Abstract

Thermoelastic finite element models are established to study the bulk ultrasonic waves of an aluminum film generated by ring-shaped laser illumination in a diamond anvil cell. By analyzing the amplitudes of bulk ultrasonic waves arrived at the rear surface of film in detail, it shows that there exists strong enhancement effects on the central axis of the ring due to the constructive interference among the waves created by different parts of the ring source. The displacement distributions along the central axis indicate that the focal depth of shear wave is mainly determined by its directivity induced by a point-like laser source in a DAC system while it is more complicated to determine the focal depth of longitudinal wave. In particular, through changing the ring radius, we quantitatively demonstrate that the signal amplitudes generated by a ring source are far greater than those generated by a point-like source.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Tanaka and Y. Izawa, “Nondestructive detection of small internal defects in carbon steel by laser ultrasonics,” Jpn. J. Appl. Phys. 40(Part 1, No. 3A), 1477–1481 (2001).
    [CrossRef]
  2. V. V. Kozhushko and P. Hess, “Laser-induced focused ultrasound for nondestructive testing and evaluation,” J. Appl. Phys. 103(12), 124902 (2008).
    [CrossRef]
  3. H. C. Wang, S. Fleming, Y. C. Lee, S. Law, M. Swain, and J. Xue, “Laser ultrasonic surface wave dispersion technique for non-destructive evaluation of human dental enamel,” Opt. Express 17(18), 15592–15607 (2009).
    [CrossRef] [PubMed]
  4. S. Dixon, S. E. Burrows, B. Dutton, and Y. Fan, “Detection of cracks in metal sheets using pulsed laser generated ultrasound and EMAT detection,” Ultrasonics 51(1), 7–16 (2011).
    [CrossRef] [PubMed]
  5. F. Decremps, L. Belliard, B. Perrin, and M. Gauthier, “Sound velocity and absorption measurements under high pressure using picosecond ultrasonics in a diamond anvil cell: application to the stability study of AlPdMn,” Phys. Rev. Lett. 100(3), 035502 (2008).
    [CrossRef] [PubMed]
  6. N. Chigarev, P. Zinin, L. C. Ming, G. Amulele, A. Bulou, and V. Gusev, “Laser generation and detection of longitudianal and shear acoustic waves in a diamond anvil cell,” Appl. Phys. Lett. 93(18), 181905 (2008).
    [CrossRef]
  7. P. Zinin, N. Chigarev, D. Mounier, A. Bulou, L. C. Ming, T. Acosta, and V. Gusev, “Evaluation of elastic properties of iron in diamond anvil cell by laser ultrasonics technique,” J. Phys. Conf. Ser. 215, 012053 (2010).
    [CrossRef]
  8. N. Chigarev, P. Zinin, D. Mounier, A. Bulou, L. C. Ming, T. Acosta, and V. Gusev, “Analysis of ultrasonic echoes induced by pulsed laser action on an iron film in a diamond anvil cell,” High Press. Res. 30(1), 78–82 (2010).
    [CrossRef]
  9. N. Chigarev, P. Zinin, D. Mounier, A. Bulou, A. Zerr, L. C. Ming, and V. Gusev, “Laser ultrasonic measurements in a diamond anvil cell on Fe and the KBr pressure medium,” J. Phys. Conf. Ser. 278, 012017 (2011).
    [CrossRef]
  10. W. Feng, D. X. Yang, X. C. Zhu, Y. N. Guo, and W. Liao, “Simulation of laser-generated longitudinal and shear ultrasonic waves in a diamond anvil cell by the finite element method,” J. Appl. Phys. 111(1), 013107 (2012).
    [CrossRef]
  11. X. Wang, M. G. Littman, J. B. McManus, M. Tadi, Y. S. Kim, A. Askar, and H. Rabitz, “Focused bulk ultrasonic waves generated by ring-shaped laser illumination and application to flaw detection,” J. Appl. Phys. 80(8), 4274–4281 (1996).
    [CrossRef]
  12. J. F. Guan, Z. H. Shen, X. W. Ni, J. Lu, J. J. Wang, and B. Q. Xu, “Numerical simulation of the ultrasonic waves genersted by ring-shaped laser illumination patterns,” Opt. Laser Technol. 39(6), 1281–1287 (2007).
    [CrossRef]
  13. P. Cielo, F. Nadeau, and M. Lamontagne, “Laser generation of convergent acoustic waves for materials inspection,” Ultrasonics 23(2), 55–62 (1985).
    [CrossRef]
  14. B. Q. Xu, Z. H. Shen, X. W. Ni, and J. Lu, “Numerical simulation of laser-generated ultrasound by the finite element method,” J. Appl. Phys. 95(4), 2116–2122 (2004).
    [CrossRef]
  15. J. J. Wang, B. Q. Xu, Z. H. Shen, X. W. Ni, and J. Lu, “Influence of transparent coating thickness on thermoelastic force source and laser-generated ultrasound waves,” Appl. Surf. Sci. 255(16), 7172–7178 (2009).
    [CrossRef]
  16. F. A. McDonald, “Practical quantitative theory of photoacoustic pulse generation,” Appl. Phys. Lett. 54(16), 1504–1506 (1989).
    [CrossRef]
  17. C. W. Sun, Effects of Laser Irradiation (National Defense Industry Press, Beijing, 2002), Chap. 1. (in Chinese)

