Abstract

We investigated the properties of nematic liquid crystal device (NLC) doped with titanium (Ti) nanoparticle (~100nm). The electro-optic (EO) properties of LCs changed according to Ti nanoparticle doping concentration. Ti nanoparticles in the NLC cells focused the electric field flux and strengthened the electric field. Further, Ti nanoparticles in NLC molecules may trap charged ionic impurities and suppress the screen effect, leading to a stronger electric field and the van der Waals dispersion interactions between NLC molecules and the alignment layers. We also simulated the boundary conditions of the Ti nanoparticles in the electric field using Ansoft Maxwell software. Our experimental results agreed with the phenomenon predicted by software simulation based on general physical theory. Synthetically, at a 1.0 wt. % Ti nanoparticle doping concentration, the NLC cells showed the best EO properties, such as a low threshold voltage (1.25V), fast response time (13.2ms), and low pretilt angle (3.90°).

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. G. Park, J. J. Lee, K. Y. Dong, B. Y. Oh, Y. H. Kim, H. Y. Jeong, B. K. Ju, and D. S. Seo, “Homeotropic alignment of liquid crystals on a nano-patterned polyimide surface using nanoimprint lithography,” Soft Matter 7(12), 5610–5614 (2011).
    [CrossRef]
  2. A. Glushchenko, C. I. Cheon, J. West, F. Li, E. Büyüktanir, Y. Reznikov, and A. Buchnev, “Ferroelectric particles in liquid crystals: recent frontiers,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 453(1), 227–237 (2006).
    [CrossRef]
  3. O. Kurochkin, O. Buchnev, A. Iljin, S. K. Park, S. B. Kwon, O. Grabar, and Y. Reznikov, “A colloid of ferroelectric nanoparticles in a cholesteric liquid crystal,” J. Opt. A, Pure Appl. Opt. 11(2), 024003 (2009).
    [CrossRef]
  4. K. K. Vardanyan, R. D. Walton, and D. M. Bubb, “Liquid crystal composites with a high percentage of gold nanoparticles,” Liq. Cryst. 38(10), 1279–1287 (2011).
    [CrossRef]
  5. G. Zhang, X. Chen, J. Zhao, Y. Chai, W. Zhuang, and L. Wang, “Electrophoretic deposition of silver nanoparticles in lamellar lyotropic liquid crystal,” Mater. Lett. 60(23), 2889–2892 (2006).
    [CrossRef]
  6. H. J. Kim, Y. G. Kang, H. G. Park, K. M. Lee, S. Yang, H. Y. Jung, and D. S. Seo, “Effects of the dispersion of zirconium dioxide nanoparticles on high performance electro-optic properties in liquid crystal devices,” Liq. Cryst. 38(7), 871–875 (2011).
    [CrossRef]
  7. W. K. Lee, Y. S. Choi, Y. G. Kang, J. W. Sung, D. S. Seo, and C. M. Park, “Super-fast switching of twisted nematic liquid crystals on 2D single wall carbon nanotube networks,” Adv. Funct. Mater. 21(20), 3843–3850 (2011).
    [CrossRef]
  8. S. Y. Lu and L. C. Chien, “Carbon nanotube doped liquid crystal OCB cells: physical and electro-optical properties,” Opt. Express 16(17), 12777–12785 (2008).
    [PubMed]
  9. A. Glushchenko, H. Kresse, G. Puchkovs'ka, V. Reshetnyak, Y. Reznikov, and O. Yaroshchuk, “Memory effect and structure of filled nematic liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 321(1), 15–30 (1998).
    [CrossRef]
  10. Y. Shiraishi, N. Toshima, K. Maeda, H. Yoshikawa, J. Xu, and S. Kobayashi, “Frequency modulation response of a liquid-crystal electro-optic device doped with nanoparticles,” Appl. Phys. Lett. 81(15), 2845–2847 (2002).
    [CrossRef]
  11. W. Lee, C. Y. Wang, and Y. C. Shih, “Effects of carbon nanosolids on the electro-optical properties of a twisted nematic liquid-crystal host,” Appl. Phys. Lett. 85(4), 513–515 (2004).
    [CrossRef]
  12. W. K. Lee, J. H. Choi, H. J. Na, J. H. Lim, J. M. Han, J. Y. Hwang, and D. S. Seo, “Low-power operation of vertically aligned liquid-crystal system via anatase-TiO(2) nanoparticle dispersion,” Opt. Lett. 34(23), 3653–3655 (2009).
    [CrossRef] [PubMed]
  13. H. Qi, B. Kinkead, and T. Hegmann, “Unprecedented dual alignment mode and Freedericksz transition in planar nematic liquid crystal cells doped with gold nanoclusters,” Adv. Funct. Mater. 18(2), 212–221 (2008).
    [CrossRef]
  14. H. Qi, B. Kinkead, V. M. Marx, H. R. Zhang, and T. Hegmann, “Miscibility and alignment effects of mixed monolayer cyanobiphenyl liquid-crystal-capped gold nanoparticles in nematic cyanobiphenyl liquid crystal hosts,” ChemPhysChem 10(8), 1211–1218 (2009).
    [CrossRef] [PubMed]
  15. A. Taylor and H. Sinclair, “On the determination of lattice parameters by the Debye-Scherrer method,” Proc. Phys. Soc. 57(2), 126–135 (1945).
    [CrossRef]
  16. R. Arafune, K. Sakamoto, D. Yamakawa, and S. Ushioda, “Pretilt angles of liquid crystals in contact with rubbed polyimide films with different chain inclinations,” Surf. Sci. 368(1-3), 208–212 (1996).
    [CrossRef]
  17. R. Arafune, K. Sakamoto, S. Ushioda, S. Tanioka, and S. Murata, “Importance of rubbing-induced inclination of polyimide backbone structures for determination of the pretilt angle of liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 58(5), 5914–5918 (1998).
    [CrossRef]
  18. S. H. Paek, C. J. Durning, K. W. Lee, and A. Lien, “A mechanistic picture of the effects of rubbing on polyimide surfaces and liquid crystal pretilt angles,” J. Appl. Phys. 83(3), 1270–1279 (1998).
    [CrossRef]
  19. H. G. Park, H. Y. Jeong, Y. H. Kim, B. Y. Kim, J. H. Kim, H. I. Yoon, and D. S. Seo, “Electrooptical properties of single-walled carbon-nanotube mixed liquid-crystal cells with rubbed and ion-beam-treated alignment layers,” J. Disp. Technol. 7(12), 644–648 (2011).
    [CrossRef]
  20. K. Neyts, S. Vermael, C. Desimpel, G. Stojmenovik, A. R. M. Verschueren, D. K. G. de Boer, D. K. G. de Boer, R. Snijkers, P. Machiels, and A. van Brandenburg, “Lateral ion transport in nematic liquid-crystal devices,” J. Appl. Phys. 94(6), 3891–3896 (2003).
    [CrossRef]

