Abstract

We demonstrated a unique monolithic integration of Fresnel elliptical zone plate (EZP) objective on a 2-axis staggered vertical comb-drive micromirror with 500μm by 800μm surface area via direct patterning of reflective binary phase modulation elements on a silicon chip. The need for focusing optics is thus obviated, simplifying the micro-endoscope assembly and improving its form factor. The design of binary phase EZP was guided by simulations based on FFT based Rayleigh-Sommerfeld diffraction model. For dual-axis scanning angles up to 9º by 9º at the image plane, the simulated diffracted Airy disks on a spatial map have been demonstrated to vary from 10.5μm to 28.6μm. Micromirrors scanning ±9º (optical) about both axes are patterned with elliptical zones designed for 7mm focal length and 20þ off-axis 635-nm illumination using 635nm laser. Videos of samples acquired with ~15μm lateral resolution over 1mm × 0.35mm field of view (FOV) at 5.0 frames/second using the device in both transmission and reflectance modes bench-top single-fiber laser scanning confocal microscope confirmed the applicability of the device to micro-endoscopy.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. S. Montgomery and S. E. Wilson, “Intraabdominal abscesses: image-guided diagnosis and therapy,” Clin. Infect. Dis. 23(1), 28–36 (1996).
    [CrossRef] [PubMed]
  2. Y. T. Pan, T. Q. Xie, C. W. Du, S. Bastacky, S. Meyers, and M. L. Zeidel, “Enhancing early bladder cancer detection with fluorescence-guided endoscopic optical coherence tomography,” Opt. Lett. 28(24), 2485–2487 (2003).
    [CrossRef] [PubMed]
  3. S. Inoué, “Foundations of confocal scanned imaging in light microscopy,” in Handbook of Biological Confocal Microscopy (Springer 2006) pp. 1–19.
  4. Z. Yaqoob, J. Wu, E. J. McDowell, X. Heng, and C. Yang, “Methods and application areas of endoscopic optical coherence tomography,” J. Biomed. Opt. 11(6), 063001 (2006).
    [CrossRef] [PubMed]
  5. D. Hah, P. R. Patterson, H. D. Nguyen, H. Toshiyoshi, and M. C. Wu, “Theory and experiments of angular vertical comb-drive actuators for scanning micromirrors,” IEEE J. Sel. Top. Quantum Electron. 10(3), 505–513 (2004).
    [CrossRef]
  6. K. Kumar, R. Avritscher, Y. Wang, N. Lane, D. C. Madoff, T. K. Yu, J. W. Uhr, and X. Zhang, “Handheld histology-equivalent sectioning laser-scanning confocal optical microscope for interventional imaging,” Biomed. Microdevices 12(2), 223–233 (2010).
    [CrossRef] [PubMed]
  7. Y. Wang, S. Bish, J. W. Tunnell, and X. Zhang, “MEMS scanner enabled real-time depth sensitive hyperspectral imaging of biological tissue,” Opt. Express 18(23), 24101–24108 (2010).
    [CrossRef] [PubMed]
  8. H. J. Shin, M. C. Pierce, D. Lee, H. Ra, O. Solgaard, and R. Richards-Kortum, “Fiber-optic confocal microscope using a MEMS scanner and miniature objective lens,” Opt. Express 15(15), 9113–9122 (2007).
    [CrossRef] [PubMed]
  9. K. Kumar and X. Zhang, “CMOS-compatible 2-axis self-aligned vertical comb-driven micromirror for large field-of-view microendoscopes,” in International Conference MicroElectroMechenical Systems (MEMS 2009), Sorrento, Italy, 2009, 1015–1018.
  10. G. D. J. Su, S. S. Lee, and M. C. Wu, “Optical scanners realized by surface-micromachined vertical torsion mirror,” IEEE Photon. Technol. Lett. 11(5), 587–589 (1999).
    [CrossRef]
  11. T. Xie, H. Xie, G. Fedder, and Y. Pan, “Endoscopic optical coherence tomography with new MEMS mirror,” Electron. Lett. 39(21), 1535–1536 (2003).
    [CrossRef]
  12. S. Kwon and L. P. Lee, “Micromachined transmissive scanning confocal microscope,” Opt. Lett. 29(7), 706–708 (2004).
    [CrossRef] [PubMed]
  13. D. L. Dickensheets and G. S. Kino, “Micromachined scanning confocal optical microscope,” Opt. Lett. 21(10), 764–766 (1996).
    [CrossRef] [PubMed]
  14. L. Lin, S. Lee, K. Pister, and M. Wu, “Micro-machined three-dimensional micro-optics for integrated free-space optical system,” IEEE Photon. Technol. Lett. 6(12), 1445–1447 (1994).
    [CrossRef]
  15. K. Kumar, H. Cao, and X. Zhang, “Monolithic integration binary-phase Fresnel zone plate objectives on 2-axis scanning micromirrors for compact microendoscopes,” Solid-State Sensors, Actuators, and Microsystems Workshop, South Carolina, June 1–5, 2008, pp. 292–295.
  16. M. Young, “Zone plates and their aberrations,” J. Opt. Soc. Am. 62(8), 972–976 (1972).
    [CrossRef]
  17. Q. Cao and J. Jahns, “Comprehensive focusing analysis of various Fresnel zone plates,” J. Opt. Soc. Am. A 21(4), 561–571 (2004).
    [CrossRef] [PubMed]
  18. S. Cha, P. C. Lin, L. Zhu, P. C. Sun, and Y. Fainman, “Nontranslational three-dimensional profilometry by chromatic confocal microscopy with dynamically configurable micromirror scanning,” Appl. Opt. 39(16), 2605–2613 (2000).
    [CrossRef] [PubMed]
  19. M. Born, E. Wolf, and A. Bhatia, Principles of Optics (Pergamon Press, 1970).
  20. N. Delen and B. Hooker, “Free-space beam propagation between arbitrarily oriented planes based on full diffraction theory: a fast Fourier transform approach,” J. Opt. Soc. Am. A 15(4), 857–867 (1998).
    [CrossRef]
  21. U. Krishnamoorthy, D. Lee, and O. Solgaard, “Self-aligned vertical electrostatic combdrives for micromirror actuation,” J. Microelectromech. Syst. 12(4), 458–464 (2003).
    [CrossRef]
  22. K. Kumar, K. Hoshino, H. J. Shin, R. Richards-Kortum, and X. Zhang, “High-reflectivity two-axis vertical comb drive microscanners for confocal imaging applications,” in Proc. IEEE/LEOS International Conference on Optical MEMS and Their Applications, Big Sky, MT, 2006, 120–121.

