Abstract

We demonstrate the multifolding Origami manufacture of elastically-deformable Distributed Bragg Reflector (DBR) membranes that reversibly color-tune across the full visible spectrum without compromising their peak reflectance. Multilayer films composed of alternating transparent rubbers are fixed over a 300 μm wide pinhole and deformed by pressure into a concave shape. Pressure-induced color tuning from the near-IR to the blue arises from both changes in thickness of the constituent layers and from tilting of the curved DBR surfaces. The layer thickness and color distribution upon deformation, the band-gap variation and the repeatability of cyclic color tuning, are mapped through micro-spectroscopy. Such spatially-dependent thinning of the film under elastic deformation produces spatial chirps in the color, and are shown to allow reconstruction of complex 3D strain distributions.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Scherf, “Conjugated polymers: lasing and stimulated emission,” Curr. Opin. Solid State Mater. Sci. 5, 143–154 (2001).
    [CrossRef]
  2. X. Xu, Y. Dai, X. Chen, D. Jiang, and S. Xie, “Chirped and phase-sampled fiber bragg grating for tunable dbr fiber laser,” Opt. Express 13, 3877–3882 (2005).
    [CrossRef] [PubMed]
  3. T. Komikado, a. Inoue, K. Masuda, T. Ando, and S. Umegaki, “Multi-layered mirrors fabricated by spin-coating organic polymers,” Thin Solid Films 515, 3887–3892 (2007).
    [CrossRef]
  4. Y. Yang, G. A. Turnbull, and I. D. W. Samuel, “Hybrid optoelectronics: A polymer laser pumped by a nitride light-emitting diode,” Appl. Phys. Lett. 92, 163306 (2008).
    [CrossRef]
  5. K. D. Singer, T. Kazmierczak, J. Lott, H. Song, Y. Wu, J. Andrews, E. Baer, A. Hiltner, and C. Weder, “Melt-processed all-polymer distributed bragg reflector laser,” Opt. Express 16, 10358–10363 (2008).
    [CrossRef] [PubMed]
  6. A. Y. Cho, G. J. Zydzik, E. F. Schubert, Y.-H. Wang, and L.-W. Tu, “Resonant cavity light-emitting diode,” Appl. Phys. Lett. 60, 921–923 (1992).
    [CrossRef]
  7. S. Chang, C. Chang, Y. Su, P. Chang, Y. Wu, K. Huang, and T. Chen, “Chirped GaAs-AlAs distributed Bragg reflectors for high brightness yellow-green light-emitting diodes,” IEEE Photon. Technol. Lett. 9, 182–184 (1997).
    [CrossRef]
  8. S. W. Chiou, C. P. Lee, C. K. Huang, and C. W. Chen, “Wide angle distributed Bragg reflectors for 590 nm amber AlGaInP light-emitting diodes,” J. Appl. Phys. 87, 2052–2054 (2000).
    [CrossRef]
  9. Y. Kang, J. Walish, T. Gorishnyy, and E. Thomas, “Broad-wavelength-range chemically tunable block-copolymer photonic gels,” Nat. Mater. 6, 957–960 (2007).
    [CrossRef] [PubMed]
  10. S. Colodrero, M. Ocaña, and H. Míguez, “Nanoparticle-based one-dimensional photonic crystals,” Langmuir 24, 4430–4434 (2008).
    [CrossRef] [PubMed]
  11. O. Sánchez-Sobrado, M. Calvo, N. Núñez, M. Ocaña, G. Lozano, and H. Míguez, “Environmentally responsive nanoparticle-based luminescent optical resonators,” Nanoscale 2, 936–941 (2010).
    [CrossRef] [PubMed]
  12. S. Guldin, M. Kolle, M. Stefik, R. Langford, D. Eder, U. Wiesner, and U. Steiner, “Tunable mesoporous bragg reflectors based on block-copolymer self-assembly,” Adv. Mater. 23, 3664–3668 (2011).
    [CrossRef] [PubMed]
  13. S. Colodrero, A. Mihi, L. Häggman, M. Ocaña, G. Boschloo, A. Hagfeldt, and H. Míguez, “Porous one-dimensional photonic crystals improve the power-conversion efficiency of dye-sensitized solar cells,” Adv. Mater. 21, 764–770 (2009).
    [CrossRef]
  14. S. Colodrero, A. Mihi, J. a. Anta, M. Ocaña, and H. Míguez, “Experimental demonstration of the mechanism of light harvesting enhancement in photonic-crystal-based dye-sensitized solar cells,” J. Phys. Chem. C 113, 1150–1154 (2009).
    [CrossRef]
  15. M. E. Calvo and H. Míguez, “Flexible, adhesive, and biocompatible Bragg mirrors based on polydimethylsiloxane infiltrated nanoparticle multilayers,” Chem. Mater. 22, 3909–3915 (2010).
    [CrossRef]
  16. M. H. Song, B. Wenger, and R. H. Friend, “Tuning the wavelength of lasing emission in organic semiconducting laser by the orientation of liquid crystalline conjugated polymer,” J. Appl. Phys. 104, 033107 (2008).
    [CrossRef]
  17. M. Kolle, P. M. Cunha, M. R. J. Scherer, H. Fumin, P. Vukusic, S. Mahajan, J. Baumberg, and U. Steiner, “Mimicking the colourful wing scale structure of the Papilio blumei butterfly,” Nat. Nanotechnol. 5, 511–515 (2010).
    [CrossRef] [PubMed]
  18. A. Hotta, S. M. Clarke, and E. M. Terentjev, “Stress relaxation in transient networks of symmetric triblock styrene-isoprene-styrene copolymer,” Macromolecules 35, 271–277 (2002).
    [CrossRef]
  19. S. Coyle, G. V. Prakash, J. J. Baumberg, M. Abdelsalem, and P. N. Bartlett, “Spherical micromirrors from templated self-assembly: Polarization rotation on the micron scale,” Appl. Phys. Lett. 83, 767–769 (2003).
    [CrossRef]
  20. P. Vukusic, J. R. Sambles, and C. R. Lawrence, “Colour mixing in wing scales of a butterfly,” Nature 404, 457 (2000).
    [CrossRef] [PubMed]
  21. P. Vukusic, R. Sambles, C. Lawrence, and G. Wakely, “Sculpted-multilayer optical effects in two species of Papilio butterfly,” Appl. Optics 40, 1116–1125 (2001).
    [CrossRef]
  22. S. Yoshioka and S. Kinoshita, “Polarization-sensitive color mixing in the wing of the madagascan sunset moth,” Opt. Express 15, 2691–2701 (2007).
    [CrossRef] [PubMed]
  23. M. Kolle, B. Zheng, N. Gibbons, J. J. Baumberg, and U. Steiner, “Stretch-tuneable dielectric mirrors and optical microcavities,” Opt. Express 18, 575–581 (2010).
    [CrossRef]
  24. J. Zhu, S. Cai, and Z. Suo, “Resonant behavior of a membrane of a dielectric elastomer,” Int. J. Solids Struct. 47, 3254–3262 (2010).
    [CrossRef]
  25. S.-H. Yoon, V. Reyes-Ortiz, K.-H. Kim, Y. H. Seo, and M. R. K. Mofrad, “Analysis of circular PDMS microballoons with ultralarge deflection for MEMS design,” J. Microelectromech. S 19, 854–864 (2010).
    [CrossRef]