2011

H. G. Park, J. J. Lee, K. Y. Dong, B. Y. Oh, Y. H. Kim, H. Y. Jeong, B. K. Ju, and D. S. Seo, “Homeotropic alignment of liquid crystals on a nano-patterned polyimide surface using nanoimprint lithography,” Soft Matter 7(12), 5610–5614 (2011).
[CrossRef]

K. K. Vardanyan, R. D. Walton, and D. M. Bubb, “Liquid crystal composites with a high percentage of gold nanoparticles,” Liq. Cryst. 38(10), 1279–1287 (2011).
[CrossRef]

H. J. Kim, Y. G. Kang, H. G. Park, K. M. Lee, S. Yang, H. Y. Jung, and D. S. Seo, “Effects of the dispersion of zirconium dioxide nanoparticles on high performance electro-optic properties in liquid crystal devices,” Liq. Cryst. 38(7), 871–875 (2011).
[CrossRef]

W. K. Lee, Y. S. Choi, Y. G. Kang, J. W. Sung, D. S. Seo, and C. M. Park, “Super-fast switching of twisted nematic liquid crystals on 2D single wall carbon nanotube networks,” Adv. Funct. Mater. 21(20), 3843–3850 (2011).
[CrossRef]

H. G. Park, H. Y. Jeong, Y. H. Kim, B. Y. Kim, J. H. Kim, H. I. Yoon, and D. S. Seo, “Electrooptical properties of single-walled carbon-nanotube mixed liquid-crystal cells with rubbed and ion-beam-treated alignment layers,” J. Disp. Technol. 7(12), 644–648 (2011).
[CrossRef]

2009

O. Kurochkin, O. Buchnev, A. Iljin, S. K. Park, S. B. Kwon, O. Grabar, and Y. Reznikov, “A colloid of ferroelectric nanoparticles in a cholesteric liquid crystal,” J. Opt. A, Pure Appl. Opt. 11(2), 024003 (2009).
[CrossRef]

W. K. Lee, J. H. Choi, H. J. Na, J. H. Lim, J. M. Han, J. Y. Hwang, and D. S. Seo, “Low-power operation of vertically aligned liquid-crystal system via anatase-TiO(2) nanoparticle dispersion,” Opt. Lett. 34(23), 3653–3655 (2009).
[CrossRef] [PubMed]

H. Qi, B. Kinkead, V. M. Marx, H. R. Zhang, and T. Hegmann, “Miscibility and alignment effects of mixed monolayer cyanobiphenyl liquid-crystal-capped gold nanoparticles in nematic cyanobiphenyl liquid crystal hosts,” ChemPhysChem 10(8), 1211–1218 (2009).
[CrossRef] [PubMed]

2008

H. Qi, B. Kinkead, and T. Hegmann, “Unprecedented dual alignment mode and Freedericksz transition in planar nematic liquid crystal cells doped with gold nanoclusters,” Adv. Funct. Mater. 18(2), 212–221 (2008).
[CrossRef]

S. Y. Lu and L. C. Chien, “Carbon nanotube doped liquid crystal OCB cells: physical and electro-optical properties,” Opt. Express 16(17), 12777–12785 (2008).
[PubMed]

2006

G. Zhang, X. Chen, J. Zhao, Y. Chai, W. Zhuang, and L. Wang, “Electrophoretic deposition of silver nanoparticles in lamellar lyotropic liquid crystal,” Mater. Lett. 60(23), 2889–2892 (2006).
[CrossRef]

A. Glushchenko, C. I. Cheon, J. West, F. Li, E. Büyüktanir, Y. Reznikov, and A. Buchnev, “Ferroelectric particles in liquid crystals: recent frontiers,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 453(1), 227–237 (2006).
[CrossRef]

2004

W. Lee, C. Y. Wang, and Y. C. Shih, “Effects of carbon nanosolids on the electro-optical properties of a twisted nematic liquid-crystal host,” Appl. Phys. Lett. 85(4), 513–515 (2004).
[CrossRef]

2003

K. Neyts, S. Vermael, C. Desimpel, G. Stojmenovik, A. R. M. Verschueren, D. K. G. de Boer, D. K. G. de Boer, R. Snijkers, P. Machiels, and A. van Brandenburg, “Lateral ion transport in nematic liquid-crystal devices,” J. Appl. Phys. 94(6), 3891–3896 (2003).
[CrossRef]

2002

Y. Shiraishi, N. Toshima, K. Maeda, H. Yoshikawa, J. Xu, and S. Kobayashi, “Frequency modulation response of a liquid-crystal electro-optic device doped with nanoparticles,” Appl. Phys. Lett. 81(15), 2845–2847 (2002).
[CrossRef]

1998

A. Glushchenko, H. Kresse, G. Puchkovs'ka, V. Reshetnyak, Y. Reznikov, and O. Yaroshchuk, “Memory effect and structure of filled nematic liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 321(1), 15–30 (1998).
[CrossRef]

R. Arafune, K. Sakamoto, S. Ushioda, S. Tanioka, and S. Murata, “Importance of rubbing-induced inclination of polyimide backbone structures for determination of the pretilt angle of liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 58(5), 5914–5918 (1998).
[CrossRef]

S. H. Paek, C. J. Durning, K. W. Lee, and A. Lien, “A mechanistic picture of the effects of rubbing on polyimide surfaces and liquid crystal pretilt angles,” J. Appl. Phys. 83(3), 1270–1279 (1998).
[CrossRef]

1996

R. Arafune, K. Sakamoto, D. Yamakawa, and S. Ushioda, “Pretilt angles of liquid crystals in contact with rubbed polyimide films with different chain inclinations,” Surf. Sci. 368(1-3), 208–212 (1996).
[CrossRef]

1945

A. Taylor and H. Sinclair, “On the determination of lattice parameters by the Debye-Scherrer method,” Proc. Phys. Soc. 57(2), 126–135 (1945).
[CrossRef]

Arafune, R.

R. Arafune, K. Sakamoto, S. Ushioda, S. Tanioka, and S. Murata, “Importance of rubbing-induced inclination of polyimide backbone structures for determination of the pretilt angle of liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 58(5), 5914–5918 (1998).
[CrossRef]

R. Arafune, K. Sakamoto, D. Yamakawa, and S. Ushioda, “Pretilt angles of liquid crystals in contact with rubbed polyimide films with different chain inclinations,” Surf. Sci. 368(1-3), 208–212 (1996).
[CrossRef]

Bubb, D. M.

