markov, D. A.

D. J. Bornhop, J. C. Latham, A. Kussrow, D. A. Markov, R. D. Jones, and H. S. Sørensen, “Free-solution, label-free molecular interactions studied by back-scattering interferometry,” Science 317(5845), 1732–1736 (2007).
[CrossRef] [PubMed]

Mathesz, A.

A. Dér, S. Valkai, A. Mathesz, I. Andó, E. K. Wolff, and P. Ormos, “Protein-based all-optical sensor device,” Sens. Actuators B Chem. 151(1), 26–29 (2010).
[CrossRef]

Mayora, K.

B. Sepúlveda, J. Sánchez del Río, M. Moreno, F. J. Blanco, K. Mayora, C. Domínguez, and L. M. Lechuga, “Optical biosensor micro-systems based on the integration of highly sensitive Mach-Zehnder interferometer devices,” J. Opt. A, Pure Appl. Opt. 8(7), S561–S566 (2006).
[CrossRef]

Meyrueis, P.

K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosens. Bioelectron. 22(11), 2591–2597 (2007).
[CrossRef] [PubMed]

Minoni, U.

U. Minoni, E. Sardini, E. Gelmini, F. Docchio, and D. Marioli, “A high-frequency sinusoidal phase-modulation interferometer using an electro-optic modulator: Development and evaluation,” Rev. Sci. Instrum. 62(11), 2579–2583 (1991).
[CrossRef]

Montoya, A.

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
[CrossRef]

Moreno, M.

B. Sepúlveda, J. Sánchez del Río, M. Moreno, F. J. Blanco, K. Mayora, C. Domínguez, and L. M. Lechuga, “Optical biosensor micro-systems based on the integration of highly sensitive Mach-Zehnder interferometer devices,” J. Opt. A, Pure Appl. Opt. 8(7), S561–S566 (2006).
[CrossRef]

Noad, J. P.

Ormos, P.

A. Dér, S. Valkai, A. Mathesz, I. Andó, E. K. Wolff, and P. Ormos, “Protein-based all-optical sensor device,” Sens. Actuators B Chem. 151(1), 26–29 (2010).
[CrossRef]

Passaro, V.

Poitras, C. B.

Preston, K.

Prieto, F.

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
[CrossRef]

Rothberg, L. J.

T. Gao and L. J. Rothberg, “Label-free sensing of binding to microarrays using Brewster angle straddle interferometry,” Anal. Chem. 79(20), 7589–7595 (2007).
[CrossRef] [PubMed]

Sánchez del Río, J.

K. Zinoviev, L. G. Carrascosa, J. Sánchez del Río, B. Sepúlveda, C. Domínguez, and L. M. Lechuga, “Silicon Photonic Biosensors for Lab-on-a-Chip Applications,” Adv. Opt. Technol. 2008, 383927 (2008).
[CrossRef]

B. Sepúlveda, J. Sánchez del Río, M. Moreno, F. J. Blanco, K. Mayora, C. Domínguez, and L. M. Lechuga, “Optical biosensor micro-systems based on the integration of highly sensitive Mach-Zehnder interferometer devices,” J. Opt. A, Pure Appl. Opt. 8(7), S561–S566 (2006).
[CrossRef]

Sardini, E.

U. Minoni, E. Sardini, E. Gelmini, F. Docchio, and D. Marioli, “A high-frequency sinusoidal phase-modulation interferometer using an electro-optic modulator: Development and evaluation,” Rev. Sci. Instrum. 62(11), 2579–2583 (1991).
[CrossRef]

Schirmer, B.

K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosens. Bioelectron. 22(11), 2591–2597 (2007).
[CrossRef] [PubMed]

Schmitt, K.

K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosens. Bioelectron. 22(11), 2591–2597 (2007).
[CrossRef] [PubMed]

Schneider, B. H.