2012 (1)

W. Feng, D. X. Yang, X. C. Zhu, Y. N. Guo, and W. Liao, “Simulation of laser-generated longitudinal and shear ultrasonic waves in a diamond anvil cell by the finite element method,” J. Appl. Phys. 111(1), 013107 (2012).
[CrossRef]

2011 (2)

S. Dixon, S. E. Burrows, B. Dutton, and Y. Fan, “Detection of cracks in metal sheets using pulsed laser generated ultrasound and EMAT detection,” Ultrasonics 51(1), 7–16 (2011).
[CrossRef] [PubMed]

N. Chigarev, P. Zinin, D. Mounier, A. Bulou, A. Zerr, L. C. Ming, and V. Gusev, “Laser ultrasonic measurements in a diamond anvil cell on Fe and the KBr pressure medium,” J. Phys. Conf. Ser. 278, 012017 (2011).
[CrossRef]

2010 (2)

P. Zinin, N. Chigarev, D. Mounier, A. Bulou, L. C. Ming, T. Acosta, and V. Gusev, “Evaluation of elastic properties of iron in diamond anvil cell by laser ultrasonics technique,” J. Phys. Conf. Ser. 215, 012053 (2010).
[CrossRef]

N. Chigarev, P. Zinin, D. Mounier, A. Bulou, L. C. Ming, T. Acosta, and V. Gusev, “Analysis of ultrasonic echoes induced by pulsed laser action on an iron film in a diamond anvil cell,” High Press. Res. 30(1), 78–82 (2010).
[CrossRef]

2009 (2)

H. C. Wang, S. Fleming, Y. C. Lee, S. Law, M. Swain, and J. Xue, “Laser ultrasonic surface wave dispersion technique for non-destructive evaluation of human dental enamel,” Opt. Express 17(18), 15592–15607 (2009).
[CrossRef] [PubMed]

J. J. Wang, B. Q. Xu, Z. H. Shen, X. W. Ni, and J. Lu, “Influence of transparent coating thickness on thermoelastic force source and laser-generated ultrasound waves,” Appl. Surf. Sci. 255(16), 7172–7178 (2009).
[CrossRef]

2008 (3)

F. Decremps, L. Belliard, B. Perrin, and M. Gauthier, “Sound velocity and absorption measurements under high pressure using picosecond ultrasonics in a diamond anvil cell: application to the stability study of AlPdMn,” Phys. Rev. Lett. 100(3), 035502 (2008).
[CrossRef] [PubMed]

N. Chigarev, P. Zinin, L. C. Ming, G. Amulele, A. Bulou, and V. Gusev, “Laser generation and detection of longitudianal and shear acoustic waves in a diamond anvil cell,” Appl. Phys. Lett. 93(18), 181905 (2008).
[CrossRef]

V. V. Kozhushko and P. Hess, “Laser-induced focused ultrasound for nondestructive testing and evaluation,” J. Appl. Phys. 103(12), 124902 (2008).
[CrossRef]

2007 (1)

J. F. Guan, Z. H. Shen, X. W. Ni, J. Lu, J. J. Wang, and B. Q. Xu, “Numerical simulation of the ultrasonic waves genersted by ring-shaped laser illumination patterns,” Opt. Laser Technol. 39(6), 1281–1287 (2007).
[CrossRef]

2004 (1)

B. Q. Xu, Z. H. Shen, X. W. Ni, and J. Lu, “Numerical simulation of laser-generated ultrasound by the finite element method,” J. Appl. Phys. 95(4), 2116–2122 (2004).
[CrossRef]

2001 (1)

T. Tanaka and Y. Izawa, “Nondestructive detection of small internal defects in carbon steel by laser ultrasonics,” Jpn. J. Appl. Phys. 40(Part 1, No. 3A), 1477–1481 (2001).
[CrossRef]

1996 (1)

X. Wang, M. G. Littman, J. B. McManus, M. Tadi, Y. S. Kim, A. Askar, and H. Rabitz, “Focused bulk ultrasonic waves generated by ring-shaped laser illumination and application to flaw detection,” J. Appl. Phys. 80(8), 4274–4281 (1996).
[CrossRef]

1989 (1)

F. A. McDonald, “Practical quantitative theory of photoacoustic pulse generation,” Appl. Phys. Lett. 54(16), 1504–1506 (1989).
[CrossRef]

1985 (1)

P. Cielo, F. Nadeau, and M. Lamontagne, “Laser generation of convergent acoustic waves for materials inspection,” Ultrasonics 23(2), 55–62 (1985).
[CrossRef]

Acosta, T.