K. K. Vardanyan, R. D. Walton, and D. M. Bubb, “Liquid crystal composites with a high percentage of gold nanoparticles,” Liq. Cryst. 38(10), 1279–1287 (2011).
[CrossRef]

Buchnev, A.

A. Glushchenko, C. I. Cheon, J. West, F. Li, E. Büyüktanir, Y. Reznikov, and A. Buchnev, “Ferroelectric particles in liquid crystals: recent frontiers,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 453(1), 227–237 (2006).
[CrossRef]

Buchnev, O.

O. Kurochkin, O. Buchnev, A. Iljin, S. K. Park, S. B. Kwon, O. Grabar, and Y. Reznikov, “A colloid of ferroelectric nanoparticles in a cholesteric liquid crystal,” J. Opt. A, Pure Appl. Opt. 11(2), 024003 (2009).
[CrossRef]

Büyüktanir, E.

A. Glushchenko, C. I. Cheon, J. West, F. Li, E. Büyüktanir, Y. Reznikov, and A. Buchnev, “Ferroelectric particles in liquid crystals: recent frontiers,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 453(1), 227–237 (2006).
[CrossRef]

Chai, Y.

G. Zhang, X. Chen, J. Zhao, Y. Chai, W. Zhuang, and L. Wang, “Electrophoretic deposition of silver nanoparticles in lamellar lyotropic liquid crystal,” Mater. Lett. 60(23), 2889–2892 (2006).
[CrossRef]

Chen, X.

G. Zhang, X. Chen, J. Zhao, Y. Chai, W. Zhuang, and L. Wang, “Electrophoretic deposition of silver nanoparticles in lamellar lyotropic liquid crystal,” Mater. Lett. 60(23), 2889–2892 (2006).
[CrossRef]

Cheon, C. I.

A. Glushchenko, C. I. Cheon, J. West, F. Li, E. Büyüktanir, Y. Reznikov, and A. Buchnev, “Ferroelectric particles in liquid crystals: recent frontiers,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 453(1), 227–237 (2006).
[CrossRef]

Chien, L. C.

Choi, J. H.

Choi, Y. S.

W. K. Lee, Y. S. Choi, Y. G. Kang, J. W. Sung, D. S. Seo, and C. M. Park, “Super-fast switching of twisted nematic liquid crystals on 2D single wall carbon nanotube networks,” Adv. Funct. Mater. 21(20), 3843–3850 (2011).
[CrossRef]

de Boer, D. K. G.

K. Neyts, S. Vermael, C. Desimpel, G. Stojmenovik, A. R. M. Verschueren, D. K. G. de Boer, D. K. G. de Boer, R. Snijkers, P. Machiels, and A. van Brandenburg, “Lateral ion transport in nematic liquid-crystal devices,” J. Appl. Phys. 94(6), 3891–3896 (2003).
[CrossRef]

K. Neyts, S. Vermael, C. Desimpel, G. Stojmenovik, A. R. M. Verschueren, D. K. G. de Boer, D. K. G. de Boer, R. Snijkers, P. Machiels, and A. van Brandenburg, “Lateral ion transport in nematic liquid-crystal devices,” J. Appl. Phys. 94(6), 3891–3896 (2003).
[CrossRef]

Desimpel, C.

K. Neyts, S. Vermael, C. Desimpel, G. Stojmenovik, A. R. M. Verschueren, D. K. G. de Boer, D. K. G. de Boer, R. Snijkers, P. Machiels, and A. van Brandenburg, “Lateral ion transport in nematic liquid-crystal devices,” J. Appl. Phys. 94(6), 3891–3896 (2003).
[CrossRef]

Dong, K. Y.

H. G. Park, J. J. Lee, K. Y. Dong, B. Y. Oh, Y. H. Kim, H. Y. Jeong, B. K. Ju, and D. S. Seo, “Homeotropic alignment of liquid crystals on a nano-patterned polyimide surface using nanoimprint lithography,” Soft Matter 7(12), 5610–5614 (2011).
[CrossRef]

Durning, C. J.

S. H. Paek, C. J. Durning, K. W. Lee, and A. Lien, “A mechanistic picture of the effects of rubbing on polyimide surfaces and liquid crystal pretilt angles,” J. Appl. Phys. 83(3), 1270–1279 (1998).
[CrossRef]

Glushchenko, A.

A. Glushchenko, C. I. Cheon, J. West, F. Li, E. Büyüktanir, Y. Reznikov, and A. Buchnev, “Ferroelectric particles in liquid crystals: recent frontiers,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 453(1), 227–237 (2006).
[CrossRef]

A. Glushchenko, H. Kresse, G. Puchkovs'ka, V. Reshetnyak, Y. Reznikov, and O. Yaroshchuk, “Memory effect and structure of filled nematic liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 321(1), 15–30 (1998).
[CrossRef]

Grabar, O.

O. Kurochkin, O. Buchnev, A. Iljin, S. K. Park, S. B. Kwon, O. Grabar, and Y. Reznikov, “A colloid of ferroelectric nanoparticles in a cholesteric liquid crystal,” J. Opt. A, Pure Appl. Opt. 11(2), 024003 (2009).
[CrossRef]

Han, J. M.

Hegmann, T.

H. Qi, B. Kinkead, V. M. Marx, H. R. Zhang, and T. Hegmann, “Miscibility and alignment effects of mixed monolayer cyanobiphenyl liquid-crystal-capped gold nanoparticles in nematic cyanobiphenyl liquid crystal hosts,” ChemPhysChem 10(8), 1211–1218 (2009).
[CrossRef] [PubMed]

H. Qi, B. Kinkead, and T. Hegmann, “Unprecedented dual alignment mode and Freedericksz transition in planar nematic liquid crystal cells doped with gold nanoclusters,” Adv. Funct. Mater. 18(2), 212–221 (2008).
[CrossRef]

Hwang, J. Y.

Iljin, A.

O. Kurochkin, O. Buchnev, A. Iljin, S. K. Park, S. B. Kwon, O. Grabar, and Y. Reznikov, “A colloid of ferroelectric nanoparticles in a cholesteric liquid crystal,” J. Opt. A, Pure Appl. Opt. 11(2), 024003 (2009).
[CrossRef]

Jeong, H. Y.