B. H. Schneider, E. L. Dickinson, M. D. Vach, J. V. Hoijer, and L. V. Howard, “Optical chip immunoassay for hCG in human whole blood,” Biosens. Bioelectron. 15(11-12), 597–604 (2000).
[CrossRef] [PubMed]

Sepúlveda, B.

K. Zinoviev, L. G. Carrascosa, J. Sánchez del Río, B. Sepúlveda, C. Domínguez, and L. M. Lechuga, “Silicon Photonic Biosensors for Lab-on-a-Chip Applications,” Adv. Opt. Technol. 2008, 383927 (2008).
[CrossRef]

B. Sepúlveda, G. Armelles, and L. M. Lechuga, “Magneto-optical phase modulation in integrated Mach–Zehnder interferometric sensors,” Sens. Actuators A Phys. 134(2), 339–347 (2007).
[CrossRef]

B. Sepúlveda, J. Sánchez del Río, M. Moreno, F. J. Blanco, K. Mayora, C. Domínguez, and L. M. Lechuga, “Optical biosensor micro-systems based on the integration of highly sensitive Mach-Zehnder interferometer devices,” J. Opt. A, Pure Appl. Opt. 8(7), S561–S566 (2006).
[CrossRef]

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
[CrossRef]

Shopova, S. I.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. J. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Sigmund, O.

M. B. Dühring and O. Sigmund, “Improving the acousto-optical interaction in a Mach-Zehnder interferometer,” J. Appl. Phys. 105(8), 083529 (2009).
[CrossRef]

Sørensen, H. S.

D. J. Bornhop, J. C. Latham, A. Kussrow, D. A. Markov, R. D. Jones, and H. S. Sørensen, “Free-solution, label-free molecular interactions studied by back-scattering interferometry,” Science 317(5845), 1732–1736 (2007).
[CrossRef] [PubMed]

Sun, Y. J.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. J. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Suter, J. D.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. J. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Tan, S.

Tsarev, A.

Tveten, A. B.

Vach, M. D.

B. H. Schneider, E. L. Dickinson, M. D. Vach, J. V. Hoijer, and L. V. Howard, “Optical chip immunoassay for hCG in human whole blood,” Biosens. Bioelectron. 15(11-12), 597–604 (2000).
[CrossRef] [PubMed]

Valkai, S.

A. Dér, S. Valkai, A. Mathesz, I. Andó, E. K. Wolff, and P. Ormos, “Protein-based all-optical sensor device,” Sens. Actuators B Chem. 151(1), 26–29 (2010).
[CrossRef]

Wang, M.

White, I. M.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. J. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Wijn, R.

A. Ymeti, J. S. Kanger, R. Wijn, P. V. Lambeck, and J. Greve, “Development of a multichannel integrated interferometer immunosensor,” Sens. Actuators B Chem. 83(1-3), 1–7 (2002).
[CrossRef]

Wolff, E. K.

A. Dér, S. Valkai, A. Mathesz, I. Andó, E. K. Wolff, and P. Ormos, “Protein-based all-optical sensor device,” Sens. Actuators B Chem. 151(1), 26–29 (2010).
[CrossRef]

Xu, P.

Y. Chen, P. Xu, M. Liu, and X. Li, “Bio/chemical detection in liquid with self-sensing Pr-Oxi-Lever (piezo-resistive SiO2 cantilever) sensors,” Microelectron. Eng. 87(12), 2468–2474 (2010).
[CrossRef]

Ymeti, A.

A. Ymeti, J. S. Kanger, R. Wijn, P. V. Lambeck, and J. Greve, “Development of a multichannel integrated interferometer immunosensor,” Sens. Actuators B Chem. 83(1-3), 1–7 (2002).
[CrossRef]

Zhu, H.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. J. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Zinoviev, K.

K. Zinoviev, L. G. Carrascosa, J. Sánchez del Río, B. Sepúlveda, C. Domínguez, and L. M. Lechuga, “Silicon Photonic Biosensors for Lab-on-a-Chip Applications,” Adv. Opt. Technol. 2008, 383927 (2008).
[CrossRef]

Zinoviev, K. E.