P. Zinin, N. Chigarev, D. Mounier, A. Bulou, L. C. Ming, T. Acosta, and V. Gusev, “Evaluation of elastic properties of iron in diamond anvil cell by laser ultrasonics technique,” J. Phys. Conf. Ser. 215, 012053 (2010).
[CrossRef]

N. Chigarev, P. Zinin, D. Mounier, A. Bulou, L. C. Ming, T. Acosta, and V. Gusev, “Analysis of ultrasonic echoes induced by pulsed laser action on an iron film in a diamond anvil cell,” High Press. Res. 30(1), 78–82 (2010).
[CrossRef]

Amulele, G.

N. Chigarev, P. Zinin, L. C. Ming, G. Amulele, A. Bulou, and V. Gusev, “Laser generation and detection of longitudianal and shear acoustic waves in a diamond anvil cell,” Appl. Phys. Lett. 93(18), 181905 (2008).
[CrossRef]

Askar, A.

X. Wang, M. G. Littman, J. B. McManus, M. Tadi, Y. S. Kim, A. Askar, and H. Rabitz, “Focused bulk ultrasonic waves generated by ring-shaped laser illumination and application to flaw detection,” J. Appl. Phys. 80(8), 4274–4281 (1996).
[CrossRef]

Belliard, L.

F. Decremps, L. Belliard, B. Perrin, and M. Gauthier, “Sound velocity and absorption measurements under high pressure using picosecond ultrasonics in a diamond anvil cell: application to the stability study of AlPdMn,” Phys. Rev. Lett. 100(3), 035502 (2008).
[CrossRef] [PubMed]

Bulou, A.

N. Chigarev, P. Zinin, D. Mounier, A. Bulou, A. Zerr, L. C. Ming, and V. Gusev, “Laser ultrasonic measurements in a diamond anvil cell on Fe and the KBr pressure medium,” J. Phys. Conf. Ser. 278, 012017 (2011).
[CrossRef]

N. Chigarev, P. Zinin, D. Mounier, A. Bulou, L. C. Ming, T. Acosta, and V. Gusev, “Analysis of ultrasonic echoes induced by pulsed laser action on an iron film in a diamond anvil cell,” High Press. Res. 30(1), 78–82 (2010).
[CrossRef]

P. Zinin, N. Chigarev, D. Mounier, A. Bulou, L. C. Ming, T. Acosta, and V. Gusev, “Evaluation of elastic properties of iron in diamond anvil cell by laser ultrasonics technique,” J. Phys. Conf. Ser. 215, 012053 (2010).
[CrossRef]

N. Chigarev, P. Zinin, L. C. Ming, G. Amulele, A. Bulou, and V. Gusev, “Laser generation and detection of longitudianal and shear acoustic waves in a diamond anvil cell,” Appl. Phys. Lett. 93(18), 181905 (2008).
[CrossRef]

Burrows, S. E.

S. Dixon, S. E. Burrows, B. Dutton, and Y. Fan, “Detection of cracks in metal sheets using pulsed laser generated ultrasound and EMAT detection,” Ultrasonics 51(1), 7–16 (2011).
[CrossRef] [PubMed]

Chigarev, N.

N. Chigarev, P. Zinin, D. Mounier, A. Bulou, A. Zerr, L. C. Ming, and V. Gusev, “Laser ultrasonic measurements in a diamond anvil cell on Fe and the KBr pressure medium,” J. Phys. Conf. Ser. 278, 012017 (2011).
[CrossRef]

P. Zinin, N. Chigarev, D. Mounier, A. Bulou, L. C. Ming, T. Acosta, and V. Gusev, “Evaluation of elastic properties of iron in diamond anvil cell by laser ultrasonics technique,” J. Phys. Conf. Ser. 215, 012053 (2010).
[CrossRef]

N. Chigarev, P. Zinin, D. Mounier, A. Bulou, L. C. Ming, T. Acosta, and V. Gusev, “Analysis of ultrasonic echoes induced by pulsed laser action on an iron film in a diamond anvil cell,” High Press. Res. 30(1), 78–82 (2010).
[CrossRef]

N. Chigarev, P. Zinin, L. C. Ming, G. Amulele, A. Bulou, and V. Gusev, “Laser generation and detection of longitudianal and shear acoustic waves in a diamond anvil cell,” Appl. Phys. Lett. 93(18), 181905 (2008).
[CrossRef]

Cielo, P.