H. G. Park, J. J. Lee, K. Y. Dong, B. Y. Oh, Y. H. Kim, H. Y. Jeong, B. K. Ju, and D. S. Seo, “Homeotropic alignment of liquid crystals on a nano-patterned polyimide surface using nanoimprint lithography,” Soft Matter 7(12), 5610–5614 (2011).
[CrossRef]

H. G. Park, H. Y. Jeong, Y. H. Kim, B. Y. Kim, J. H. Kim, H. I. Yoon, and D. S. Seo, “Electrooptical properties of single-walled carbon-nanotube mixed liquid-crystal cells with rubbed and ion-beam-treated alignment layers,” J. Disp. Technol. 7(12), 644–648 (2011).
[CrossRef]

Ju, B. K.

H. G. Park, J. J. Lee, K. Y. Dong, B. Y. Oh, Y. H. Kim, H. Y. Jeong, B. K. Ju, and D. S. Seo, “Homeotropic alignment of liquid crystals on a nano-patterned polyimide surface using nanoimprint lithography,” Soft Matter 7(12), 5610–5614 (2011).
[CrossRef]

Jung, H. Y.

H. J. Kim, Y. G. Kang, H. G. Park, K. M. Lee, S. Yang, H. Y. Jung, and D. S. Seo, “Effects of the dispersion of zirconium dioxide nanoparticles on high performance electro-optic properties in liquid crystal devices,” Liq. Cryst. 38(7), 871–875 (2011).
[CrossRef]

Kang, Y. G.

W. K. Lee, Y. S. Choi, Y. G. Kang, J. W. Sung, D. S. Seo, and C. M. Park, “Super-fast switching of twisted nematic liquid crystals on 2D single wall carbon nanotube networks,” Adv. Funct. Mater. 21(20), 3843–3850 (2011).
[CrossRef]

H. J. Kim, Y. G. Kang, H. G. Park, K. M. Lee, S. Yang, H. Y. Jung, and D. S. Seo, “Effects of the dispersion of zirconium dioxide nanoparticles on high performance electro-optic properties in liquid crystal devices,” Liq. Cryst. 38(7), 871–875 (2011).
[CrossRef]

Kim, B. Y.

H. G. Park, H. Y. Jeong, Y. H. Kim, B. Y. Kim, J. H. Kim, H. I. Yoon, and D. S. Seo, “Electrooptical properties of single-walled carbon-nanotube mixed liquid-crystal cells with rubbed and ion-beam-treated alignment layers,” J. Disp. Technol. 7(12), 644–648 (2011).
[CrossRef]

Kim, H. J.

H. J. Kim, Y. G. Kang, H. G. Park, K. M. Lee, S. Yang, H. Y. Jung, and D. S. Seo, “Effects of the dispersion of zirconium dioxide nanoparticles on high performance electro-optic properties in liquid crystal devices,” Liq. Cryst. 38(7), 871–875 (2011).
[CrossRef]

Kim, J. H.

H. G. Park, H. Y. Jeong, Y. H. Kim, B. Y. Kim, J. H. Kim, H. I. Yoon, and D. S. Seo, “Electrooptical properties of single-walled carbon-nanotube mixed liquid-crystal cells with rubbed and ion-beam-treated alignment layers,” J. Disp. Technol. 7(12), 644–648 (2011).
[CrossRef]

Kim, Y. H.

H. G. Park, H. Y. Jeong, Y. H. Kim, B. Y. Kim, J. H. Kim, H. I. Yoon, and D. S. Seo, “Electrooptical properties of single-walled carbon-nanotube mixed liquid-crystal cells with rubbed and ion-beam-treated alignment layers,” J. Disp. Technol. 7(12), 644–648 (2011).
[CrossRef]

H. G. Park, J. J. Lee, K. Y. Dong, B. Y. Oh, Y. H. Kim, H. Y. Jeong, B. K. Ju, and D. S. Seo, “Homeotropic alignment of liquid crystals on a nano-patterned polyimide surface using nanoimprint lithography,” Soft Matter 7(12), 5610–5614 (2011).
[CrossRef]

Kinkead, B.

H. Qi, B. Kinkead, V. M. Marx, H. R. Zhang, and T. Hegmann, “Miscibility and alignment effects of mixed monolayer cyanobiphenyl liquid-crystal-capped gold nanoparticles in nematic cyanobiphenyl liquid crystal hosts,” ChemPhysChem 10(8), 1211–1218 (2009).
[CrossRef] [PubMed]

H. Qi, B. Kinkead, and T. Hegmann, “Unprecedented dual alignment mode and Freedericksz transition in planar nematic liquid crystal cells doped with gold nanoclusters,” Adv. Funct. Mater. 18(2), 212–221 (2008).
[CrossRef]

Kobayashi, S.

Y. Shiraishi, N. Toshima, K. Maeda, H. Yoshikawa, J. Xu, and S. Kobayashi, “Frequency modulation response of a liquid-crystal electro-optic device doped with nanoparticles,” Appl. Phys. Lett. 81(15), 2845–2847 (2002).
[CrossRef]

Kresse, H.

A. Glushchenko, H. Kresse, G. Puchkovs'ka, V. Reshetnyak, Y. Reznikov, and O. Yaroshchuk, “Memory effect and structure of filled nematic liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 321(1), 15–30 (1998).
[CrossRef]

Kurochkin, O.

O. Kurochkin, O. Buchnev, A. Iljin, S. K. Park, S. B. Kwon, O. Grabar, and Y. Reznikov, “A colloid of ferroelectric nanoparticles in a cholesteric liquid crystal,” J. Opt. A, Pure Appl. Opt. 11(2), 024003 (2009).
[CrossRef]

Kwon, S. B.

O. Kurochkin, O. Buchnev, A. Iljin, S. K. Park, S. B. Kwon, O. Grabar, and Y. Reznikov, “A colloid of ferroelectric nanoparticles in a cholesteric liquid crystal,” J. Opt. A, Pure Appl. Opt. 11(2), 024003 (2009).
[CrossRef]

Lee, J. J.

H. G. Park, J. J. Lee, K. Y. Dong, B. Y. Oh, Y. H. Kim, H. Y. Jeong, B. K. Ju, and D. S. Seo, “Homeotropic alignment of liquid crystals on a nano-patterned polyimide surface using nanoimprint lithography,” Soft Matter 7(12), 5610–5614 (2011).
[CrossRef]

Lee, K. M.

H. J. Kim, Y. G. Kang, H. G. Park, K. M. Lee, S. Yang, H. Y. Jung, and D. S. Seo, “Effects of the dispersion of zirconium dioxide nanoparticles on high performance electro-optic properties in liquid crystal devices,” Liq. Cryst. 38(7), 871–875 (2011).
[CrossRef]

Lee, K. W.