Adv. Opt. Technol. (1)

K. Zinoviev, L. G. Carrascosa, J. Sánchez del Río, B. Sepúlveda, C. Domínguez, and L. M. Lechuga, “Silicon Photonic Biosensors for Lab-on-a-Chip Applications,” Adv. Opt. Technol. 2008, 383927 (2008).
[CrossRef]

Anal. Chem. (1)

T. Gao and L. J. Rothberg, “Label-free sensing of binding to microarrays using Brewster angle straddle interferometry,” Anal. Chem. 79(20), 7589–7595 (2007).
[CrossRef] [PubMed]

Anal. Chim. Acta (1)

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. J. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Biosens. Bioelectron. (2)

K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosens. Bioelectron. 22(11), 2591–2597 (2007).
[CrossRef] [PubMed]

B. H. Schneider, E. L. Dickinson, M. D. Vach, J. V. Hoijer, and L. V. Howard, “Optical chip immunoassay for hCG in human whole blood,” Biosens. Bioelectron. 15(11-12), 597–604 (2000).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

M. B. Dühring and O. Sigmund, “Improving the acousto-optical interaction in a Mach-Zehnder interferometer,” J. Appl. Phys. 105(8), 083529 (2009).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. A, Pure Appl. Opt. (1)

B. Sepúlveda, J. Sánchez del Río, M. Moreno, F. J. Blanco, K. Mayora, C. Domínguez, and L. M. Lechuga, “Optical biosensor micro-systems based on the integration of highly sensitive Mach-Zehnder interferometer devices,” J. Opt. A, Pure Appl. Opt. 8(7), S561–S566 (2006).
[CrossRef]

Laser Photon. Rev. (1)

M. C. Estevez, M. Álvarez, and L. M. Lechuga, “Integrated Optical devices for lab-on-a-chip biosensing applications,” Laser Photon. Rev. DOI: (2011).
[CrossRef]

Microelectron. Eng. (1)

Y. Chen, P. Xu, M. Liu, and X. Li, “Bio/chemical detection in liquid with self-sensing Pr-Oxi-Lever (piezo-resistive SiO2 cantilever) sensors,” Microelectron. Eng. 87(12), 2468–2474 (2010).
[CrossRef]

Nanotechnology (1)

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Rev. Sci. Instrum. (1)

U. Minoni, E. Sardini, E. Gelmini, F. Docchio, and D. Marioli, “A high-frequency sinusoidal phase-modulation interferometer using an electro-optic modulator: Development and evaluation,” Rev. Sci. Instrum. 62(11), 2579–2583 (1991).
[CrossRef]

Science (1)

D. J. Bornhop, J. C. Latham, A. Kussrow, D. A. Markov, R. D. Jones, and H. S. Sørensen, “Free-solution, label-free molecular interactions studied by back-scattering interferometry,” Science 317(5845), 1732–1736 (2007).
[CrossRef] [PubMed]

Sens. Actuators A Phys. (1)

B. Sepúlveda, G. Armelles, and L. M. Lechuga, “Magneto-optical phase modulation in integrated Mach–Zehnder interferometric sensors,” Sens. Actuators A Phys. 134(2), 339–347 (2007).
[CrossRef]

Sens. Actuators B Chem. (3)

A. Dér, S. Valkai, A. Mathesz, I. Andó, E. K. Wolff, and P. Ormos, “Protein-based all-optical sensor device,” Sens. Actuators B Chem. 151(1), 26–29 (2010).
[CrossRef]

A. Ymeti, J. S. Kanger, R. Wijn, P. V. Lambeck, and J. Greve, “Development of a multichannel integrated interferometer immunosensor,” Sens. Actuators B Chem. 83(1-3), 1–7 (2002).
[CrossRef]

G. Heideman and P. V. Lambeck, “Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach–Zehnder interferometer system,” Sens. Actuators B Chem. 61(1-3), 100–127 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

MZI scheme. A rib waveguide is split into two arms (reference and sensing) which recombine again into a single output waveguide.

