Abstract

We present the design of a full waveform hyperspectral light detection and ranging (LiDAR) and the first demonstrations of its applications in remote sensing. The novel instrument produces a 3D point cloud with spectral backscattered reflectance data. This concept has a significant impact on remote sensing and other fields where target 3D detection and identification is crucial, such as civil engineering, cultural heritage, material processing, or geomorphological studies. As both the geometry and spectral information on the target are available from a single measurement, this technology will extend the scope of imaging spectroscopy into spectral 3D sensing. To demonstrate the potential of the instrument in the remote sensing of vegetation, 3D point clouds with backscattered reflectance and spectral indices are presented for a specimen of Norway spruce.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
    [CrossRef]
  2. A. Kudlinski, M. Lelek, B. Barviau, L. Audry, and A. Mussot, “Efficient blue conversion from a 1064 nm microchip laser in long photonic crystal fiber tapers for fluorescence microscopy,” Opt. Express 18(16), 16640–16645 (2010).
    [CrossRef] [PubMed]
  3. W. Wagner, “Radiometric calibration of small-footprint full-waveform airborne laser scanner measurements: Basic physical concepts,” ISPRS J. Photogramm. Remote Sens. 65(6), 505–513 (2010).
    [CrossRef]
  4. V. Thomas, J. McCaughey, P. Treitz, D. Finch, T. Noland, and L. Rich, “Spatial modelling of photosynthesis for a boreal mixedwood forest by integrating micrometeorological, lidar and hyperspectral remote sensing data,” Agric. For. Meteorol. 149(3-4), 639–654 (2009).
    [CrossRef]
  5. T. G. Jones, N. C. Coops, and T. Sharma, “Assessing the utility of airborne hyperspectral and LiDAR data for species distribution mapping in the coastal Pacific Northwest, Canada,” Remote Sens. Environ. 114(12), 2841–2852 (2010).
    [CrossRef]
  6. E. Puttonen, A. Jaakkola, P. Litkey, and J. Hyyppä, “Tree classification with fused mobile laser scanning and hyperspectral data,” Sensors (Basel) 11(5), 5158–5182 (2011).
    [CrossRef] [PubMed]
  7. E. Honkavaara, L. Markelin, T. Rosnell, and K. Nurminen, “Influence of solar elevation in radiometric and geometric performance of multispectral photogrammetry,” ISPRS J. Photogramm. Remote Sens. 67, 13–26 (2012).
    [CrossRef]
  8. B. Johnson, R. Joseph, M. Nischan, A. Newbury, J. Kerekes, H. Barclay, B. Willard, and J. Zayhowski, “A compact, active hyperspectral imaging system for the detection of concealed targets,” Proc. SPIE 3710, 144–153 (1999).
    [CrossRef]
  9. M. Nischan, R. Joseph, J. Libby, and J. Kerekes, “Active spectral imaging,” Lincoln Lab. J. 14, 131–144 (2003).
  10. G. Bishop, I. V. Veiga, M. Watson, and L. Farr, “Active spectral imaging for target detection” in Proceedings of the 3rd EMRS DTC Technical Conference (2006).
  11. S. Tan and R. M. Narayanan, “Design and performance of a multiwavelength airborne polarimetric lidar for vegetation remote sensing,” Appl. Opt. 43(11), 2360–2368 (2004).
    [CrossRef] [PubMed]
  12. M. Pfennigbauer and A. Ullrich, “Multi-wavelength airborne laser scanning,” in Proceedings of the International Lidar Mapping Forum, ILMF, New Orleans (2011).
  13. G. C. Guenther, P. E. LaRocque, and W. J. Lillycrop, “Multiple surface channels in Scanning Hydrographic Operational Airborne Lidar Survey (SHOALS) airborne lidar,” Proc. SPIE 2258, 422–430 (1994).
    [CrossRef]
  14. D. M. Winker, J. R. Pelon, and M. P. McCormick, “The CALIPSO mission: Spaceborne lidar for observation of aerosols and clouds,” Proc. SPIE 4893, 1–11 (2003).
    [CrossRef]
  15. J. B. Abshire, X. Sun, H. Riris, J. M. Sirota, J. F. McGarry, S. Palm, D. Yi, and P. Liiva, “Geoscience Laser Altimeter System (GLAS) on the ICESat mission: On-orbit measurement performance,” Geophys. Res. Lett. 32(21), L21S02 (2005).
    [CrossRef]
  16. M. Godbout, J. D. Deschênes, and J. Genest, “Spectrally resolved laser ranging with frequency combs,” Opt. Express 18(15), 15981–15989 (2010).
    [CrossRef] [PubMed]
  17. J. Suomalainen, T. Hakala, H. Kaartinen, E. Räikkönen, and S. Kaasalainen, “Demonstration of a virtual active hyperspectral LiDAR in automated point cloud classification,” ISPRS J. Photogramm. Remote Sens. 66(5), 637–641 (2011).
    [CrossRef]
  18. E. Puttonen, J. Suomalainen, T. Hakala, E. Räikkönen, H. Kaartinen, S. Kaasalainen, and P. Litkey, “Tree species classification from fused active hyperspectral reflectance and LIDAR measurements,” For. Ecol. Manage. 260(10), 1843–1852 (2010).
    [CrossRef]
  19. Y. Chen, E. Räikkönen, S. Kaasalainen, J. Suomalainen, T. Hakala, J. Hyyppä, and R. Chen, “Two-channel hyperspectral LiDAR with a supercontinuum laser source,” Sensors (Basel) 10(7), 7057–7066 (2010).
    [CrossRef] [PubMed]
  20. B. Hapke, Theory of Reflectance and Emittance Spectroscopy (Cambridge University Press, 1993).
  21. T. J. Papetti, W. E. Walker, C. E. Keffer, and B. E. Johnson, “Coherent backscatter: measurement of the retroreflective BRDF peak exhibited by several surfaces relevant to ladar applications,” Proc. SPIE 6682, 66820E, 66820E-13 (2007).
    [CrossRef]
  22. C. J. Tucker, “Red and photographic infrared linear combinations for monitoring vegetation,” Remote Sens. Environ. 8(2), 127–150 (1979).
    [CrossRef]
  23. J. Penuelas, I. Filella, C. Biel, L. Serrano, and R. Save, “The reflectance at the 950–970 nm region as an indicator of plant water status,” Int. J. Remote Sens. 14(10), 1887–1905 (1993).
    [CrossRef]
  24. D. Haboudane, J. R. Miller, E. Pattey, P. J. Zarco-Tejada, and I. B. Strachan, “Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture,” Remote Sens. Environ. 90(3), 337–352 (2004).
    [CrossRef]