S. H. Paek, C. J. Durning, K. W. Lee, and A. Lien, “A mechanistic picture of the effects of rubbing on polyimide surfaces and liquid crystal pretilt angles,” J. Appl. Phys. 83(3), 1270–1279 (1998).
[CrossRef]

Lee, W.

W. Lee, C. Y. Wang, and Y. C. Shih, “Effects of carbon nanosolids on the electro-optical properties of a twisted nematic liquid-crystal host,” Appl. Phys. Lett. 85(4), 513–515 (2004).
[CrossRef]

Lee, W. K.

W. K. Lee, Y. S. Choi, Y. G. Kang, J. W. Sung, D. S. Seo, and C. M. Park, “Super-fast switching of twisted nematic liquid crystals on 2D single wall carbon nanotube networks,” Adv. Funct. Mater. 21(20), 3843–3850 (2011).
[CrossRef]

W. K. Lee, J. H. Choi, H. J. Na, J. H. Lim, J. M. Han, J. Y. Hwang, and D. S. Seo, “Low-power operation of vertically aligned liquid-crystal system via anatase-TiO(2) nanoparticle dispersion,” Opt. Lett. 34(23), 3653–3655 (2009).
[CrossRef] [PubMed]

Li, F.

A. Glushchenko, C. I. Cheon, J. West, F. Li, E. Büyüktanir, Y. Reznikov, and A. Buchnev, “Ferroelectric particles in liquid crystals: recent frontiers,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 453(1), 227–237 (2006).
[CrossRef]

Lien, A.

S. H. Paek, C. J. Durning, K. W. Lee, and A. Lien, “A mechanistic picture of the effects of rubbing on polyimide surfaces and liquid crystal pretilt angles,” J. Appl. Phys. 83(3), 1270–1279 (1998).
[CrossRef]

Lim, J. H.

Lu, S. Y.

Machiels, P.

K. Neyts, S. Vermael, C. Desimpel, G. Stojmenovik, A. R. M. Verschueren, D. K. G. de Boer, D. K. G. de Boer, R. Snijkers, P. Machiels, and A. van Brandenburg, “Lateral ion transport in nematic liquid-crystal devices,” J. Appl. Phys. 94(6), 3891–3896 (2003).
[CrossRef]

Maeda, K.

Y. Shiraishi, N. Toshima, K. Maeda, H. Yoshikawa, J. Xu, and S. Kobayashi, “Frequency modulation response of a liquid-crystal electro-optic device doped with nanoparticles,” Appl. Phys. Lett. 81(15), 2845–2847 (2002).
[CrossRef]

Marx, V. M.

H. Qi, B. Kinkead, V. M. Marx, H. R. Zhang, and T. Hegmann, “Miscibility and alignment effects of mixed monolayer cyanobiphenyl liquid-crystal-capped gold nanoparticles in nematic cyanobiphenyl liquid crystal hosts,” ChemPhysChem 10(8), 1211–1218 (2009).
[CrossRef] [PubMed]

Murata, S.

R. Arafune, K. Sakamoto, S. Ushioda, S. Tanioka, and S. Murata, “Importance of rubbing-induced inclination of polyimide backbone structures for determination of the pretilt angle of liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 58(5), 5914–5918 (1998).
[CrossRef]

Na, H. J.

Neyts, K.

K. Neyts, S. Vermael, C. Desimpel, G. Stojmenovik, A. R. M. Verschueren, D. K. G. de Boer, D. K. G. de Boer, R. Snijkers, P. Machiels, and A. van Brandenburg, “Lateral ion transport in nematic liquid-crystal devices,” J. Appl. Phys. 94(6), 3891–3896 (2003).
[CrossRef]

Oh, B. Y.

H. G. Park, J. J. Lee, K. Y. Dong, B. Y. Oh, Y. H. Kim, H. Y. Jeong, B. K. Ju, and D. S. Seo, “Homeotropic alignment of liquid crystals on a nano-patterned polyimide surface using nanoimprint lithography,” Soft Matter 7(12), 5610–5614 (2011).
[CrossRef]

Paek, S. H.

S. H. Paek, C. J. Durning, K. W. Lee, and A. Lien, “A mechanistic picture of the effects of rubbing on polyimide surfaces and liquid crystal pretilt angles,” J. Appl. Phys. 83(3), 1270–1279 (1998).
[CrossRef]

Park, C. M.

W. K. Lee, Y. S. Choi, Y. G. Kang, J. W. Sung, D. S. Seo, and C. M. Park, “Super-fast switching of twisted nematic liquid crystals on 2D single wall carbon nanotube networks,” Adv. Funct. Mater. 21(20), 3843–3850 (2011).
[CrossRef]

Park, H. G.

H. G. Park, J. J. Lee, K. Y. Dong, B. Y. Oh, Y. H. Kim, H. Y. Jeong, B. K. Ju, and D. S. Seo, “Homeotropic alignment of liquid crystals on a nano-patterned polyimide surface using nanoimprint lithography,” Soft Matter 7(12), 5610–5614 (2011).
[CrossRef]

H. J. Kim, Y. G. Kang, H. G. Park, K. M. Lee, S. Yang, H. Y. Jung, and D. S. Seo, “Effects of the dispersion of zirconium dioxide nanoparticles on high performance electro-optic properties in liquid crystal devices,” Liq. Cryst. 38(7), 871–875 (2011).
[CrossRef]

H. G. Park, H. Y. Jeong, Y. H. Kim, B. Y. Kim, J. H. Kim, H. I. Yoon, and D. S. Seo, “Electrooptical properties of single-walled carbon-nanotube mixed liquid-crystal cells with rubbed and ion-beam-treated alignment layers,” J. Disp. Technol. 7(12), 644–648 (2011).
[CrossRef]

Park, S. K.

O. Kurochkin, O. Buchnev, A. Iljin, S. K. Park, S. B. Kwon, O. Grabar, and Y. Reznikov, “A colloid of ferroelectric nanoparticles in a cholesteric liquid crystal,” J. Opt. A, Pure Appl. Opt. 11(2), 024003 (2009).
[CrossRef]

Puchkovs'ka, G.

A. Glushchenko, H. Kresse, G. Puchkovs'ka, V. Reshetnyak, Y. Reznikov, and O. Yaroshchuk, “Memory effect and structure of filled nematic liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 321(1), 15–30 (1998).
[CrossRef]

Qi, H.

H. Qi, B. Kinkead, V. M. Marx, H. R. Zhang, and T. Hegmann, “Miscibility and alignment effects of mixed monolayer cyanobiphenyl liquid-crystal-capped gold nanoparticles in nematic cyanobiphenyl liquid crystal hosts,” ChemPhysChem 10(8), 1211–1218 (2009).
[CrossRef] [PubMed]

H. Qi, B. Kinkead, and T. Hegmann, “Unprecedented dual alignment mode and Freedericksz transition in planar nematic liquid crystal cells doped with gold nanoclusters,” Adv. Funct. Mater. 18(2), 212–221 (2008).
[CrossRef]

Reshetnyak, V.