2011 (1)

S. Guldin, M. Kolle, M. Stefik, R. Langford, D. Eder, U. Wiesner, and U. Steiner, “Tunable mesoporous bragg reflectors based on block-copolymer self-assembly,” Adv. Mater. 23, 3664–3668 (2011).
[CrossRef] [PubMed]

2010 (6)

O. Sánchez-Sobrado, M. Calvo, N. Núñez, M. Ocaña, G. Lozano, and H. Míguez, “Environmentally responsive nanoparticle-based luminescent optical resonators,” Nanoscale 2, 936–941 (2010).
[CrossRef] [PubMed]

M. E. Calvo and H. Míguez, “Flexible, adhesive, and biocompatible Bragg mirrors based on polydimethylsiloxane infiltrated nanoparticle multilayers,” Chem. Mater. 22, 3909–3915 (2010).
[CrossRef]

M. Kolle, P. M. Cunha, M. R. J. Scherer, H. Fumin, P. Vukusic, S. Mahajan, J. Baumberg, and U. Steiner, “Mimicking the colourful wing scale structure of the Papilio blumei butterfly,” Nat. Nanotechnol. 5, 511–515 (2010).
[CrossRef] [PubMed]

J. Zhu, S. Cai, and Z. Suo, “Resonant behavior of a membrane of a dielectric elastomer,” Int. J. Solids Struct. 47, 3254–3262 (2010).
[CrossRef]

S.-H. Yoon, V. Reyes-Ortiz, K.-H. Kim, Y. H. Seo, and M. R. K. Mofrad, “Analysis of circular PDMS microballoons with ultralarge deflection for MEMS design,” J. Microelectromech. S 19, 854–864 (2010).
[CrossRef]

M. Kolle, B. Zheng, N. Gibbons, J. J. Baumberg, and U. Steiner, “Stretch-tuneable dielectric mirrors and optical microcavities,” Opt. Express 18, 575–581 (2010).
[CrossRef]

2009 (2)

S. Colodrero, A. Mihi, L. Häggman, M. Ocaña, G. Boschloo, A. Hagfeldt, and H. Míguez, “Porous one-dimensional photonic crystals improve the power-conversion efficiency of dye-sensitized solar cells,” Adv. Mater. 21, 764–770 (2009).
[CrossRef]