P. Cielo, F. Nadeau, and M. Lamontagne, “Laser generation of convergent acoustic waves for materials inspection,” Ultrasonics 23(2), 55–62 (1985).
[CrossRef]

Decremps, F.

F. Decremps, L. Belliard, B. Perrin, and M. Gauthier, “Sound velocity and absorption measurements under high pressure using picosecond ultrasonics in a diamond anvil cell: application to the stability study of AlPdMn,” Phys. Rev. Lett. 100(3), 035502 (2008).
[CrossRef] [PubMed]

Dixon, S.

S. Dixon, S. E. Burrows, B. Dutton, and Y. Fan, “Detection of cracks in metal sheets using pulsed laser generated ultrasound and EMAT detection,” Ultrasonics 51(1), 7–16 (2011).
[CrossRef] [PubMed]

Dutton, B.

S. Dixon, S. E. Burrows, B. Dutton, and Y. Fan, “Detection of cracks in metal sheets using pulsed laser generated ultrasound and EMAT detection,” Ultrasonics 51(1), 7–16 (2011).
[CrossRef] [PubMed]

Fan, Y.

S. Dixon, S. E. Burrows, B. Dutton, and Y. Fan, “Detection of cracks in metal sheets using pulsed laser generated ultrasound and EMAT detection,” Ultrasonics 51(1), 7–16 (2011).
[CrossRef] [PubMed]

Feng, W.

W. Feng, D. X. Yang, X. C. Zhu, Y. N. Guo, and W. Liao, “Simulation of laser-generated longitudinal and shear ultrasonic waves in a diamond anvil cell by the finite element method,” J. Appl. Phys. 111(1), 013107 (2012).
[CrossRef]

Fleming, S.

Gauthier, M.

F. Decremps, L. Belliard, B. Perrin, and M. Gauthier, “Sound velocity and absorption measurements under high pressure using picosecond ultrasonics in a diamond anvil cell: application to the stability study of AlPdMn,” Phys. Rev. Lett. 100(3), 035502 (2008).
[CrossRef] [PubMed]

Guan, J. F.

J. F. Guan, Z. H. Shen, X. W. Ni, J. Lu, J. J. Wang, and B. Q. Xu, “Numerical simulation of the ultrasonic waves genersted by ring-shaped laser illumination patterns,” Opt. Laser Technol. 39(6), 1281–1287 (2007).
[CrossRef]

Guo, Y. N.

W. Feng, D. X. Yang, X. C. Zhu, Y. N. Guo, and W. Liao, “Simulation of laser-generated longitudinal and shear ultrasonic waves in a diamond anvil cell by the finite element method,” J. Appl. Phys. 111(1), 013107 (2012).
[CrossRef]

Gusev, V.

N. Chigarev, P. Zinin, D. Mounier, A. Bulou, A. Zerr, L. C. Ming, and V. Gusev, “Laser ultrasonic measurements in a diamond anvil cell on Fe and the KBr pressure medium,” J. Phys. Conf. Ser. 278, 012017 (2011).
[CrossRef]

N. Chigarev, P. Zinin, D. Mounier, A. Bulou, L. C. Ming, T. Acosta, and V. Gusev, “Analysis of ultrasonic echoes induced by pulsed laser action on an iron film in a diamond anvil cell,” High Press. Res. 30(1), 78–82 (2010).
[CrossRef]

P. Zinin, N. Chigarev, D. Mounier, A. Bulou, L. C. Ming, T. Acosta, and V. Gusev, “Evaluation of elastic properties of iron in diamond anvil cell by laser ultrasonics technique,” J. Phys. Conf. Ser. 215, 012053 (2010).
[CrossRef]

N. Chigarev, P. Zinin, L. C. Ming, G. Amulele, A. Bulou, and V. Gusev, “Laser generation and detection of longitudianal and shear acoustic waves in a diamond anvil cell,” Appl. Phys. Lett. 93(18), 181905 (2008).
[CrossRef]

Hess, P.

V. V. Kozhushko and P. Hess, “Laser-induced focused ultrasound for nondestructive testing and evaluation,” J. Appl. Phys. 103(12), 124902 (2008).
[CrossRef]

Izawa, Y.

T. Tanaka and Y. Izawa, “Nondestructive detection of small internal defects in carbon steel by laser ultrasonics,” Jpn. J. Appl. Phys. 40(Part 1, No. 3A), 1477–1481 (2001).
[CrossRef]

Kim, Y. S.

X. Wang, M. G. Littman, J. B. McManus, M. Tadi, Y. S. Kim, A. Askar, and H. Rabitz, “Focused bulk ultrasonic waves generated by ring-shaped laser illumination and application to flaw detection,” J. Appl. Phys. 80(8), 4274–4281 (1996).
[CrossRef]

Kozhushko, V. V.

V. V. Kozhushko and P. Hess, “Laser-induced focused ultrasound for nondestructive testing and evaluation,” J. Appl. Phys. 103(12), 124902 (2008).
[CrossRef]

Lamontagne, M.