2010 (2)

K. Kumar, R. Avritscher, Y. Wang, N. Lane, D. C. Madoff, T. K. Yu, J. W. Uhr, and X. Zhang, “Handheld histology-equivalent sectioning laser-scanning confocal optical microscope for interventional imaging,” Biomed. Microdevices 12(2), 223–233 (2010).
[CrossRef] [PubMed]

Y. Wang, S. Bish, J. W. Tunnell, and X. Zhang, “MEMS scanner enabled real-time depth sensitive hyperspectral imaging of biological tissue,” Opt. Express 18(23), 24101–24108 (2010).
[CrossRef] [PubMed]

2007 (1)

2006 (1)

Z. Yaqoob, J. Wu, E. J. McDowell, X. Heng, and C. Yang, “Methods and application areas of endoscopic optical coherence tomography,” J. Biomed. Opt. 11(6), 063001 (2006).
[CrossRef] [PubMed]

2004 (3)

D. Hah, P. R. Patterson, H. D. Nguyen, H. Toshiyoshi, and M. C. Wu, “Theory and experiments of angular vertical comb-drive actuators for scanning micromirrors,” IEEE J. Sel. Top. Quantum Electron. 10(3), 505–513 (2004).
[CrossRef]

S. Kwon and L. P. Lee, “Micromachined transmissive scanning confocal microscope,” Opt. Lett. 29(7), 706–708 (2004).
[CrossRef] [PubMed]

Q. Cao and J. Jahns, “Comprehensive focusing analysis of various Fresnel zone plates,” J. Opt. Soc. Am. A 21(4), 561–571 (2004).
[CrossRef] [PubMed]

2003 (3)

T. Xie, H. Xie, G. Fedder, and Y. Pan, “Endoscopic optical coherence tomography with new MEMS mirror,” Electron. Lett. 39(21), 1535–1536 (2003).
[CrossRef]

