Abstract

We demonstrate a diode-pumped Cr:LiSAF laser with controllable and reliable fast switching between its continuous-wave and mode-locked states of operation using an optically-addressed semiconductor Bragg reflector, permitting dyed microspheres to be continuously trapped and monitored using a standard microscope imaging and on-demand two-photon-excited luminescence techniques.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Hopkins, G. J. Valentine, W. Sibbett, J. A. der Au, F. Morier-Genoud, U. Keller, and A. Valster, “Efficient, low-noise, SESAM-based femtosecond Cr3+: LiSrAlF6 laser,” Opt. Commun. 154(1-3), 54–58 (1998).
    [CrossRef]
  2. V. G. Savitski, A. J. Kemp, S. Calvez, and D. Burns, “Optically Pumped Saturable Bragg Reflectors: Nonlinear Spectroscopy and Application in Ultrafast Lasers,” IEEE J. Quantum Electron. 46(11), 1650–1655 (2010).
    [CrossRef]
  3. V. G. Savitski, D. Burns, and S. Calvez, “Optically-pumped saturable absorber for fast switching between continuous-wave and passively mode-locked regimes of a Nd:YVO4 laser,” Opt. Express 17(7), 5373–5378 (2009).
    [CrossRef] [PubMed]
  4. S. Tsuda, W. H. Knox, E. A. de Souza, W. Y. Jan, and J. E. Cunningham, “Low-loss intracavity AlAs/AlGaAs saturable Bragg reflector for femtosecond mode locking in solid-state lasers,” Opt. Lett. 20(12), 1406–1408 (1995).
    [CrossRef] [PubMed]
  5. B. Agate, C. T. A. Brown, W. Sibbett, and K. Dholakia, “Femtosecond optical tweezers for in-situ control of two-photon fluorescence,” Opt. Express 12(13), 3011–3017 (2004).
    [CrossRef] [PubMed]
  6. http://optics.org/article/36573 .
  7. J. Ando, G. Bautista, N. Smith, K. Fujita, and V. R. Daria, “Optical trapping and surgery of living yeast cells using a single laser,” Rev. Sci. Instrum. 79(10), 103705 (2008).
    [CrossRef] [PubMed]
  8. P. W. Roth, A. J. Maclean, D. Burns, and A. J. Kemp, “Direct diode-laser pumping of a mode-locked Ti:sapphire laser,” Opt. Lett. 36(2), 304–306 (2011).
    [CrossRef] [PubMed]

2011 (1)

2010 (1)

V. G. Savitski, A. J. Kemp, S. Calvez, and D. Burns, “Optically Pumped Saturable Bragg Reflectors: Nonlinear Spectroscopy and Application in Ultrafast Lasers,” IEEE J. Quantum Electron. 46(11), 1650–1655 (2010).
[CrossRef]

2009 (1)

2008 (1)

J. Ando, G. Bautista, N. Smith, K. Fujita, and V. R. Daria, “Optical trapping and surgery of living yeast cells using a single laser,” Rev. Sci. Instrum. 79(10), 103705 (2008).
[CrossRef] [PubMed]

2004 (1)

1998 (1)

J. M. Hopkins, G. J. Valentine, W. Sibbett, J. A. der Au, F. Morier-Genoud, U. Keller, and A. Valster, “Efficient, low-noise, SESAM-based femtosecond Cr3+: LiSrAlF6 laser,” Opt. Commun. 154(1-3), 54–58 (1998).
[CrossRef]

1995 (1)

Agate, B.

Ando, J.

J. Ando, G. Bautista, N. Smith, K. Fujita, and V. R. Daria, “Optical trapping and surgery of living yeast cells using a single laser,” Rev. Sci. Instrum. 79(10), 103705 (2008).
[CrossRef] [PubMed]

Bautista, G.