P. Cielo, F. Nadeau, and M. Lamontagne, “Laser generation of convergent acoustic waves for materials inspection,” Ultrasonics 23(2), 55–62 (1985).
[CrossRef]

Law, S.

Lee, Y. C.

Liao, W.

W. Feng, D. X. Yang, X. C. Zhu, Y. N. Guo, and W. Liao, “Simulation of laser-generated longitudinal and shear ultrasonic waves in a diamond anvil cell by the finite element method,” J. Appl. Phys. 111(1), 013107 (2012).
[CrossRef]

Littman, M. G.

X. Wang, M. G. Littman, J. B. McManus, M. Tadi, Y. S. Kim, A. Askar, and H. Rabitz, “Focused bulk ultrasonic waves generated by ring-shaped laser illumination and application to flaw detection,” J. Appl. Phys. 80(8), 4274–4281 (1996).
[CrossRef]

Lu, J.

J. J. Wang, B. Q. Xu, Z. H. Shen, X. W. Ni, and J. Lu, “Influence of transparent coating thickness on thermoelastic force source and laser-generated ultrasound waves,” Appl. Surf. Sci. 255(16), 7172–7178 (2009).
[CrossRef]

J. F. Guan, Z. H. Shen, X. W. Ni, J. Lu, J. J. Wang, and B. Q. Xu, “Numerical simulation of the ultrasonic waves genersted by ring-shaped laser illumination patterns,” Opt. Laser Technol. 39(6), 1281–1287 (2007).
[CrossRef]

B. Q. Xu, Z. H. Shen, X. W. Ni, and J. Lu, “Numerical simulation of laser-generated ultrasound by the finite element method,” J. Appl. Phys. 95(4), 2116–2122 (2004).
[CrossRef]

McDonald, F. A.

F. A. McDonald, “Practical quantitative theory of photoacoustic pulse generation,” Appl. Phys. Lett. 54(16), 1504–1506 (1989).
[CrossRef]

McManus, J. B.

X. Wang, M. G. Littman, J. B. McManus, M. Tadi, Y. S. Kim, A. Askar, and H. Rabitz, “Focused bulk ultrasonic waves generated by ring-shaped laser illumination and application to flaw detection,” J. Appl. Phys. 80(8), 4274–4281 (1996).
[CrossRef]

Ming, L. C.

N. Chigarev, P. Zinin, D. Mounier, A. Bulou, A. Zerr, L. C. Ming, and V. Gusev, “Laser ultrasonic measurements in a diamond anvil cell on Fe and the KBr pressure medium,” J. Phys. Conf. Ser. 278, 012017 (2011).
[CrossRef]

N. Chigarev, P. Zinin, D. Mounier, A. Bulou, L. C. Ming, T. Acosta, and V. Gusev, “Analysis of ultrasonic echoes induced by pulsed laser action on an iron film in a diamond anvil cell,” High Press. Res. 30(1), 78–82 (2010).
[CrossRef]

P. Zinin, N. Chigarev, D. Mounier, A. Bulou, L. C. Ming, T. Acosta, and V. Gusev, “Evaluation of elastic properties of iron in diamond anvil cell by laser ultrasonics technique,” J. Phys. Conf. Ser. 215, 012053 (2010).
[CrossRef]

N. Chigarev, P. Zinin, L. C. Ming, G. Amulele, A. Bulou, and V. Gusev, “Laser generation and detection of longitudianal and shear acoustic waves in a diamond anvil cell,” Appl. Phys. Lett. 93(18), 181905 (2008).
[CrossRef]

Mounier, D.

N. Chigarev, P. Zinin, D. Mounier, A. Bulou, A. Zerr, L. C. Ming, and V. Gusev, “Laser ultrasonic measurements in a diamond anvil cell on Fe and the KBr pressure medium,” J. Phys. Conf. Ser. 278, 012017 (2011).
[CrossRef]

N. Chigarev, P. Zinin, D. Mounier, A. Bulou, L. C. Ming, T. Acosta, and V. Gusev, “Analysis of ultrasonic echoes induced by pulsed laser action on an iron film in a diamond anvil cell,” High Press. Res. 30(1), 78–82 (2010).
[CrossRef]

P. Zinin, N. Chigarev, D. Mounier, A. Bulou, L. C. Ming, T. Acosta, and V. Gusev, “Evaluation of elastic properties of iron in diamond anvil cell by laser ultrasonics technique,” J. Phys. Conf. Ser. 215, 012053 (2010).
[CrossRef]

Nadeau, F.

P. Cielo, F. Nadeau, and M. Lamontagne, “Laser generation of convergent acoustic waves for materials inspection,” Ultrasonics 23(2), 55–62 (1985).
[CrossRef]

Ni, X. W.