2012

E. Honkavaara, L. Markelin, T. Rosnell, and K. Nurminen, “Influence of solar elevation in radiometric and geometric performance of multispectral photogrammetry,” ISPRS J. Photogramm. Remote Sens. 67, 13–26 (2012).
[CrossRef]

2011

E. Puttonen, A. Jaakkola, P. Litkey, and J. Hyyppä, “Tree classification with fused mobile laser scanning and hyperspectral data,” Sensors (Basel) 11(5), 5158–5182 (2011).
[CrossRef] [PubMed]

J. Suomalainen, T. Hakala, H. Kaartinen, E. Räikkönen, and S. Kaasalainen, “Demonstration of a virtual active hyperspectral LiDAR in automated point cloud classification,” ISPRS J. Photogramm. Remote Sens. 66(5), 637–641 (2011).
[CrossRef]

2010

E. Puttonen, J. Suomalainen, T. Hakala, E. Räikkönen, H. Kaartinen, S. Kaasalainen, and P. Litkey, “Tree species classification from fused active hyperspectral reflectance and LIDAR measurements,” For. Ecol. Manage. 260(10), 1843–1852 (2010).
[CrossRef]

Y. Chen, E. Räikkönen, S. Kaasalainen, J. Suomalainen, T. Hakala, J. Hyyppä, and R. Chen, “Two-channel hyperspectral LiDAR with a supercontinuum laser source,” Sensors (Basel) 10(7), 7057–7066 (2010).
[CrossRef] [PubMed]

T. G. Jones, N. C. Coops, and T. Sharma, “Assessing the utility of airborne hyperspectral and LiDAR data for species distribution mapping in the coastal Pacific Northwest, Canada,” Remote Sens. Environ. 114(12), 2841–2852 (2010).
[CrossRef]

W. Wagner, “Radiometric calibration of small-footprint full-waveform airborne laser scanner measurements: Basic physical concepts,” ISPRS J. Photogramm. Remote Sens. 65(6), 505–513 (2010).
[CrossRef]

M. Godbout, J. D. Deschênes, and J. Genest, “Spectrally resolved laser ranging with frequency combs,” Opt. Express 18(15), 15981–15989 (2010).
[CrossRef] [PubMed]

A. Kudlinski, M. Lelek, B. Barviau, L. Audry, and A. Mussot, “Efficient blue conversion from a 1064 nm microchip laser in long photonic crystal fiber tapers for fluorescence microscopy,” Opt. Express 18(16), 16640–16645 (2010).
[CrossRef] [PubMed]

2009

V. Thomas, J. McCaughey, P. Treitz, D. Finch, T. Noland, and L. Rich, “Spatial modelling of photosynthesis for a boreal mixedwood forest by integrating micrometeorological, lidar and hyperspectral remote sensing data,” Agric. For. Meteorol. 149(3-4), 639–654 (2009).
[CrossRef]

2007

T. J. Papetti, W. E. Walker, C. E. Keffer, and B. E. Johnson, “Coherent backscatter: measurement of the retroreflective BRDF peak exhibited by several surfaces relevant to ladar applications,” Proc. SPIE 6682, 66820E, 66820E-13 (2007).
[CrossRef]

2006

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

2005

J. B. Abshire, X. Sun, H. Riris, J. M. Sirota, J. F. McGarry, S. Palm, D. Yi, and P. Liiva, “Geoscience Laser Altimeter System (GLAS) on the ICESat mission: On-orbit measurement performance,” Geophys. Res. Lett. 32(21), L21S02 (2005).
[CrossRef]

2004

D. Haboudane, J. R. Miller, E. Pattey, P. J. Zarco-Tejada, and I. B. Strachan, “Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture,” Remote Sens. Environ. 90(3), 337–352 (2004).
[CrossRef]

S. Tan and R. M. Narayanan, “Design and performance of a multiwavelength airborne polarimetric lidar for vegetation remote sensing,” Appl. Opt. 43(11), 2360–2368 (2004).
[CrossRef] [PubMed]

2003

D. M. Winker, J. R. Pelon, and M. P. McCormick, “The CALIPSO mission: Spaceborne lidar for observation of aerosols and clouds,” Proc. SPIE 4893, 1–11 (2003).
[CrossRef]