U. Krishnamoorthy, D. Lee, and O. Solgaard, “Self-aligned vertical electrostatic combdrives for micromirror actuation,” J. Microelectromech. Syst. 12(4), 458–464 (2003).
[CrossRef]

Y. T. Pan, T. Q. Xie, C. W. Du, S. Bastacky, S. Meyers, and M. L. Zeidel, “Enhancing early bladder cancer detection with fluorescence-guided endoscopic optical coherence tomography,” Opt. Lett. 28(24), 2485–2487 (2003).
[CrossRef] [PubMed]

2000 (1)

1999 (1)

G. D. J. Su, S. S. Lee, and M. C. Wu, “Optical scanners realized by surface-micromachined vertical torsion mirror,” IEEE Photon. Technol. Lett. 11(5), 587–589 (1999).
[CrossRef]

1998 (1)

1996 (2)

D. L. Dickensheets and G. S. Kino, “Micromachined scanning confocal optical microscope,” Opt. Lett. 21(10), 764–766 (1996).
[CrossRef] [PubMed]

R. S. Montgomery and S. E. Wilson, “Intraabdominal abscesses: image-guided diagnosis and therapy,” Clin. Infect. Dis. 23(1), 28–36 (1996).
[CrossRef] [PubMed]

1994 (1)

L. Lin, S. Lee, K. Pister, and M. Wu, “Micro-machined three-dimensional micro-optics for integrated free-space optical system,” IEEE Photon. Technol. Lett. 6(12), 1445–1447 (1994).
[CrossRef]

1972 (1)

Avritscher, R.

K. Kumar, R. Avritscher, Y. Wang, N. Lane, D. C. Madoff, T. K. Yu, J. W. Uhr, and X. Zhang, “Handheld histology-equivalent sectioning laser-scanning confocal optical microscope for interventional imaging,” Biomed. Microdevices 12(2), 223–233 (2010).
[CrossRef] [PubMed]

Bastacky, S.

Bish, S.

Cao, Q.

Cha, S.

Delen, N.

Dickensheets, D. L.

Du, C. W.

Fainman, Y.

Fedder, G.

T. Xie, H. Xie, G. Fedder, and Y. Pan, “Endoscopic optical coherence tomography with new MEMS mirror,” Electron. Lett. 39(21), 1535–1536 (2003).
[CrossRef]

Hah, D.

D. Hah, P. R. Patterson, H. D. Nguyen, H. Toshiyoshi, and M. C. Wu, “Theory and experiments of angular vertical comb-drive actuators for scanning micromirrors,” IEEE J. Sel. Top. Quantum Electron. 10(3), 505–513 (2004).
[CrossRef]

Heng, X.

Z. Yaqoob, J. Wu, E. J. McDowell, X. Heng, and C. Yang, “Methods and application areas of endoscopic optical coherence tomography,” J. Biomed. Opt. 11(6), 063001 (2006).
[CrossRef] [PubMed]

Hooker, B.

Jahns, J.

Kino, G. S.

Krishnamoorthy, U.

U. Krishnamoorthy, D. Lee, and O. Solgaard, “Self-aligned vertical electrostatic combdrives for micromirror actuation,” J. Microelectromech. Syst. 12(4), 458–464 (2003).
[CrossRef]

Kumar, K.

K. Kumar, R. Avritscher, Y. Wang, N. Lane, D. C. Madoff, T. K. Yu, J. W. Uhr, and X. Zhang, “Handheld histology-equivalent sectioning laser-scanning confocal optical microscope for interventional imaging,” Biomed. Microdevices 12(2), 223–233 (2010).
[CrossRef] [PubMed]

Kwon, S.

Lane, N.

K. Kumar, R. Avritscher, Y. Wang, N. Lane, D. C. Madoff, T. K. Yu, J. W. Uhr, and X. Zhang, “Handheld histology-equivalent sectioning laser-scanning confocal optical microscope for interventional imaging,” Biomed. Microdevices 12(2), 223–233 (2010).
[CrossRef] [PubMed]

Lee, D.