J. J. Wang, B. Q. Xu, Z. H. Shen, X. W. Ni, and J. Lu, “Influence of transparent coating thickness on thermoelastic force source and laser-generated ultrasound waves,” Appl. Surf. Sci. 255(16), 7172–7178 (2009).
[CrossRef]

J. F. Guan, Z. H. Shen, X. W. Ni, J. Lu, J. J. Wang, and B. Q. Xu, “Numerical simulation of the ultrasonic waves genersted by ring-shaped laser illumination patterns,” Opt. Laser Technol. 39(6), 1281–1287 (2007).
[CrossRef]

B. Q. Xu, Z. H. Shen, X. W. Ni, and J. Lu, “Numerical simulation of laser-generated ultrasound by the finite element method,” J. Appl. Phys. 95(4), 2116–2122 (2004).
[CrossRef]

Perrin, B.

F. Decremps, L. Belliard, B. Perrin, and M. Gauthier, “Sound velocity and absorption measurements under high pressure using picosecond ultrasonics in a diamond anvil cell: application to the stability study of AlPdMn,” Phys. Rev. Lett. 100(3), 035502 (2008).
[CrossRef] [PubMed]

Rabitz, H.

X. Wang, M. G. Littman, J. B. McManus, M. Tadi, Y. S. Kim, A. Askar, and H. Rabitz, “Focused bulk ultrasonic waves generated by ring-shaped laser illumination and application to flaw detection,” J. Appl. Phys. 80(8), 4274–4281 (1996).
[CrossRef]

Shen, Z. H.

J. J. Wang, B. Q. Xu, Z. H. Shen, X. W. Ni, and J. Lu, “Influence of transparent coating thickness on thermoelastic force source and laser-generated ultrasound waves,” Appl. Surf. Sci. 255(16), 7172–7178 (2009).
[CrossRef]

J. F. Guan, Z. H. Shen, X. W. Ni, J. Lu, J. J. Wang, and B. Q. Xu, “Numerical simulation of the ultrasonic waves genersted by ring-shaped laser illumination patterns,” Opt. Laser Technol. 39(6), 1281–1287 (2007).
[CrossRef]

B. Q. Xu, Z. H. Shen, X. W. Ni, and J. Lu, “Numerical simulation of laser-generated ultrasound by the finite element method,” J. Appl. Phys. 95(4), 2116–2122 (2004).
[CrossRef]

Swain, M.

Tadi, M.

X. Wang, M. G. Littman, J. B. McManus, M. Tadi, Y. S. Kim, A. Askar, and H. Rabitz, “Focused bulk ultrasonic waves generated by ring-shaped laser illumination and application to flaw detection,” J. Appl. Phys. 80(8), 4274–4281 (1996).
[CrossRef]

Tanaka, T.

T. Tanaka and Y. Izawa, “Nondestructive detection of small internal defects in carbon steel by laser ultrasonics,” Jpn. J. Appl. Phys. 40(Part 1, No. 3A), 1477–1481 (2001).
[CrossRef]

Wang, H. C.

Wang, J. J.

J. J. Wang, B. Q. Xu, Z. H. Shen, X. W. Ni, and J. Lu, “Influence of transparent coating thickness on thermoelastic force source and laser-generated ultrasound waves,” Appl. Surf. Sci. 255(16), 7172–7178 (2009).
[CrossRef]

J. F. Guan, Z. H. Shen, X. W. Ni, J. Lu, J. J. Wang, and B. Q. Xu, “Numerical simulation of the ultrasonic waves genersted by ring-shaped laser illumination patterns,” Opt. Laser Technol. 39(6), 1281–1287 (2007).
[CrossRef]

Wang, X.

X. Wang, M. G. Littman, J. B. McManus, M. Tadi, Y. S. Kim, A. Askar, and H. Rabitz, “Focused bulk ultrasonic waves generated by ring-shaped laser illumination and application to flaw detection,” J. Appl. Phys. 80(8), 4274–4281 (1996).
[CrossRef]

Xu, B. Q.

J. J. Wang, B. Q. Xu, Z. H. Shen, X. W. Ni, and J. Lu, “Influence of transparent coating thickness on thermoelastic force source and laser-generated ultrasound waves,” Appl. Surf. Sci. 255(16), 7172–7178 (2009).
[CrossRef]

J. F. Guan, Z. H. Shen, X. W. Ni, J. Lu, J. J. Wang, and B. Q. Xu, “Numerical simulation of the ultrasonic waves genersted by ring-shaped laser illumination patterns,” Opt. Laser Technol. 39(6), 1281–1287 (2007).
[CrossRef]

B. Q. Xu, Z. H. Shen, X. W. Ni, and J. Lu, “Numerical simulation of laser-generated ultrasound by the finite element method,” J. Appl. Phys. 95(4), 2116–2122 (2004).
[CrossRef]

Xue, J.