M. Nischan, R. Joseph, J. Libby, and J. Kerekes, “Active spectral imaging,” Lincoln Lab. J. 14, 131–144 (2003).

1999

B. Johnson, R. Joseph, M. Nischan, A. Newbury, J. Kerekes, H. Barclay, B. Willard, and J. Zayhowski, “A compact, active hyperspectral imaging system for the detection of concealed targets,” Proc. SPIE 3710, 144–153 (1999).
[CrossRef]

1994

G. C. Guenther, P. E. LaRocque, and W. J. Lillycrop, “Multiple surface channels in Scanning Hydrographic Operational Airborne Lidar Survey (SHOALS) airborne lidar,” Proc. SPIE 2258, 422–430 (1994).
[CrossRef]

1993

J. Penuelas, I. Filella, C. Biel, L. Serrano, and R. Save, “The reflectance at the 950–970 nm region as an indicator of plant water status,” Int. J. Remote Sens. 14(10), 1887–1905 (1993).
[CrossRef]

1979

C. J. Tucker, “Red and photographic infrared linear combinations for monitoring vegetation,” Remote Sens. Environ. 8(2), 127–150 (1979).
[CrossRef]

Abshire, J. B.

J. B. Abshire, X. Sun, H. Riris, J. M. Sirota, J. F. McGarry, S. Palm, D. Yi, and P. Liiva, “Geoscience Laser Altimeter System (GLAS) on the ICESat mission: On-orbit measurement performance,” Geophys. Res. Lett. 32(21), L21S02 (2005).
[CrossRef]

Audry, L.

Barclay, H.

B. Johnson, R. Joseph, M. Nischan, A. Newbury, J. Kerekes, H. Barclay, B. Willard, and J. Zayhowski, “A compact, active hyperspectral imaging system for the detection of concealed targets,” Proc. SPIE 3710, 144–153 (1999).
[CrossRef]

Barviau, B.

Biel, C.

J. Penuelas, I. Filella, C. Biel, L. Serrano, and R. Save, “The reflectance at the 950–970 nm region as an indicator of plant water status,” Int. J. Remote Sens. 14(10), 1887–1905 (1993).
[CrossRef]

Chen, R.

Y. Chen, E. Räikkönen, S. Kaasalainen, J. Suomalainen, T. Hakala, J. Hyyppä, and R. Chen, “Two-channel hyperspectral LiDAR with a supercontinuum laser source,” Sensors (Basel) 10(7), 7057–7066 (2010).
[CrossRef] [PubMed]

Chen, Y.

Y. Chen, E. Räikkönen, S. Kaasalainen, J. Suomalainen, T. Hakala, J. Hyyppä, and R. Chen, “Two-channel hyperspectral LiDAR with a supercontinuum laser source,” Sensors (Basel) 10(7), 7057–7066 (2010).
[CrossRef] [PubMed]

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

Coops, N. C.

T. G. Jones, N. C. Coops, and T. Sharma, “Assessing the utility of airborne hyperspectral and LiDAR data for species distribution mapping in the coastal Pacific Northwest, Canada,” Remote Sens. Environ. 114(12), 2841–2852 (2010).
[CrossRef]

Deschênes, J. D.

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

Filella, I.

J. Penuelas, I. Filella, C. Biel, L. Serrano, and R. Save, “The reflectance at the 950–970 nm region as an indicator of plant water status,” Int. J. Remote Sens. 14(10), 1887–1905 (1993).
[CrossRef]

Finch, D.

V. Thomas, J. McCaughey, P. Treitz, D. Finch, T. Noland, and L. Rich, “Spatial modelling of photosynthesis for a boreal mixedwood forest by integrating micrometeorological, lidar and hyperspectral remote sensing data,” Agric. For. Meteorol. 149(3-4), 639–654 (2009).
[CrossRef]

Genest, J.

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

Godbout, M.

Guenther, G. C.

G. C. Guenther, P. E. LaRocque, and W. J. Lillycrop, “Multiple surface channels in Scanning Hydrographic Operational Airborne Lidar Survey (SHOALS) airborne lidar,” Proc. SPIE 2258, 422–430 (1994).
[CrossRef]

Haboudane, D.

D. Haboudane, J. R. Miller, E. Pattey, P. J. Zarco-Tejada, and I. B. Strachan, “Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture,” Remote Sens. Environ. 90(3), 337–352 (2004).
[CrossRef]

Hakala, T.

J. Suomalainen, T. Hakala, H. Kaartinen, E. Räikkönen, and S. Kaasalainen, “Demonstration of a virtual active hyperspectral LiDAR in automated point cloud classification,” ISPRS J. Photogramm. Remote Sens. 66(5), 637–641 (2011).
[CrossRef]

Y. Chen, E. Räikkönen, S. Kaasalainen, J. Suomalainen, T. Hakala, J. Hyyppä, and R. Chen, “Two-channel hyperspectral LiDAR with a supercontinuum laser source,” Sensors (Basel) 10(7), 7057–7066 (2010).
[CrossRef] [PubMed]

E. Puttonen, J. Suomalainen, T. Hakala, E. Räikkönen, H. Kaartinen, S. Kaasalainen, and P. Litkey, “Tree species classification from fused active hyperspectral reflectance and LIDAR measurements,” For. Ecol. Manage. 260(10), 1843–1852 (2010).
[CrossRef]

Honkavaara, E.