H. J. Shin, M. C. Pierce, D. Lee, H. Ra, O. Solgaard, and R. Richards-Kortum, “Fiber-optic confocal microscope using a MEMS scanner and miniature objective lens,” Opt. Express 15(15), 9113–9122 (2007).
[CrossRef] [PubMed]

U. Krishnamoorthy, D. Lee, and O. Solgaard, “Self-aligned vertical electrostatic combdrives for micromirror actuation,” J. Microelectromech. Syst. 12(4), 458–464 (2003).
[CrossRef]

Lee, L. P.

Lee, S.

L. Lin, S. Lee, K. Pister, and M. Wu, “Micro-machined three-dimensional micro-optics for integrated free-space optical system,” IEEE Photon. Technol. Lett. 6(12), 1445–1447 (1994).
[CrossRef]

Lee, S. S.

G. D. J. Su, S. S. Lee, and M. C. Wu, “Optical scanners realized by surface-micromachined vertical torsion mirror,” IEEE Photon. Technol. Lett. 11(5), 587–589 (1999).
[CrossRef]

Lin, L.

L. Lin, S. Lee, K. Pister, and M. Wu, “Micro-machined three-dimensional micro-optics for integrated free-space optical system,” IEEE Photon. Technol. Lett. 6(12), 1445–1447 (1994).
[CrossRef]

Lin, P. C.

Madoff, D. C.

K. Kumar, R. Avritscher, Y. Wang, N. Lane, D. C. Madoff, T. K. Yu, J. W. Uhr, and X. Zhang, “Handheld histology-equivalent sectioning laser-scanning confocal optical microscope for interventional imaging,” Biomed. Microdevices 12(2), 223–233 (2010).
[CrossRef] [PubMed]

McDowell, E. J.

Z. Yaqoob, J. Wu, E. J. McDowell, X. Heng, and C. Yang, “Methods and application areas of endoscopic optical coherence tomography,” J. Biomed. Opt. 11(6), 063001 (2006).
[CrossRef] [PubMed]

Meyers, S.

Montgomery, R. S.

R. S. Montgomery and S. E. Wilson, “Intraabdominal abscesses: image-guided diagnosis and therapy,” Clin. Infect. Dis. 23(1), 28–36 (1996).
[CrossRef] [PubMed]

Nguyen, H. D.

D. Hah, P. R. Patterson, H. D. Nguyen, H. Toshiyoshi, and M. C. Wu, “Theory and experiments of angular vertical comb-drive actuators for scanning micromirrors,” IEEE J. Sel. Top. Quantum Electron. 10(3), 505–513 (2004).
[CrossRef]

Pan, Y.

T. Xie, H. Xie, G. Fedder, and Y. Pan, “Endoscopic optical coherence tomography with new MEMS mirror,” Electron. Lett. 39(21), 1535–1536 (2003).
[CrossRef]

Pan, Y. T.

Patterson, P. R.

D. Hah, P. R. Patterson, H. D. Nguyen, H. Toshiyoshi, and M. C. Wu, “Theory and experiments of angular vertical comb-drive actuators for scanning micromirrors,” IEEE J. Sel. Top. Quantum Electron. 10(3), 505–513 (2004).
[CrossRef]

Pierce, M. C.

Pister, K.

L. Lin, S. Lee, K. Pister, and M. Wu, “Micro-machined three-dimensional micro-optics for integrated free-space optical system,” IEEE Photon. Technol. Lett. 6(12), 1445–1447 (1994).
[CrossRef]

Ra, H.

Richards-Kortum, R.

Shin, H. J.

Solgaard, O.

H. J. Shin, M. C. Pierce, D. Lee, H. Ra, O. Solgaard, and R. Richards-Kortum, “Fiber-optic confocal microscope using a MEMS scanner and miniature objective lens,” Opt. Express 15(15), 9113–9122 (2007).
[CrossRef] [PubMed]

U. Krishnamoorthy, D. Lee, and O. Solgaard, “Self-aligned vertical electrostatic combdrives for micromirror actuation,” J. Microelectromech. Syst. 12(4), 458–464 (2003).
[CrossRef]

Su, G. D. J.

G. D. J. Su, S. S. Lee, and M. C. Wu, “Optical scanners realized by surface-micromachined vertical torsion mirror,” IEEE Photon. Technol. Lett. 11(5), 587–589 (1999).
[CrossRef]

Sun, P. C.

Toshiyoshi, H.