Yang, D. X.

W. Feng, D. X. Yang, X. C. Zhu, Y. N. Guo, and W. Liao, “Simulation of laser-generated longitudinal and shear ultrasonic waves in a diamond anvil cell by the finite element method,” J. Appl. Phys. 111(1), 013107 (2012).
[CrossRef]

Zerr, A.

N. Chigarev, P. Zinin, D. Mounier, A. Bulou, A. Zerr, L. C. Ming, and V. Gusev, “Laser ultrasonic measurements in a diamond anvil cell on Fe and the KBr pressure medium,” J. Phys. Conf. Ser. 278, 012017 (2011).
[CrossRef]

Zhu, X. C.

W. Feng, D. X. Yang, X. C. Zhu, Y. N. Guo, and W. Liao, “Simulation of laser-generated longitudinal and shear ultrasonic waves in a diamond anvil cell by the finite element method,” J. Appl. Phys. 111(1), 013107 (2012).
[CrossRef]

Zinin, P.

N. Chigarev, P. Zinin, D. Mounier, A. Bulou, A. Zerr, L. C. Ming, and V. Gusev, “Laser ultrasonic measurements in a diamond anvil cell on Fe and the KBr pressure medium,” J. Phys. Conf. Ser. 278, 012017 (2011).
[CrossRef]

P. Zinin, N. Chigarev, D. Mounier, A. Bulou, L. C. Ming, T. Acosta, and V. Gusev, “Evaluation of elastic properties of iron in diamond anvil cell by laser ultrasonics technique,” J. Phys. Conf. Ser. 215, 012053 (2010).
[CrossRef]

N. Chigarev, P. Zinin, D. Mounier, A. Bulou, L. C. Ming, T. Acosta, and V. Gusev, “Analysis of ultrasonic echoes induced by pulsed laser action on an iron film in a diamond anvil cell,” High Press. Res. 30(1), 78–82 (2010).
[CrossRef]

N. Chigarev, P. Zinin, L. C. Ming, G. Amulele, A. Bulou, and V. Gusev, “Laser generation and detection of longitudianal and shear acoustic waves in a diamond anvil cell,” Appl. Phys. Lett. 93(18), 181905 (2008).
[CrossRef]

Appl. Phys. Lett. (2)

N. Chigarev, P. Zinin, L. C. Ming, G. Amulele, A. Bulou, and V. Gusev, “Laser generation and detection of longitudianal and shear acoustic waves in a diamond anvil cell,” Appl. Phys. Lett. 93(18), 181905 (2008).
[CrossRef]

F. A. McDonald, “Practical quantitative theory of photoacoustic pulse generation,” Appl. Phys. Lett. 54(16), 1504–1506 (1989).
[CrossRef]

Appl. Surf. Sci. (1)

J. J. Wang, B. Q. Xu, Z. H. Shen, X. W. Ni, and J. Lu, “Influence of transparent coating thickness on thermoelastic force source and laser-generated ultrasound waves,” Appl. Surf. Sci. 255(16), 7172–7178 (2009).
[CrossRef]

High Press. Res. (1)

N. Chigarev, P. Zinin, D. Mounier, A. Bulou, L. C. Ming, T. Acosta, and V. Gusev, “Analysis of ultrasonic echoes induced by pulsed laser action on an iron film in a diamond anvil cell,” High Press. Res. 30(1), 78–82 (2010).
[CrossRef]

J. Appl. Phys. (4)

V. V. Kozhushko and P. Hess, “Laser-induced focused ultrasound for nondestructive testing and evaluation,” J. Appl. Phys. 103(12), 124902 (2008).
[CrossRef]

B. Q. Xu, Z. H. Shen, X. W. Ni, and J. Lu, “Numerical simulation of laser-generated ultrasound by the finite element method,” J. Appl. Phys. 95(4), 2116–2122 (2004).
[CrossRef]

W. Feng, D. X. Yang, X. C. Zhu, Y. N. Guo, and W. Liao, “Simulation of laser-generated longitudinal and shear ultrasonic waves in a diamond anvil cell by the finite element method,” J. Appl. Phys. 111(1), 013107 (2012).
[CrossRef]

X. Wang, M. G. Littman, J. B. McManus, M. Tadi, Y. S. Kim, A. Askar, and H. Rabitz, “Focused bulk ultrasonic waves generated by ring-shaped laser illumination and application to flaw detection,” J. Appl. Phys. 80(8), 4274–4281 (1996).
[CrossRef]

J. Phys. Conf. Ser. (2)

N. Chigarev, P. Zinin, D. Mounier, A. Bulou, A. Zerr, L. C. Ming, and V. Gusev, “Laser ultrasonic measurements in a diamond anvil cell on Fe and the KBr pressure medium,” J. Phys. Conf. Ser. 278, 012017 (2011).
[CrossRef]