E. Honkavaara, L. Markelin, T. Rosnell, and K. Nurminen, “Influence of solar elevation in radiometric and geometric performance of multispectral photogrammetry,” ISPRS J. Photogramm. Remote Sens. 67, 13–26 (2012).
[CrossRef]

Hyyppä, J.

E. Puttonen, A. Jaakkola, P. Litkey, and J. Hyyppä, “Tree classification with fused mobile laser scanning and hyperspectral data,” Sensors (Basel) 11(5), 5158–5182 (2011).
[CrossRef] [PubMed]

Y. Chen, E. Räikkönen, S. Kaasalainen, J. Suomalainen, T. Hakala, J. Hyyppä, and R. Chen, “Two-channel hyperspectral LiDAR with a supercontinuum laser source,” Sensors (Basel) 10(7), 7057–7066 (2010).
[CrossRef] [PubMed]

Jaakkola, A.

E. Puttonen, A. Jaakkola, P. Litkey, and J. Hyyppä, “Tree classification with fused mobile laser scanning and hyperspectral data,” Sensors (Basel) 11(5), 5158–5182 (2011).
[CrossRef] [PubMed]

Johnson, B.

B. Johnson, R. Joseph, M. Nischan, A. Newbury, J. Kerekes, H. Barclay, B. Willard, and J. Zayhowski, “A compact, active hyperspectral imaging system for the detection of concealed targets,” Proc. SPIE 3710, 144–153 (1999).
[CrossRef]

Johnson, B. E.

T. J. Papetti, W. E. Walker, C. E. Keffer, and B. E. Johnson, “Coherent backscatter: measurement of the retroreflective BRDF peak exhibited by several surfaces relevant to ladar applications,” Proc. SPIE 6682, 66820E, 66820E-13 (2007).
[CrossRef]

Jones, T. G.

T. G. Jones, N. C. Coops, and T. Sharma, “Assessing the utility of airborne hyperspectral and LiDAR data for species distribution mapping in the coastal Pacific Northwest, Canada,” Remote Sens. Environ. 114(12), 2841–2852 (2010).
[CrossRef]

Joseph, R.

M. Nischan, R. Joseph, J. Libby, and J. Kerekes, “Active spectral imaging,” Lincoln Lab. J. 14, 131–144 (2003).

B. Johnson, R. Joseph, M. Nischan, A. Newbury, J. Kerekes, H. Barclay, B. Willard, and J. Zayhowski, “A compact, active hyperspectral imaging system for the detection of concealed targets,” Proc. SPIE 3710, 144–153 (1999).
[CrossRef]

Kaartinen, H.

J. Suomalainen, T. Hakala, H. Kaartinen, E. Räikkönen, and S. Kaasalainen, “Demonstration of a virtual active hyperspectral LiDAR in automated point cloud classification,” ISPRS J. Photogramm. Remote Sens. 66(5), 637–641 (2011).
[CrossRef]

E. Puttonen, J. Suomalainen, T. Hakala, E. Räikkönen, H. Kaartinen, S. Kaasalainen, and P. Litkey, “Tree species classification from fused active hyperspectral reflectance and LIDAR measurements,” For. Ecol. Manage. 260(10), 1843–1852 (2010).
[CrossRef]

Kaasalainen, S.

J. Suomalainen, T. Hakala, H. Kaartinen, E. Räikkönen, and S. Kaasalainen, “Demonstration of a virtual active hyperspectral LiDAR in automated point cloud classification,” ISPRS J. Photogramm. Remote Sens. 66(5), 637–641 (2011).
[CrossRef]

Y. Chen, E. Räikkönen, S. Kaasalainen, J. Suomalainen, T. Hakala, J. Hyyppä, and R. Chen, “Two-channel hyperspectral LiDAR with a supercontinuum laser source,” Sensors (Basel) 10(7), 7057–7066 (2010).
[CrossRef] [PubMed]

E. Puttonen, J. Suomalainen, T. Hakala, E. Räikkönen, H. Kaartinen, S. Kaasalainen, and P. Litkey, “Tree species classification from fused active hyperspectral reflectance and LIDAR measurements,” For. Ecol. Manage. 260(10), 1843–1852 (2010).
[CrossRef]

Keffer, C. E.

T. J. Papetti, W. E. Walker, C. E. Keffer, and B. E. Johnson, “Coherent backscatter: measurement of the retroreflective BRDF peak exhibited by several surfaces relevant to ladar applications,” Proc. SPIE 6682, 66820E, 66820E-13 (2007).
[CrossRef]

Kerekes, J.

M. Nischan, R. Joseph, J. Libby, and J. Kerekes, “Active spectral imaging,” Lincoln Lab. J. 14, 131–144 (2003).

B. Johnson, R. Joseph, M. Nischan, A. Newbury, J. Kerekes, H. Barclay, B. Willard, and J. Zayhowski, “A compact, active hyperspectral imaging system for the detection of concealed targets,” Proc. SPIE 3710, 144–153 (1999).
[CrossRef]

Kudlinski, A.

LaRocque, P. E.

G. C. Guenther, P. E. LaRocque, and W. J. Lillycrop, “Multiple surface channels in Scanning Hydrographic Operational Airborne Lidar Survey (SHOALS) airborne lidar,” Proc. SPIE 2258, 422–430 (1994).
[CrossRef]

Lelek, M.

Libby, J.