D. Hah, P. R. Patterson, H. D. Nguyen, H. Toshiyoshi, and M. C. Wu, “Theory and experiments of angular vertical comb-drive actuators for scanning micromirrors,” IEEE J. Sel. Top. Quantum Electron. 10(3), 505–513 (2004).
[CrossRef]

Tunnell, J. W.

Uhr, J. W.

K. Kumar, R. Avritscher, Y. Wang, N. Lane, D. C. Madoff, T. K. Yu, J. W. Uhr, and X. Zhang, “Handheld histology-equivalent sectioning laser-scanning confocal optical microscope for interventional imaging,” Biomed. Microdevices 12(2), 223–233 (2010).
[CrossRef] [PubMed]

Wang, Y.

Y. Wang, S. Bish, J. W. Tunnell, and X. Zhang, “MEMS scanner enabled real-time depth sensitive hyperspectral imaging of biological tissue,” Opt. Express 18(23), 24101–24108 (2010).
[CrossRef] [PubMed]

K. Kumar, R. Avritscher, Y. Wang, N. Lane, D. C. Madoff, T. K. Yu, J. W. Uhr, and X. Zhang, “Handheld histology-equivalent sectioning laser-scanning confocal optical microscope for interventional imaging,” Biomed. Microdevices 12(2), 223–233 (2010).
[CrossRef] [PubMed]

Wilson, S. E.

R. S. Montgomery and S. E. Wilson, “Intraabdominal abscesses: image-guided diagnosis and therapy,” Clin. Infect. Dis. 23(1), 28–36 (1996).
[CrossRef] [PubMed]

Wu, J.

Z. Yaqoob, J. Wu, E. J. McDowell, X. Heng, and C. Yang, “Methods and application areas of endoscopic optical coherence tomography,” J. Biomed. Opt. 11(6), 063001 (2006).
[CrossRef] [PubMed]

Wu, M.

L. Lin, S. Lee, K. Pister, and M. Wu, “Micro-machined three-dimensional micro-optics for integrated free-space optical system,” IEEE Photon. Technol. Lett. 6(12), 1445–1447 (1994).
[CrossRef]

Wu, M. C.

D. Hah, P. R. Patterson, H. D. Nguyen, H. Toshiyoshi, and M. C. Wu, “Theory and experiments of angular vertical comb-drive actuators for scanning micromirrors,” IEEE J. Sel. Top. Quantum Electron. 10(3), 505–513 (2004).
[CrossRef]

G. D. J. Su, S. S. Lee, and M. C. Wu, “Optical scanners realized by surface-micromachined vertical torsion mirror,” IEEE Photon. Technol. Lett. 11(5), 587–589 (1999).
[CrossRef]

Xie, H.

T. Xie, H. Xie, G. Fedder, and Y. Pan, “Endoscopic optical coherence tomography with new MEMS mirror,” Electron. Lett. 39(21), 1535–1536 (2003).
[CrossRef]

Xie, T.

T. Xie, H. Xie, G. Fedder, and Y. Pan, “Endoscopic optical coherence tomography with new MEMS mirror,” Electron. Lett. 39(21), 1535–1536 (2003).
[CrossRef]

Xie, T. Q.

Yang, C.

Z. Yaqoob, J. Wu, E. J. McDowell, X. Heng, and C. Yang, “Methods and application areas of endoscopic optical coherence tomography,” J. Biomed. Opt. 11(6), 063001 (2006).
[CrossRef] [PubMed]

Yaqoob, Z.

Z. Yaqoob, J. Wu, E. J. McDowell, X. Heng, and C. Yang, “Methods and application areas of endoscopic optical coherence tomography,” J. Biomed. Opt. 11(6), 063001 (2006).
[CrossRef] [PubMed]

Young, M.

Yu, T. K.

K. Kumar, R. Avritscher, Y. Wang, N. Lane, D. C. Madoff, T. K. Yu, J. W. Uhr, and X. Zhang, “Handheld histology-equivalent sectioning laser-scanning confocal optical microscope for interventional imaging,” Biomed. Microdevices 12(2), 223–233 (2010).
[CrossRef] [PubMed]

Zeidel, M. L.

Zhang, X.