P. Zinin, N. Chigarev, D. Mounier, A. Bulou, L. C. Ming, T. Acosta, and V. Gusev, “Evaluation of elastic properties of iron in diamond anvil cell by laser ultrasonics technique,” J. Phys. Conf. Ser. 215, 012053 (2010).
[CrossRef]

Jpn. J. Appl. Phys. (1)

T. Tanaka and Y. Izawa, “Nondestructive detection of small internal defects in carbon steel by laser ultrasonics,” Jpn. J. Appl. Phys. 40(Part 1, No. 3A), 1477–1481 (2001).
[CrossRef]

Opt. Express (1)

Opt. Laser Technol. (1)

J. F. Guan, Z. H. Shen, X. W. Ni, J. Lu, J. J. Wang, and B. Q. Xu, “Numerical simulation of the ultrasonic waves genersted by ring-shaped laser illumination patterns,” Opt. Laser Technol. 39(6), 1281–1287 (2007).
[CrossRef]

Phys. Rev. Lett. (1)

F. Decremps, L. Belliard, B. Perrin, and M. Gauthier, “Sound velocity and absorption measurements under high pressure using picosecond ultrasonics in a diamond anvil cell: application to the stability study of AlPdMn,” Phys. Rev. Lett. 100(3), 035502 (2008).
[CrossRef] [PubMed]

Ultrasonics (2)

S. Dixon, S. E. Burrows, B. Dutton, and Y. Fan, “Detection of cracks in metal sheets using pulsed laser generated ultrasound and EMAT detection,” Ultrasonics 51(1), 7–16 (2011).
[CrossRef] [PubMed]

P. Cielo, F. Nadeau, and M. Lamontagne, “Laser generation of convergent acoustic waves for materials inspection,” Ultrasonics 23(2), 55–62 (1985).
[CrossRef]

Other (1)

C. W. Sun, Effects of Laser Irradiation (National Defense Industry Press, Beijing, 2002), Chap. 1. (in Chinese)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Schematic diagram of the system irradiated by ring-shaped laser. (b) Cross-section of the system.

Fig. 2
Fig. 2

Vertical displacement of the bulk wave at different positions on the rear surface of specimen: (a) the epicenter; (b) 4μm; (c) 8μm and (d) 12μm from epicenter.

Fig. 3
Fig. 3

Amplitudes of (a) longitudinal wave and (b) shear wave at different positions along the radial direction on the rear surface of specimen.

Fig. 4
Fig. 4

The spectrums of (a) longitudinal wave and (b) shear wave received at different points on the rear surface of specimen.

Fig. 5
Fig. 5

The interference patterns of (a) longitudinal wave (b) shear wave along the radial direction on the rear surface of specimen.

Fig. 6
Fig. 6

Amplitudes of (a) longitudinal wave and (b) shear wave at different points along the central axis of ring source.

Fig. 7
Fig. 7

Amplitudes of (a) longitudinal wave and (b) shear wave at the epicenter as a function of ring radius.

Fig. 8
Fig. 8

Ultrasonic displacement fields at different times: (a) 3ns; (b) 6ns; (c) 8ns; (d) 11ns.

Fig. 9
Fig. 9

Amplitudes of (a) longitudinal wave and (b) shear wave as a function of radial distance from the epicenter for a Gaussian laser point-like source.

Tables (1)

Tables Icon

Table 1 Properties of aluminum and diamond used in calculation

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

ρ i c i T i (r,z,t) t 1 r r ( r k i T i ( r,z,t ) r ) z ( k i T i ( r,z,t ) z )=Q( r,z,t )
Q( r,z,t )=A I 0 βexp( βz )f( r )g( t )
f(r)=exp[ ( r( R+d/2 ) ) 2 ( d/2 ) 2 ]
g( t )=exp[ ( t t 0 ) 2 τ 2 ]
( λ i +2 μ i )( U i ) μ i ×× U i ρ i 2 U i t 2 = α i ( 3 λ i +2 μ i ) T i ( r,z,t )
U i ( r,z,t )= ϕ i +×( ψ i e θ )
2 ϕ i r 2 + 1 r ϕ i r + 2 ϕi z 2 1 C Li 2 2 ϕ i t 2 = γ i T i 2 ψ i r 2 + 1 r ψ i r + 2 ψ i z 2 ψ i r 2 1 C Si 2 2 ψ i t 2 =0
U zi = ϕ i z + ψ i r + ψ i r
T 1 = T i , k 1 T 1 z = k i T i z σ zz1 = σ zzi , σ zr1 = σ zri      ( i= 2, 3 ) U z1 = U zi , U r1 = U ri
T i | t=0 =300K U i | t=0 =0 , U i t | t=0 =0        ( i=1, 2, 3 )

Metrics