J. Ando, G. Bautista, N. Smith, K. Fujita, and V. R. Daria, “Optical trapping and surgery of living yeast cells using a single laser,” Rev. Sci. Instrum. 79(10), 103705 (2008).
[CrossRef] [PubMed]

Brown, C. T. A.

Burns, D.

Calvez, S.

V. G. Savitski, A. J. Kemp, S. Calvez, and D. Burns, “Optically Pumped Saturable Bragg Reflectors: Nonlinear Spectroscopy and Application in Ultrafast Lasers,” IEEE J. Quantum Electron. 46(11), 1650–1655 (2010).
[CrossRef]

V. G. Savitski, D. Burns, and S. Calvez, “Optically-pumped saturable absorber for fast switching between continuous-wave and passively mode-locked regimes of a Nd:YVO4 laser,” Opt. Express 17(7), 5373–5378 (2009).
[CrossRef] [PubMed]

Cunningham, J. E.

Daria, V. R.

J. Ando, G. Bautista, N. Smith, K. Fujita, and V. R. Daria, “Optical trapping and surgery of living yeast cells using a single laser,” Rev. Sci. Instrum. 79(10), 103705 (2008).
[CrossRef] [PubMed]

de Souza, E. A.

der Au, J. A.

J. M. Hopkins, G. J. Valentine, W. Sibbett, J. A. der Au, F. Morier-Genoud, U. Keller, and A. Valster, “Efficient, low-noise, SESAM-based femtosecond Cr3+: LiSrAlF6 laser,” Opt. Commun. 154(1-3), 54–58 (1998).
[CrossRef]

Dholakia, K.

Fujita, K.

J. Ando, G. Bautista, N. Smith, K. Fujita, and V. R. Daria, “Optical trapping and surgery of living yeast cells using a single laser,” Rev. Sci. Instrum. 79(10), 103705 (2008).
[CrossRef] [PubMed]

Hopkins, J. M.

J. M. Hopkins, G. J. Valentine, W. Sibbett, J. A. der Au, F. Morier-Genoud, U. Keller, and A. Valster, “Efficient, low-noise, SESAM-based femtosecond Cr3+: LiSrAlF6 laser,” Opt. Commun. 154(1-3), 54–58 (1998).
[CrossRef]

Jan, W. Y.

Keller, U.

J. M. Hopkins, G. J. Valentine, W. Sibbett, J. A. der Au, F. Morier-Genoud, U. Keller, and A. Valster, “Efficient, low-noise, SESAM-based femtosecond Cr3+: LiSrAlF6 laser,” Opt. Commun. 154(1-3), 54–58 (1998).
[CrossRef]

Kemp, A. J.

P. W. Roth, A. J. Maclean, D. Burns, and A. J. Kemp, “Direct diode-laser pumping of a mode-locked Ti:sapphire laser,” Opt. Lett. 36(2), 304–306 (2011).
[CrossRef] [PubMed]

V. G. Savitski, A. J. Kemp, S. Calvez, and D. Burns, “Optically Pumped Saturable Bragg Reflectors: Nonlinear Spectroscopy and Application in Ultrafast Lasers,” IEEE J. Quantum Electron. 46(11), 1650–1655 (2010).
[CrossRef]

Knox, W. H.

Maclean, A. J.

Morier-Genoud, F.

J. M. Hopkins, G. J. Valentine, W. Sibbett, J. A. der Au, F. Morier-Genoud, U. Keller, and A. Valster, “Efficient, low-noise, SESAM-based femtosecond Cr3+: LiSrAlF6 laser,” Opt. Commun. 154(1-3), 54–58 (1998).
[CrossRef]

Roth, P. W.

Savitski, V. G.

V. G. Savitski, A. J. Kemp, S. Calvez, and D. Burns, “Optically Pumped Saturable Bragg Reflectors: Nonlinear Spectroscopy and Application in Ultrafast Lasers,” IEEE J. Quantum Electron. 46(11), 1650–1655 (2010).
[CrossRef]

V. G. Savitski, D. Burns, and S. Calvez, “Optically-pumped saturable absorber for fast switching between continuous-wave and passively mode-locked regimes of a Nd:YVO4 laser,” Opt. Express 17(7), 5373–5378 (2009).
[CrossRef] [PubMed]

Sibbett, W.