K. Kumar, R. Avritscher, Y. Wang, N. Lane, D. C. Madoff, T. K. Yu, J. W. Uhr, and X. Zhang, “Handheld histology-equivalent sectioning laser-scanning confocal optical microscope for interventional imaging,” Biomed. Microdevices 12(2), 223–233 (2010).
[CrossRef] [PubMed]

Y. Wang, S. Bish, J. W. Tunnell, and X. Zhang, “MEMS scanner enabled real-time depth sensitive hyperspectral imaging of biological tissue,” Opt. Express 18(23), 24101–24108 (2010).
[CrossRef] [PubMed]

Zhu, L.

Appl. Opt. (1)

Biomed. Microdevices (1)

K. Kumar, R. Avritscher, Y. Wang, N. Lane, D. C. Madoff, T. K. Yu, J. W. Uhr, and X. Zhang, “Handheld histology-equivalent sectioning laser-scanning confocal optical microscope for interventional imaging,” Biomed. Microdevices 12(2), 223–233 (2010).
[CrossRef] [PubMed]

Clin. Infect. Dis. (1)

R. S. Montgomery and S. E. Wilson, “Intraabdominal abscesses: image-guided diagnosis and therapy,” Clin. Infect. Dis. 23(1), 28–36 (1996).
[CrossRef] [PubMed]

Electron. Lett. (1)

T. Xie, H. Xie, G. Fedder, and Y. Pan, “Endoscopic optical coherence tomography with new MEMS mirror,” Electron. Lett. 39(21), 1535–1536 (2003).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

D. Hah, P. R. Patterson, H. D. Nguyen, H. Toshiyoshi, and M. C. Wu, “Theory and experiments of angular vertical comb-drive actuators for scanning micromirrors,” IEEE J. Sel. Top. Quantum Electron. 10(3), 505–513 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

L. Lin, S. Lee, K. Pister, and M. Wu, “Micro-machined three-dimensional micro-optics for integrated free-space optical system,” IEEE Photon. Technol. Lett. 6(12), 1445–1447 (1994).
[CrossRef]

G. D. J. Su, S. S. Lee, and M. C. Wu, “Optical scanners realized by surface-micromachined vertical torsion mirror,” IEEE Photon. Technol. Lett. 11(5), 587–589 (1999).
[CrossRef]

J. Biomed. Opt. (1)

Z. Yaqoob, J. Wu, E. J. McDowell, X. Heng, and C. Yang, “Methods and application areas of endoscopic optical coherence tomography,” J. Biomed. Opt. 11(6), 063001 (2006).
[CrossRef] [PubMed]

J. Microelectromech. Syst. (1)

U. Krishnamoorthy, D. Lee, and O. Solgaard, “Self-aligned vertical electrostatic combdrives for micromirror actuation,” J. Microelectromech. Syst. 12(4), 458–464 (2003).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (2)

Opt. Express (2)

Opt. Lett. (3)

Other (5)

K. Kumar, H. Cao, and X. Zhang, “Monolithic integration binary-phase Fresnel zone plate objectives on 2-axis scanning micromirrors for compact microendoscopes,” Solid-State Sensors, Actuators, and Microsystems Workshop, South Carolina, June 1–5, 2008, pp. 292–295.

M. Born, E. Wolf, and A. Bhatia, Principles of Optics (Pergamon Press, 1970).

S. Inoué, “Foundations of confocal scanned imaging in light microscopy,” in Handbook of Biological Confocal Microscopy (Springer 2006) pp. 1–19.

K. Kumar and X. Zhang, “CMOS-compatible 2-axis self-aligned vertical comb-driven micromirror for large field-of-view microendoscopes,” in International Conference MicroElectroMechenical Systems (MEMS 2009), Sorrento, Italy, 2009, 1015–1018.

K. Kumar, K. Hoshino, H. J. Shin, R. Richards-Kortum, and X. Zhang, “High-reflectivity two-axis vertical comb drive microscanners for confocal imaging applications,” in Proc. IEEE/LEOS International Conference on Optical MEMS and Their Applications, Big Sky, MT, 2006, 120–121.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Illustration of design parameters for scanning binary-phase reflective Fresnel Zone Plate objectives. θ is the incident angle of the off-axis plane illumination of wavelength, w and wf are the incident and focused beam waists, f is the focal distance, and θs is the scan angle of the elliptical zone plate having n zones.