M. Nischan, R. Joseph, J. Libby, and J. Kerekes, “Active spectral imaging,” Lincoln Lab. J. 14, 131–144 (2003).

Liiva, P.

J. B. Abshire, X. Sun, H. Riris, J. M. Sirota, J. F. McGarry, S. Palm, D. Yi, and P. Liiva, “Geoscience Laser Altimeter System (GLAS) on the ICESat mission: On-orbit measurement performance,” Geophys. Res. Lett. 32(21), L21S02 (2005).
[CrossRef]

Lillycrop, W. J.

G. C. Guenther, P. E. LaRocque, and W. J. Lillycrop, “Multiple surface channels in Scanning Hydrographic Operational Airborne Lidar Survey (SHOALS) airborne lidar,” Proc. SPIE 2258, 422–430 (1994).
[CrossRef]

Litkey, P.

E. Puttonen, A. Jaakkola, P. Litkey, and J. Hyyppä, “Tree classification with fused mobile laser scanning and hyperspectral data,” Sensors (Basel) 11(5), 5158–5182 (2011).
[CrossRef] [PubMed]

E. Puttonen, J. Suomalainen, T. Hakala, E. Räikkönen, H. Kaartinen, S. Kaasalainen, and P. Litkey, “Tree species classification from fused active hyperspectral reflectance and LIDAR measurements,” For. Ecol. Manage. 260(10), 1843–1852 (2010).
[CrossRef]

Markelin, L.

E. Honkavaara, L. Markelin, T. Rosnell, and K. Nurminen, “Influence of solar elevation in radiometric and geometric performance of multispectral photogrammetry,” ISPRS J. Photogramm. Remote Sens. 67, 13–26 (2012).
[CrossRef]

McCaughey, J.

V. Thomas, J. McCaughey, P. Treitz, D. Finch, T. Noland, and L. Rich, “Spatial modelling of photosynthesis for a boreal mixedwood forest by integrating micrometeorological, lidar and hyperspectral remote sensing data,” Agric. For. Meteorol. 149(3-4), 639–654 (2009).
[CrossRef]

McCormick, M. P.

D. M. Winker, J. R. Pelon, and M. P. McCormick, “The CALIPSO mission: Spaceborne lidar for observation of aerosols and clouds,” Proc. SPIE 4893, 1–11 (2003).
[CrossRef]

McGarry, J. F.

J. B. Abshire, X. Sun, H. Riris, J. M. Sirota, J. F. McGarry, S. Palm, D. Yi, and P. Liiva, “Geoscience Laser Altimeter System (GLAS) on the ICESat mission: On-orbit measurement performance,” Geophys. Res. Lett. 32(21), L21S02 (2005).
[CrossRef]

Miller, J. R.

D. Haboudane, J. R. Miller, E. Pattey, P. J. Zarco-Tejada, and I. B. Strachan, “Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture,” Remote Sens. Environ. 90(3), 337–352 (2004).
[CrossRef]

Mussot, A.

Narayanan, R. M.

Newbury, A.

B. Johnson, R. Joseph, M. Nischan, A. Newbury, J. Kerekes, H. Barclay, B. Willard, and J. Zayhowski, “A compact, active hyperspectral imaging system for the detection of concealed targets,” Proc. SPIE 3710, 144–153 (1999).
[CrossRef]

Nischan, M.

M. Nischan, R. Joseph, J. Libby, and J. Kerekes, “Active spectral imaging,” Lincoln Lab. J. 14, 131–144 (2003).

B. Johnson, R. Joseph, M. Nischan, A. Newbury, J. Kerekes, H. Barclay, B. Willard, and J. Zayhowski, “A compact, active hyperspectral imaging system for the detection of concealed targets,” Proc. SPIE 3710, 144–153 (1999).
[CrossRef]

Noland, T.

V. Thomas, J. McCaughey, P. Treitz, D. Finch, T. Noland, and L. Rich, “Spatial modelling of photosynthesis for a boreal mixedwood forest by integrating micrometeorological, lidar and hyperspectral remote sensing data,” Agric. For. Meteorol. 149(3-4), 639–654 (2009).
[CrossRef]

Nurminen, K.

E. Honkavaara, L. Markelin, T. Rosnell, and K. Nurminen, “Influence of solar elevation in radiometric and geometric performance of multispectral photogrammetry,” ISPRS J. Photogramm. Remote Sens. 67, 13–26 (2012).
[CrossRef]

Palm, S.

J. B. Abshire, X. Sun, H. Riris, J. M. Sirota, J. F. McGarry, S. Palm, D. Yi, and P. Liiva, “Geoscience Laser Altimeter System (GLAS) on the ICESat mission: On-orbit measurement performance,” Geophys. Res. Lett. 32(21), L21S02 (2005).
[CrossRef]

Papetti, T. J.

T. J. Papetti, W. E. Walker, C. E. Keffer, and B. E. Johnson, “Coherent backscatter: measurement of the retroreflective BRDF peak exhibited by several surfaces relevant to ladar applications,” Proc. SPIE 6682, 66820E, 66820E-13 (2007).
[CrossRef]

Pattey, E.

D. Haboudane, J. R. Miller, E. Pattey, P. J. Zarco-Tejada, and I. B. Strachan, “Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture,” Remote Sens. Environ. 90(3), 337–352 (2004).
[CrossRef]

Pelon, J. R.