B. Agate, C. T. A. Brown, W. Sibbett, and K. Dholakia, “Femtosecond optical tweezers for in-situ control of two-photon fluorescence,” Opt. Express 12(13), 3011–3017 (2004).
[CrossRef] [PubMed]

J. M. Hopkins, G. J. Valentine, W. Sibbett, J. A. der Au, F. Morier-Genoud, U. Keller, and A. Valster, “Efficient, low-noise, SESAM-based femtosecond Cr3+: LiSrAlF6 laser,” Opt. Commun. 154(1-3), 54–58 (1998).
[CrossRef]

Smith, N.

J. Ando, G. Bautista, N. Smith, K. Fujita, and V. R. Daria, “Optical trapping and surgery of living yeast cells using a single laser,” Rev. Sci. Instrum. 79(10), 103705 (2008).
[CrossRef] [PubMed]

Tsuda, S.

Valentine, G. J.

J. M. Hopkins, G. J. Valentine, W. Sibbett, J. A. der Au, F. Morier-Genoud, U. Keller, and A. Valster, “Efficient, low-noise, SESAM-based femtosecond Cr3+: LiSrAlF6 laser,” Opt. Commun. 154(1-3), 54–58 (1998).
[CrossRef]

Valster, A.

J. M. Hopkins, G. J. Valentine, W. Sibbett, J. A. der Au, F. Morier-Genoud, U. Keller, and A. Valster, “Efficient, low-noise, SESAM-based femtosecond Cr3+: LiSrAlF6 laser,” Opt. Commun. 154(1-3), 54–58 (1998).
[CrossRef]

IEEE J. Quantum Electron. (1)

V. G. Savitski, A. J. Kemp, S. Calvez, and D. Burns, “Optically Pumped Saturable Bragg Reflectors: Nonlinear Spectroscopy and Application in Ultrafast Lasers,” IEEE J. Quantum Electron. 46(11), 1650–1655 (2010).
[CrossRef]

Opt. Commun. (1)

J. M. Hopkins, G. J. Valentine, W. Sibbett, J. A. der Au, F. Morier-Genoud, U. Keller, and A. Valster, “Efficient, low-noise, SESAM-based femtosecond Cr3+: LiSrAlF6 laser,” Opt. Commun. 154(1-3), 54–58 (1998).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Rev. Sci. Instrum. (1)

J. Ando, G. Bautista, N. Smith, K. Fujita, and V. R. Daria, “Optical trapping and surgery of living yeast cells using a single laser,” Rev. Sci. Instrum. 79(10), 103705 (2008).
[CrossRef] [PubMed]

Other (1)

http://optics.org/article/36573 .

Supplementary Material (1)

» Media 1: MOV (2585 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the diode-pumped Cr:LiSAF laser arrangement. OC – 1% output coupler. All curved mirrors are highly reflective (HR) within 800-900 nm spectral range. EDL – External Diode Laser.

Fig. 2
Fig. 2

Output from the Cr:LiSAF laser (blue) with SBR periodically pumped by EDL (red). Inset: Typical response of the Cr:LiSAF laser output on external optical pumping of the SBR.

Fig. 3
Fig. 3

Intensity autocorrelation trace of the ML pulse from the Cr;LiSAF laser. Inset, corresponding optical spectrum (duration– bandwidth product = 0.33).

Fig. 4
Fig. 4

A schematic set-up for experiments on optical trapping and two-photon luminescence.

Fig. 5
Fig. 5

Movie of on-demand two-photon luminescence of a trapped microsphere doped with the dye. Two-photon luminescence is excited by emission from the Cr:LiSAF laser operating in ML regime. (Media 1)

Metrics