A. Glushchenko, H. Kresse, G. Puchkovs'ka, V. Reshetnyak, Y. Reznikov, and O. Yaroshchuk, “Memory effect and structure of filled nematic liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 321(1), 15–30 (1998).
[CrossRef]

Reznikov, Y.

O. Kurochkin, O. Buchnev, A. Iljin, S. K. Park, S. B. Kwon, O. Grabar, and Y. Reznikov, “A colloid of ferroelectric nanoparticles in a cholesteric liquid crystal,” J. Opt. A, Pure Appl. Opt. 11(2), 024003 (2009).
[CrossRef]

A. Glushchenko, C. I. Cheon, J. West, F. Li, E. Büyüktanir, Y. Reznikov, and A. Buchnev, “Ferroelectric particles in liquid crystals: recent frontiers,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 453(1), 227–237 (2006).
[CrossRef]

A. Glushchenko, H. Kresse, G. Puchkovs'ka, V. Reshetnyak, Y. Reznikov, and O. Yaroshchuk, “Memory effect and structure of filled nematic liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 321(1), 15–30 (1998).
[CrossRef]

Sakamoto, K.

R. Arafune, K. Sakamoto, S. Ushioda, S. Tanioka, and S. Murata, “Importance of rubbing-induced inclination of polyimide backbone structures for determination of the pretilt angle of liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 58(5), 5914–5918 (1998).
[CrossRef]

R. Arafune, K. Sakamoto, D. Yamakawa, and S. Ushioda, “Pretilt angles of liquid crystals in contact with rubbed polyimide films with different chain inclinations,” Surf. Sci. 368(1-3), 208–212 (1996).
[CrossRef]

Seo, D. S.

H. G. Park, H. Y. Jeong, Y. H. Kim, B. Y. Kim, J. H. Kim, H. I. Yoon, and D. S. Seo, “Electrooptical properties of single-walled carbon-nanotube mixed liquid-crystal cells with rubbed and ion-beam-treated alignment layers,” J. Disp. Technol. 7(12), 644–648 (2011).
[CrossRef]

W. K. Lee, Y. S. Choi, Y. G. Kang, J. W. Sung, D. S. Seo, and C. M. Park, “Super-fast switching of twisted nematic liquid crystals on 2D single wall carbon nanotube networks,” Adv. Funct. Mater. 21(20), 3843–3850 (2011).
[CrossRef]

H. J. Kim, Y. G. Kang, H. G. Park, K. M. Lee, S. Yang, H. Y. Jung, and D. S. Seo, “Effects of the dispersion of zirconium dioxide nanoparticles on high performance electro-optic properties in liquid crystal devices,” Liq. Cryst. 38(7), 871–875 (2011).
[CrossRef]

H. G. Park, J. J. Lee, K. Y. Dong, B. Y. Oh, Y. H. Kim, H. Y. Jeong, B. K. Ju, and D. S. Seo, “Homeotropic alignment of liquid crystals on a nano-patterned polyimide surface using nanoimprint lithography,” Soft Matter 7(12), 5610–5614 (2011).
[CrossRef]

W. K. Lee, J. H. Choi, H. J. Na, J. H. Lim, J. M. Han, J. Y. Hwang, and D. S. Seo, “Low-power operation of vertically aligned liquid-crystal system via anatase-TiO(2) nanoparticle dispersion,” Opt. Lett. 34(23), 3653–3655 (2009).
[CrossRef] [PubMed]

Shih, Y. C.

W. Lee, C. Y. Wang, and Y. C. Shih, “Effects of carbon nanosolids on the electro-optical properties of a twisted nematic liquid-crystal host,” Appl. Phys. Lett. 85(4), 513–515 (2004).
[CrossRef]

Shiraishi, Y.

Y. Shiraishi, N. Toshima, K. Maeda, H. Yoshikawa, J. Xu, and S. Kobayashi, “Frequency modulation response of a liquid-crystal electro-optic device doped with nanoparticles,” Appl. Phys. Lett. 81(15), 2845–2847 (2002).
[CrossRef]

Sinclair, H.

A. Taylor and H. Sinclair, “On the determination of lattice parameters by the Debye-Scherrer method,” Proc. Phys. Soc. 57(2), 126–135 (1945).
[CrossRef]

Snijkers, R.

K. Neyts, S. Vermael, C. Desimpel, G. Stojmenovik, A. R. M. Verschueren, D. K. G. de Boer, D. K. G. de Boer, R. Snijkers, P. Machiels, and A. van Brandenburg, “Lateral ion transport in nematic liquid-crystal devices,” J. Appl. Phys. 94(6), 3891–3896 (2003).
[CrossRef]

Stojmenovik, G.

K. Neyts, S. Vermael, C. Desimpel, G. Stojmenovik, A. R. M. Verschueren, D. K. G. de Boer, D. K. G. de Boer, R. Snijkers, P. Machiels, and A. van Brandenburg, “Lateral ion transport in nematic liquid-crystal devices,” J. Appl. Phys. 94(6), 3891–3896 (2003).
[CrossRef]

Sung, J. W.

W. K. Lee, Y. S. Choi, Y. G. Kang, J. W. Sung, D. S. Seo, and C. M. Park, “Super-fast switching of twisted nematic liquid crystals on 2D single wall carbon nanotube networks,” Adv. Funct. Mater. 21(20), 3843–3850 (2011).
[CrossRef]

Tanioka, S.

R. Arafune, K. Sakamoto, S. Ushioda, S. Tanioka, and S. Murata, “Importance of rubbing-induced inclination of polyimide backbone structures for determination of the pretilt angle of liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 58(5), 5914–5918 (1998).
[CrossRef]

Taylor, A.

A. Taylor and H. Sinclair, “On the determination of lattice parameters by the Debye-Scherrer method,” Proc. Phys. Soc. 57(2), 126–135 (1945).
[CrossRef]

Toshima, N.

Y. Shiraishi, N. Toshima, K. Maeda, H. Yoshikawa, J. Xu, and S. Kobayashi, “Frequency modulation response of a liquid-crystal electro-optic device doped with nanoparticles,” Appl. Phys. Lett. 81(15), 2845–2847 (2002).
[CrossRef]

Ushioda, S.