Fig. 2
Fig. 2

Wavelength modulation amplitude needed to achieve a 2π phase modulation, as a function of core thickness and the light polarization.

Fig. 3
Fig. 3

(a) Emission spectra of the laser diode, acquired in static conditions at T = 25°C at different driving currents; the maximum wavelength shift approaches 3 nm. (b) Plot of the emission wavelength versus driving current.

Fig. 4
Fig. 4

Evolution of MZI output versus input current (wavelength) in the case of TM input light for a MZI device with 200 nm core.

Fig. 5
Fig. 5

(color online) Steps of data processing, starting from signals acquisition and ending in direct and real-time data output. The steps are illustrated in the case of the detection of a refractive index change of Δn = 5∙10−4 RIU. (a) Screenshot of acquired signals IT and IREF and their ratio IN, (b) FFT evaluated on IN, (c) I and I harmonics evolution during the index change, (d) phase signal and (e) unwrapped phase signal.

Fig. 6
Fig. 6

(a) Real-time evolution of the phase change on a wavelength modulated MZI, subjected to different HCl injections. (b) Calibration curve. Detection of Δn = 3·10−4 giving Δφ = 0.99·2π rad, Δn = 5·10−4 giving Δφ = 1.94·2π rad, Δn = 9·10−4 giving Δφ = 3.5·12π rad and Δn = 1.7·10−3, giving Δφ = 6.97·2π rad.

Fig. 7
Fig. 7

Comparison of sensor response in the case of (a) standard interferometric pattern, with monochromatic light excitation and (b) unwrapped phase with λ-modulated input, in the case of detection of a bulk index change Δn = 5·10−4 RIU. Standard deviation has been evaluated by a linear fit over the constant part of the two curves (regions in evidence).

Fig. 8
Fig. 8

Real-time phase change induced by the immunoreaction of mAb-hGH of 5 μg/ml mAb-hGH, inducing Δφ = 8.52∙2π rad (black line) and 1 μg/ml mAb-hGH, giving Δφ = 2.94∙2π rad (red line).

Tables (1)

Tables Icon

Table 1 Refractive Indexes of the Set of HCl Solutions Used For Calibration

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

I T = I S + I R + 2 I S I R cos [ Δ φ S ( t ) ]
Δ φ S ( t ) = 2 π L λ ( N S ( t ) N R )
I T = I S + I R + 2 I S I R cos [ μ M sin ( ω M t ) + Δ φ S ( t ) ]
I T = I S + I R + 2 I S I R { cos ( Δ φ S ( t ) ) [ J 0 ( μ M ) + 2 n = 1 J 2 n ( μ M ) cos ( 2 n ω M t ) ] + sin ( Δ φ S ( t ) ) [ 2 n = 0 J 2 n + 1 ( μ M ) sin ( ( 2 n + 1 ) ω M t ) ] }
{ I D C = I S + I R + 2 I S I R cos ( Δ φ S ( t ) ) J 0 ( μ M ) I 1 ω = 4 I S I R sin ( Δ φ S ( t ) ) J 1 ( μ M ) I 2 ω = 4 I S I R cos ( Δ φ S ( t ) ) J 2 ( μ M ) I 3 ω = 4 I S I R sin ( Δ φ S ( t ) ) J 3 ( μ M )
I ( 2 n + 1 ) ω I 2 n ω = sin ( Δ φ S ( t ) ) J ( 2 n + 1 ) ( μ M ) cos ( Δ φ S ( t ) ) J 2 n ( μ M )
J 2 n ( μ M ) = J ( 2 n + 1 ) ( μ M )
Δ φ S ( t ) = arctan ( I ( 2 n + 1 ) ω I 2 n ω )
δ ( Δ φ S ) = 2 π λ [ 1 λ ( N S N R ) + ( N S N R ) λ ] L δ λ

Metrics