D. M. Winker, J. R. Pelon, and M. P. McCormick, “The CALIPSO mission: Spaceborne lidar for observation of aerosols and clouds,” Proc. SPIE 4893, 1–11 (2003).
[CrossRef]

Penuelas, J.

J. Penuelas, I. Filella, C. Biel, L. Serrano, and R. Save, “The reflectance at the 950–970 nm region as an indicator of plant water status,” Int. J. Remote Sens. 14(10), 1887–1905 (1993).
[CrossRef]

Puttonen, E.

E. Puttonen, A. Jaakkola, P. Litkey, and J. Hyyppä, “Tree classification with fused mobile laser scanning and hyperspectral data,” Sensors (Basel) 11(5), 5158–5182 (2011).
[CrossRef] [PubMed]

E. Puttonen, J. Suomalainen, T. Hakala, E. Räikkönen, H. Kaartinen, S. Kaasalainen, and P. Litkey, “Tree species classification from fused active hyperspectral reflectance and LIDAR measurements,” For. Ecol. Manage. 260(10), 1843–1852 (2010).
[CrossRef]

Räikkönen, E.

J. Suomalainen, T. Hakala, H. Kaartinen, E. Räikkönen, and S. Kaasalainen, “Demonstration of a virtual active hyperspectral LiDAR in automated point cloud classification,” ISPRS J. Photogramm. Remote Sens. 66(5), 637–641 (2011).
[CrossRef]

Y. Chen, E. Räikkönen, S. Kaasalainen, J. Suomalainen, T. Hakala, J. Hyyppä, and R. Chen, “Two-channel hyperspectral LiDAR with a supercontinuum laser source,” Sensors (Basel) 10(7), 7057–7066 (2010).
[CrossRef] [PubMed]

E. Puttonen, J. Suomalainen, T. Hakala, E. Räikkönen, H. Kaartinen, S. Kaasalainen, and P. Litkey, “Tree species classification from fused active hyperspectral reflectance and LIDAR measurements,” For. Ecol. Manage. 260(10), 1843–1852 (2010).
[CrossRef]

Rich, L.

V. Thomas, J. McCaughey, P. Treitz, D. Finch, T. Noland, and L. Rich, “Spatial modelling of photosynthesis for a boreal mixedwood forest by integrating micrometeorological, lidar and hyperspectral remote sensing data,” Agric. For. Meteorol. 149(3-4), 639–654 (2009).
[CrossRef]

Riris, H.

J. B. Abshire, X. Sun, H. Riris, J. M. Sirota, J. F. McGarry, S. Palm, D. Yi, and P. Liiva, “Geoscience Laser Altimeter System (GLAS) on the ICESat mission: On-orbit measurement performance,” Geophys. Res. Lett. 32(21), L21S02 (2005).
[CrossRef]

Rosnell, T.

E. Honkavaara, L. Markelin, T. Rosnell, and K. Nurminen, “Influence of solar elevation in radiometric and geometric performance of multispectral photogrammetry,” ISPRS J. Photogramm. Remote Sens. 67, 13–26 (2012).
[CrossRef]

Save, R.

J. Penuelas, I. Filella, C. Biel, L. Serrano, and R. Save, “The reflectance at the 950–970 nm region as an indicator of plant water status,” Int. J. Remote Sens. 14(10), 1887–1905 (1993).
[CrossRef]

Serrano, L.

J. Penuelas, I. Filella, C. Biel, L. Serrano, and R. Save, “The reflectance at the 950–970 nm region as an indicator of plant water status,” Int. J. Remote Sens. 14(10), 1887–1905 (1993).
[CrossRef]

Sharma, T.

T. G. Jones, N. C. Coops, and T. Sharma, “Assessing the utility of airborne hyperspectral and LiDAR data for species distribution mapping in the coastal Pacific Northwest, Canada,” Remote Sens. Environ. 114(12), 2841–2852 (2010).
[CrossRef]

Sirota, J. M.

J. B. Abshire, X. Sun, H. Riris, J. M. Sirota, J. F. McGarry, S. Palm, D. Yi, and P. Liiva, “Geoscience Laser Altimeter System (GLAS) on the ICESat mission: On-orbit measurement performance,” Geophys. Res. Lett. 32(21), L21S02 (2005).
[CrossRef]

Strachan, I. B.

D. Haboudane, J. R. Miller, E. Pattey, P. J. Zarco-Tejada, and I. B. Strachan, “Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture,” Remote Sens. Environ. 90(3), 337–352 (2004).
[CrossRef]

Sun, X.

J. B. Abshire, X. Sun, H. Riris, J. M. Sirota, J. F. McGarry, S. Palm, D. Yi, and P. Liiva, “Geoscience Laser Altimeter System (GLAS) on the ICESat mission: On-orbit measurement performance,” Geophys. Res. Lett. 32(21), L21S02 (2005).
[CrossRef]

Suomalainen, J.

J. Suomalainen, T. Hakala, H. Kaartinen, E. Räikkönen, and S. Kaasalainen, “Demonstration of a virtual active hyperspectral LiDAR in automated point cloud classification,” ISPRS J. Photogramm. Remote Sens. 66(5), 637–641 (2011).
[CrossRef]

Y. Chen, E. Räikkönen, S. Kaasalainen, J. Suomalainen, T. Hakala, J. Hyyppä, and R. Chen, “Two-channel hyperspectral LiDAR with a supercontinuum laser source,” Sensors (Basel) 10(7), 7057–7066 (2010).
[CrossRef] [PubMed]

E. Puttonen, J. Suomalainen, T. Hakala, E. Räikkönen, H. Kaartinen, S. Kaasalainen, and P. Litkey, “Tree species classification from fused active hyperspectral reflectance and LIDAR measurements,” For. Ecol. Manage. 260(10), 1843–1852 (2010).
[CrossRef]

Tan, S.