R. Arafune, K. Sakamoto, S. Ushioda, S. Tanioka, and S. Murata, “Importance of rubbing-induced inclination of polyimide backbone structures for determination of the pretilt angle of liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 58(5), 5914–5918 (1998).
[CrossRef]

R. Arafune, K. Sakamoto, D. Yamakawa, and S. Ushioda, “Pretilt angles of liquid crystals in contact with rubbed polyimide films with different chain inclinations,” Surf. Sci. 368(1-3), 208–212 (1996).
[CrossRef]

van Brandenburg, A.

K. Neyts, S. Vermael, C. Desimpel, G. Stojmenovik, A. R. M. Verschueren, D. K. G. de Boer, D. K. G. de Boer, R. Snijkers, P. Machiels, and A. van Brandenburg, “Lateral ion transport in nematic liquid-crystal devices,” J. Appl. Phys. 94(6), 3891–3896 (2003).
[CrossRef]

Vardanyan, K. K.

K. K. Vardanyan, R. D. Walton, and D. M. Bubb, “Liquid crystal composites with a high percentage of gold nanoparticles,” Liq. Cryst. 38(10), 1279–1287 (2011).
[CrossRef]

Vermael, S.

K. Neyts, S. Vermael, C. Desimpel, G. Stojmenovik, A. R. M. Verschueren, D. K. G. de Boer, D. K. G. de Boer, R. Snijkers, P. Machiels, and A. van Brandenburg, “Lateral ion transport in nematic liquid-crystal devices,” J. Appl. Phys. 94(6), 3891–3896 (2003).
[CrossRef]

Verschueren, A. R. M.

K. Neyts, S. Vermael, C. Desimpel, G. Stojmenovik, A. R. M. Verschueren, D. K. G. de Boer, D. K. G. de Boer, R. Snijkers, P. Machiels, and A. van Brandenburg, “Lateral ion transport in nematic liquid-crystal devices,” J. Appl. Phys. 94(6), 3891–3896 (2003).
[CrossRef]

Walton, R. D.

K. K. Vardanyan, R. D. Walton, and D. M. Bubb, “Liquid crystal composites with a high percentage of gold nanoparticles,” Liq. Cryst. 38(10), 1279–1287 (2011).
[CrossRef]

Wang, C. Y.

W. Lee, C. Y. Wang, and Y. C. Shih, “Effects of carbon nanosolids on the electro-optical properties of a twisted nematic liquid-crystal host,” Appl. Phys. Lett. 85(4), 513–515 (2004).
[CrossRef]

Wang, L.

G. Zhang, X. Chen, J. Zhao, Y. Chai, W. Zhuang, and L. Wang, “Electrophoretic deposition of silver nanoparticles in lamellar lyotropic liquid crystal,” Mater. Lett. 60(23), 2889–2892 (2006).
[CrossRef]

West, J.

A. Glushchenko, C. I. Cheon, J. West, F. Li, E. Büyüktanir, Y. Reznikov, and A. Buchnev, “Ferroelectric particles in liquid crystals: recent frontiers,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 453(1), 227–237 (2006).
[CrossRef]

Xu, J.

Y. Shiraishi, N. Toshima, K. Maeda, H. Yoshikawa, J. Xu, and S. Kobayashi, “Frequency modulation response of a liquid-crystal electro-optic device doped with nanoparticles,” Appl. Phys. Lett. 81(15), 2845–2847 (2002).
[CrossRef]

Yamakawa, D.

R. Arafune, K. Sakamoto, D. Yamakawa, and S. Ushioda, “Pretilt angles of liquid crystals in contact with rubbed polyimide films with different chain inclinations,” Surf. Sci. 368(1-3), 208–212 (1996).
[CrossRef]

Yang, S.

H. J. Kim, Y. G. Kang, H. G. Park, K. M. Lee, S. Yang, H. Y. Jung, and D. S. Seo, “Effects of the dispersion of zirconium dioxide nanoparticles on high performance electro-optic properties in liquid crystal devices,” Liq. Cryst. 38(7), 871–875 (2011).
[CrossRef]

Yaroshchuk, O.

A. Glushchenko, H. Kresse, G. Puchkovs'ka, V. Reshetnyak, Y. Reznikov, and O. Yaroshchuk, “Memory effect and structure of filled nematic liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 321(1), 15–30 (1998).
[CrossRef]

Yoon, H. I.

H. G. Park, H. Y. Jeong, Y. H. Kim, B. Y. Kim, J. H. Kim, H. I. Yoon, and D. S. Seo, “Electrooptical properties of single-walled carbon-nanotube mixed liquid-crystal cells with rubbed and ion-beam-treated alignment layers,” J. Disp. Technol. 7(12), 644–648 (2011).
[CrossRef]

Yoshikawa, H.

Y. Shiraishi, N. Toshima, K. Maeda, H. Yoshikawa, J. Xu, and S. Kobayashi, “Frequency modulation response of a liquid-crystal electro-optic device doped with nanoparticles,” Appl. Phys. Lett. 81(15), 2845–2847 (2002).
[CrossRef]

Zhang, G.

G. Zhang, X. Chen, J. Zhao, Y. Chai, W. Zhuang, and L. Wang, “Electrophoretic deposition of silver nanoparticles in lamellar lyotropic liquid crystal,” Mater. Lett. 60(23), 2889–2892 (2006).
[CrossRef]

Zhang, H. R.

H. Qi, B. Kinkead, V. M. Marx, H. R. Zhang, and T. Hegmann, “Miscibility and alignment effects of mixed monolayer cyanobiphenyl liquid-crystal-capped gold nanoparticles in nematic cyanobiphenyl liquid crystal hosts,” ChemPhysChem 10(8), 1211–1218 (2009).
[CrossRef] [PubMed]

Zhao, J.

G. Zhang, X. Chen, J. Zhao, Y. Chai, W. Zhuang, and L. Wang, “Electrophoretic deposition of silver nanoparticles in lamellar lyotropic liquid crystal,” Mater. Lett. 60(23), 2889–2892 (2006).
[CrossRef]

Zhuang, W.

G. Zhang, X. Chen, J. Zhao, Y. Chai, W. Zhuang, and L. Wang, “Electrophoretic deposition of silver nanoparticles in lamellar lyotropic liquid crystal,” Mater. Lett. 60(23), 2889–2892 (2006).
[CrossRef]

Adv. Funct. Mater.

W. K. Lee, Y. S. Choi, Y. G. Kang, J. W. Sung, D. S. Seo, and C. M. Park, “Super-fast switching of twisted nematic liquid crystals on 2D single wall carbon nanotube networks,” Adv. Funct. Mater. 21(20), 3843–3850 (2011).
[CrossRef]

H. Qi, B. Kinkead, and T. Hegmann, “Unprecedented dual alignment mode and Freedericksz transition in planar nematic liquid crystal cells doped with gold nanoclusters,” Adv. Funct. Mater. 18(2), 212–221 (2008).
[CrossRef]

Appl. Phys. Lett.