Fig. 2
Fig. 2

Coordinate systems involved in the Fresnel EZP diffraction integral analysis. r is the light path length from the Fresnel EZP surface plane to the imaging plane, z0 is the distance between the micromirror center of the Fresnel EZP to the imaging plane in its orthogonal direction (z direction). The imaging plane is placed at a distance which is the EZP’s focal length along z-direction (z0 = f).

Fig. 3
Fig. 3

(a)-(c): Diffraction focusing spot 2-D profiles on the observation plane while the MEMS EZP tilts along y axis with different angles of (a) 0þ (b)5þ and (c) 10þ. (d)-(f): Intensity distribution plot along X axis passing through the maximum intensity position, demonstrating the Y axis resolutions of 26μm, 15μm and 11μm for rotational angles illustrated in (a)-(c). (g)-(i): Intensity distribution plot along Y axis passing through the maximum intensity position, demonstrating the X axis resolutions of 17μm, 31μm and 28μm for rotational angles illustrated in (a)-(c). The tilts angles along y axis used in (d)-(f) and (g)-(i) are the same to those in (a)-(c) respectively. The incident laser beam has a 20þ offset with the EZP plane.

Fig. 4
Fig. 4

Simulated focusing spot resolution map for the full imaging field of Fresnel EZP on the observation plane, scale bar is in microns.

Fig. 5
Fig. 5

Device fabrication process sequence. (a) DRIE of coarse features in to SOI device layer. (b) Bond oxidized wafer, grind/polish. (c) Pattern binary-phase modulation elements of zone plate into micromirror surface. (d) Chemical vapor deposit silicon dioxide and pattern with exact micromirror features. (e) DRIE-Oxide RIE-DRIE sequence to create self-aligned actuators. (f) Backside DRIE to release micromirror, and oxide RIE on both sides to remove protective oxide.

Fig. 6
Fig. 6

SEM images of the fabricated device. (a) Top view showing the EZP, vertical comb drives, torsion springs, and bond pads for electrical connection. (b) Backside view showing DRIE trench with vertical sidewalls to release the scanning micromirror. (c) Close-in view of vertical combdrive.

Fig. 7
Fig. 7

Micromirror operating characteristics. (a) Frequency response characteristics. (b) Static deflection characteristics on driving one comb bank on each axis.

Fig. 8
Fig. 8

Map of diameter of the focused spot (in microns) created by an EZP with 7mm focal length for 635nm illumination at 20° nominal incidence as function of optical angular deflection of the micromirror.

Fig. 9
Fig. 9

Schematic of transmission-mode imaging experiment used for preliminary device testing.

Fig. 10
Fig. 10

Results of imaging Mylar transparencies using preliminary transmission-mode imaging experiment. (a-b) Image calibration: (a) Image of number 100 (transparent) in opaque background, and (b) Image of sample using Olympus BX51 confocal microscope. (c-d) Image of longhorn symbol and text “TEXAS”: (c) using the device, and (d) using Olympus BX51 confocal microscope. Scale Bar: 250μm.

Fig. 11
Fig. 11

Schematic of single-fiber laser-scanning reflectance confocal microscope incorporating the micromirror with monolithically integrated EZP.

Fig. 12
Fig. 12

Results of imaging USAF1951 resolution target using laser-scanning reflectance confocal experiment using the device. Images of groups of elements from different parts of the target and resolution are depicted in (a)-(b). Field of view is 1mm × 0.35mm, is ~15μm. (c) Image of the target using Olympus BX51 confocal microscope with corresponding locations marked by colored rectangles.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

( x a n cosθ ) 2 + ( y b n a n ) 2 =1.
n 2f/λ .
nλ/Δλ.
α ( 3n ) 1/2 ( for small n )
z 0 k( ξ 2 + η 2 ) 2 .
z 0 π 4λ [ ( xξ ) 2 + ( yη ) 2 ] max 2 3 .
U( x,y,z )= 1 2π A U( ξ,η,0 )× ζ ( e ikr r )dxdy.
U( x,y,z )= F 1 { F{ U( x,y,z ) } }= F 1 ( F{ U( ξ,η,0 ) }×F{ 1 2π ζ ( e ikr r ) } ).
F{ U( ξ,η,0 ) }= A 0 ( ν x , ν y ,0 )= A U( ξ,η,0 )×exp[ 2( ν x x+ ν y y ) ]dξdη.
θ 2λ πw f .

Metrics