Thomas, V.

V. Thomas, J. McCaughey, P. Treitz, D. Finch, T. Noland, and L. Rich, “Spatial modelling of photosynthesis for a boreal mixedwood forest by integrating micrometeorological, lidar and hyperspectral remote sensing data,” Agric. For. Meteorol. 149(3-4), 639–654 (2009).
[CrossRef]

Treitz, P.

V. Thomas, J. McCaughey, P. Treitz, D. Finch, T. Noland, and L. Rich, “Spatial modelling of photosynthesis for a boreal mixedwood forest by integrating micrometeorological, lidar and hyperspectral remote sensing data,” Agric. For. Meteorol. 149(3-4), 639–654 (2009).
[CrossRef]

Tucker, C. J.

C. J. Tucker, “Red and photographic infrared linear combinations for monitoring vegetation,” Remote Sens. Environ. 8(2), 127–150 (1979).
[CrossRef]

Wagner, W.

W. Wagner, “Radiometric calibration of small-footprint full-waveform airborne laser scanner measurements: Basic physical concepts,” ISPRS J. Photogramm. Remote Sens. 65(6), 505–513 (2010).
[CrossRef]

Walker, W. E.

T. J. Papetti, W. E. Walker, C. E. Keffer, and B. E. Johnson, “Coherent backscatter: measurement of the retroreflective BRDF peak exhibited by several surfaces relevant to ladar applications,” Proc. SPIE 6682, 66820E, 66820E-13 (2007).
[CrossRef]

Willard, B.

B. Johnson, R. Joseph, M. Nischan, A. Newbury, J. Kerekes, H. Barclay, B. Willard, and J. Zayhowski, “A compact, active hyperspectral imaging system for the detection of concealed targets,” Proc. SPIE 3710, 144–153 (1999).
[CrossRef]

Winker, D. M.

D. M. Winker, J. R. Pelon, and M. P. McCormick, “The CALIPSO mission: Spaceborne lidar for observation of aerosols and clouds,” Proc. SPIE 4893, 1–11 (2003).
[CrossRef]

Yi, D.

J. B. Abshire, X. Sun, H. Riris, J. M. Sirota, J. F. McGarry, S. Palm, D. Yi, and P. Liiva, “Geoscience Laser Altimeter System (GLAS) on the ICESat mission: On-orbit measurement performance,” Geophys. Res. Lett. 32(21), L21S02 (2005).
[CrossRef]

Zarco-Tejada, P. J.

D. Haboudane, J. R. Miller, E. Pattey, P. J. Zarco-Tejada, and I. B. Strachan, “Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture,” Remote Sens. Environ. 90(3), 337–352 (2004).
[CrossRef]

Zayhowski, J.

B. Johnson, R. Joseph, M. Nischan, A. Newbury, J. Kerekes, H. Barclay, B. Willard, and J. Zayhowski, “A compact, active hyperspectral imaging system for the detection of concealed targets,” Proc. SPIE 3710, 144–153 (1999).
[CrossRef]

Agric. For. Meteorol.

V. Thomas, J. McCaughey, P. Treitz, D. Finch, T. Noland, and L. Rich, “Spatial modelling of photosynthesis for a boreal mixedwood forest by integrating micrometeorological, lidar and hyperspectral remote sensing data,” Agric. For. Meteorol. 149(3-4), 639–654 (2009).
[CrossRef]

Appl. Opt.

For. Ecol. Manage.

E. Puttonen, J. Suomalainen, T. Hakala, E. Räikkönen, H. Kaartinen, S. Kaasalainen, and P. Litkey, “Tree species classification from fused active hyperspectral reflectance and LIDAR measurements,” For. Ecol. Manage. 260(10), 1843–1852 (2010).
[CrossRef]

Geophys. Res. Lett.

J. B. Abshire, X. Sun, H. Riris, J. M. Sirota, J. F. McGarry, S. Palm, D. Yi, and P. Liiva, “Geoscience Laser Altimeter System (GLAS) on the ICESat mission: On-orbit measurement performance,” Geophys. Res. Lett. 32(21), L21S02 (2005).
[CrossRef]

Int. J. Remote Sens.

J. Penuelas, I. Filella, C. Biel, L. Serrano, and R. Save, “The reflectance at the 950–970 nm region as an indicator of plant water status,” Int. J. Remote Sens. 14(10), 1887–1905 (1993).
[CrossRef]

ISPRS J. Photogramm. Remote Sens.

E. Honkavaara, L. Markelin, T. Rosnell, and K. Nurminen, “Influence of solar elevation in radiometric and geometric performance of multispectral photogrammetry,” ISPRS J. Photogramm. Remote Sens. 67, 13–26 (2012).
[CrossRef]

W. Wagner, “Radiometric calibration of small-footprint full-waveform airborne laser scanner measurements: Basic physical concepts,” ISPRS J. Photogramm. Remote Sens. 65(6), 505–513 (2010).
[CrossRef]

J. Suomalainen, T. Hakala, H. Kaartinen, E. Räikkönen, and S. Kaasalainen, “Demonstration of a virtual active hyperspectral LiDAR in automated point cloud classification,” ISPRS J. Photogramm. Remote Sens. 66(5), 637–641 (2011).
[CrossRef]

Lincoln Lab. J.