Y. Shiraishi, N. Toshima, K. Maeda, H. Yoshikawa, J. Xu, and S. Kobayashi, “Frequency modulation response of a liquid-crystal electro-optic device doped with nanoparticles,” Appl. Phys. Lett. 81(15), 2845–2847 (2002).
[CrossRef]

W. Lee, C. Y. Wang, and Y. C. Shih, “Effects of carbon nanosolids on the electro-optical properties of a twisted nematic liquid-crystal host,” Appl. Phys. Lett. 85(4), 513–515 (2004).
[CrossRef]

ChemPhysChem

H. Qi, B. Kinkead, V. M. Marx, H. R. Zhang, and T. Hegmann, “Miscibility and alignment effects of mixed monolayer cyanobiphenyl liquid-crystal-capped gold nanoparticles in nematic cyanobiphenyl liquid crystal hosts,” ChemPhysChem 10(8), 1211–1218 (2009).
[CrossRef] [PubMed]

J. Appl. Phys.

S. H. Paek, C. J. Durning, K. W. Lee, and A. Lien, “A mechanistic picture of the effects of rubbing on polyimide surfaces and liquid crystal pretilt angles,” J. Appl. Phys. 83(3), 1270–1279 (1998).
[CrossRef]

K. Neyts, S. Vermael, C. Desimpel, G. Stojmenovik, A. R. M. Verschueren, D. K. G. de Boer, D. K. G. de Boer, R. Snijkers, P. Machiels, and A. van Brandenburg, “Lateral ion transport in nematic liquid-crystal devices,” J. Appl. Phys. 94(6), 3891–3896 (2003).
[CrossRef]

J. Disp. Technol.

H. G. Park, H. Y. Jeong, Y. H. Kim, B. Y. Kim, J. H. Kim, H. I. Yoon, and D. S. Seo, “Electrooptical properties of single-walled carbon-nanotube mixed liquid-crystal cells with rubbed and ion-beam-treated alignment layers,” J. Disp. Technol. 7(12), 644–648 (2011).
[CrossRef]

J. Opt. A, Pure Appl. Opt.

O. Kurochkin, O. Buchnev, A. Iljin, S. K. Park, S. B. Kwon, O. Grabar, and Y. Reznikov, “A colloid of ferroelectric nanoparticles in a cholesteric liquid crystal,” J. Opt. A, Pure Appl. Opt. 11(2), 024003 (2009).
[CrossRef]

Liq. Cryst.

K. K. Vardanyan, R. D. Walton, and D. M. Bubb, “Liquid crystal composites with a high percentage of gold nanoparticles,” Liq. Cryst. 38(10), 1279–1287 (2011).
[CrossRef]

H. J. Kim, Y. G. Kang, H. G. Park, K. M. Lee, S. Yang, H. Y. Jung, and D. S. Seo, “Effects of the dispersion of zirconium dioxide nanoparticles on high performance electro-optic properties in liquid crystal devices,” Liq. Cryst. 38(7), 871–875 (2011).
[CrossRef]

Mater. Lett.

G. Zhang, X. Chen, J. Zhao, Y. Chai, W. Zhuang, and L. Wang, “Electrophoretic deposition of silver nanoparticles in lamellar lyotropic liquid crystal,” Mater. Lett. 60(23), 2889–2892 (2006).
[CrossRef]

Mol. Cryst. Liq. Cryst. (Phila. Pa.)

A. Glushchenko, C. I. Cheon, J. West, F. Li, E. Büyüktanir, Y. Reznikov, and A. Buchnev, “Ferroelectric particles in liquid crystals: recent frontiers,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 453(1), 227–237 (2006).
[CrossRef]

A. Glushchenko, H. Kresse, G. Puchkovs'ka, V. Reshetnyak, Y. Reznikov, and O. Yaroshchuk, “Memory effect and structure of filled nematic liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 321(1), 15–30 (1998).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics

R. Arafune, K. Sakamoto, S. Ushioda, S. Tanioka, and S. Murata, “Importance of rubbing-induced inclination of polyimide backbone structures for determination of the pretilt angle of liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 58(5), 5914–5918 (1998).
[CrossRef]

Proc. Phys. Soc.

A. Taylor and H. Sinclair, “On the determination of lattice parameters by the Debye-Scherrer method,” Proc. Phys. Soc. 57(2), 126–135 (1945).
[CrossRef]

Soft Matter

H. G. Park, J. J. Lee, K. Y. Dong, B. Y. Oh, Y. H. Kim, H. Y. Jeong, B. K. Ju, and D. S. Seo, “Homeotropic alignment of liquid crystals on a nano-patterned polyimide surface using nanoimprint lithography,” Soft Matter 7(12), 5610–5614 (2011).
[CrossRef]

Surf. Sci.

R. Arafune, K. Sakamoto, D. Yamakawa, and S. Ushioda, “Pretilt angles of liquid crystals in contact with rubbed polyimide films with different chain inclinations,” Surf. Sci. 368(1-3), 208–212 (1996).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Photomicroscope images of NLC cell doped with 0.0 wt.%, 0.1wt.%, 0.5 wt.%, 1.0 wt.%, 1.5 wt.% and 2.0 wt.% Ti NPs (A: analyzer, P: polarizer).

Fig. 2
Fig. 2

Pretilt angles of NLCs with different Ti NP doping concentrations. (a) Plots of the pretilt angle value. (b) Schematic diagram to illustrate the operation of the interaction between the NLC molecules and the alignment layers.

Fig. 3
Fig. 3

V-T curves of the Ti NPs doped NLC. The weight percent of the Ti varies from 0.0 wt.% to 1.0 wt.%.

Fig. 4
Fig. 4

RT characteristics of the homogeneously aligned NLCs with different Ti NP doping concentrations. (a) Response time integration spectra of RT. (b) Response time integration spectra of FT. (c) Schematic diagram to illustrate the operation of NLCs in an on-state NLC cell with doping of Ti NPs. (d) Schematic diagram to illustrate the operation of NLCs in off-state NLC cell with doping of Ti NPs.

Fig. 5
Fig. 5

Plots of the results of Ansoft Maxwell software simulation. (a) Plots of the electric flux density in NLC cell doped with Ti NPs. (b) Plots of the electric field strength in NLC cell doped with Ti NPs.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

τ=  Kλ βcosθ
E N =  D N ε =  ρ S ε

Metrics