M. Nischan, R. Joseph, J. Libby, and J. Kerekes, “Active spectral imaging,” Lincoln Lab. J. 14, 131–144 (2003).

Opt. Express

Proc. SPIE

B. Johnson, R. Joseph, M. Nischan, A. Newbury, J. Kerekes, H. Barclay, B. Willard, and J. Zayhowski, “A compact, active hyperspectral imaging system for the detection of concealed targets,” Proc. SPIE 3710, 144–153 (1999).
[CrossRef]

G. C. Guenther, P. E. LaRocque, and W. J. Lillycrop, “Multiple surface channels in Scanning Hydrographic Operational Airborne Lidar Survey (SHOALS) airborne lidar,” Proc. SPIE 2258, 422–430 (1994).
[CrossRef]

D. M. Winker, J. R. Pelon, and M. P. McCormick, “The CALIPSO mission: Spaceborne lidar for observation of aerosols and clouds,” Proc. SPIE 4893, 1–11 (2003).
[CrossRef]

T. J. Papetti, W. E. Walker, C. E. Keffer, and B. E. Johnson, “Coherent backscatter: measurement of the retroreflective BRDF peak exhibited by several surfaces relevant to ladar applications,” Proc. SPIE 6682, 66820E, 66820E-13 (2007).
[CrossRef]

Remote Sens. Environ.

C. J. Tucker, “Red and photographic infrared linear combinations for monitoring vegetation,” Remote Sens. Environ. 8(2), 127–150 (1979).
[CrossRef]

D. Haboudane, J. R. Miller, E. Pattey, P. J. Zarco-Tejada, and I. B. Strachan, “Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture,” Remote Sens. Environ. 90(3), 337–352 (2004).
[CrossRef]

T. G. Jones, N. C. Coops, and T. Sharma, “Assessing the utility of airborne hyperspectral and LiDAR data for species distribution mapping in the coastal Pacific Northwest, Canada,” Remote Sens. Environ. 114(12), 2841–2852 (2010).
[CrossRef]

Rev. Mod. Phys.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

Sensors (Basel)

E. Puttonen, A. Jaakkola, P. Litkey, and J. Hyyppä, “Tree classification with fused mobile laser scanning and hyperspectral data,” Sensors (Basel) 11(5), 5158–5182 (2011).
[CrossRef] [PubMed]

Y. Chen, E. Räikkönen, S. Kaasalainen, J. Suomalainen, T. Hakala, J. Hyyppä, and R. Chen, “Two-channel hyperspectral LiDAR with a supercontinuum laser source,” Sensors (Basel) 10(7), 7057–7066 (2010).
[CrossRef] [PubMed]

Other

B. Hapke, Theory of Reflectance and Emittance Spectroscopy (Cambridge University Press, 1993).

M. Pfennigbauer and A. Ullrich, “Multi-wavelength airborne laser scanning,” in Proceedings of the International Lidar Mapping Forum, ILMF, New Orleans (2011).

G. Bishop, I. V. Veiga, M. Watson, and L. Farr, “Active spectral imaging for target detection” in Proceedings of the 3rd EMRS DTC Technical Conference (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

The optical setup: A laser pulse from a photonic crystal fiber (A) is collimated and sent to a 2D scanner (B). An off-axis parabolic mirror (C) is used as a primary light collecting optic. A spectrograph (D) disperses the colors of the trigger (E) and echo pulses to an APD array, which converts the light to analog voltage waveforms.

Fig. 2
Fig. 2

The broadband output spectrum of the SuperK. The spectral range is approximately 480-2200 nm.

Fig. 3
Fig. 3

Spectral channels of the hyperspectral LiDAR and passive spectrometer measurement of Norway spruce. Current channel selection (solid curves) is optimized for the measurement of vegetation.

Fig. 4
Fig. 4

Hyperspectral LiDAR waveforms at various stages of processing. The top left plot depicts the raw waveforms of each hyperspectral channel as recorded by the analog to digital converters. Thick black line is the mean waveform of all channels. Trigger and target parts of the waveforms are normalized in different scale. The negative overshoot is visible, e.g., after the trigger pulse. The bottom left plot depicts the same waveforms with overshoot effects removed. The 3D plot on right shows the backscattered reflectance waveforms of the targets, produced using Gaussian function fitting and instrument calibration.

Fig. 5
Fig. 5

Flowchart of an algorithm removing overshoot effects from waveforms. The overshooting waveshapes are replaced with ideal ones, until the source waveform is diminished below a threshold level. To avoid errors caused by excess fitting, the residual of the source wave is added to the output waveform containing only ideal shapes.

Fig. 6
Fig. 6

Comparison of spectra collected from the Norway spruce using the hyperspectral LiDAR and a passive spectrometer. To improve the comparability, the spectrometer spectra have been scaled to same level as the LiDAR spectra and smoothed with a 19-nm Gaussian filter.

Fig. 7
Fig. 7

A photograph of the Norway spruce and 3D point clouds demonstrating various data products that were extracted from the backscattered reflectance spectra. To reduce noise the spectra have been averaged in 5-cm voxels. The spectral indices have been calculated for each voxel, and the results are displayed on the full 3D point cloud as colors.

Metrics