S. Colodrero, A. Mihi, J. a. Anta, M. Ocaña, and H. Míguez, “Experimental demonstration of the mechanism of light harvesting enhancement in photonic-crystal-based dye-sensitized solar cells,” J. Phys. Chem. C 113, 1150–1154 (2009).
[CrossRef]

2008 (4)

S. Colodrero, M. Ocaña, and H. Míguez, “Nanoparticle-based one-dimensional photonic crystals,” Langmuir 24, 4430–4434 (2008).
[CrossRef] [PubMed]

M. H. Song, B. Wenger, and R. H. Friend, “Tuning the wavelength of lasing emission in organic semiconducting laser by the orientation of liquid crystalline conjugated polymer,” J. Appl. Phys. 104, 033107 (2008).
[CrossRef]

K. D. Singer, T. Kazmierczak, J. Lott, H. Song, Y. Wu, J. Andrews, E. Baer, A. Hiltner, and C. Weder, “Melt-processed all-polymer distributed bragg reflector laser,” Opt. Express 16, 10358–10363 (2008).
[CrossRef] [PubMed]

Y. Yang, G. A. Turnbull, and I. D. W. Samuel, “Hybrid optoelectronics: A polymer laser pumped by a nitride light-emitting diode,” Appl. Phys. Lett. 92, 163306 (2008).
[CrossRef]

2007 (3)

T. Komikado, a. Inoue, K. Masuda, T. Ando, and S. Umegaki, “Multi-layered mirrors fabricated by spin-coating organic polymers,” Thin Solid Films 515, 3887–3892 (2007).
[CrossRef]

S. Yoshioka and S. Kinoshita, “Polarization-sensitive color mixing in the wing of the madagascan sunset moth,” Opt. Express 15, 2691–2701 (2007).
[CrossRef] [PubMed]

Y. Kang, J. Walish, T. Gorishnyy, and E. Thomas, “Broad-wavelength-range chemically tunable block-copolymer photonic gels,” Nat. Mater. 6, 957–960 (2007).
[CrossRef] [PubMed]

2005 (1)

2003 (1)

S. Coyle, G. V. Prakash, J. J. Baumberg, M. Abdelsalem, and P. N. Bartlett, “Spherical micromirrors from templated self-assembly: Polarization rotation on the micron scale,” Appl. Phys. Lett. 83, 767–769 (2003).
[CrossRef]

2002 (1)

A. Hotta, S. M. Clarke, and E. M. Terentjev, “Stress relaxation in transient networks of symmetric triblock styrene-isoprene-styrene copolymer,” Macromolecules 35, 271–277 (2002).
[CrossRef]

2001 (2)

P. Vukusic, R. Sambles, C. Lawrence, and G. Wakely, “Sculpted-multilayer optical effects in two species of Papilio butterfly,” Appl. Optics 40, 1116–1125 (2001).
[CrossRef]

U. Scherf, “Conjugated polymers: lasing and stimulated emission,” Curr. Opin. Solid State Mater. Sci. 5, 143–154 (2001).
[CrossRef]

2000 (2)

P. Vukusic, J. R. Sambles, and C. R. Lawrence, “Colour mixing in wing scales of a butterfly,” Nature 404, 457 (2000).
[CrossRef] [PubMed]

S. W. Chiou, C. P. Lee, C. K. Huang, and C. W. Chen, “Wide angle distributed Bragg reflectors for 590 nm amber AlGaInP light-emitting diodes,” J. Appl. Phys. 87, 2052–2054 (2000).
[CrossRef]

1997 (1)

S. Chang, C. Chang, Y. Su, P. Chang, Y. Wu, K. Huang, and T. Chen, “Chirped GaAs-AlAs distributed Bragg reflectors for high brightness yellow-green light-emitting diodes,” IEEE Photon. Technol. Lett. 9, 182–184 (1997).
[CrossRef]

1992 (1)

A. Y. Cho, G. J. Zydzik, E. F. Schubert, Y.-H. Wang, and L.-W. Tu, “Resonant cavity light-emitting diode,” Appl. Phys. Lett. 60, 921–923 (1992).
[CrossRef]

Abdelsalem, M.

S. Coyle, G. V. Prakash, J. J. Baumberg, M. Abdelsalem, and P. N. Bartlett, “Spherical micromirrors from templated self-assembly: Polarization rotation on the micron scale,” Appl. Phys. Lett. 83, 767–769 (2003).
[CrossRef]

Ando, T.

T. Komikado, a. Inoue, K. Masuda, T. Ando, and S. Umegaki, “Multi-layered mirrors fabricated by spin-coating organic polymers,” Thin Solid Films 515, 3887–3892 (2007).
[CrossRef]

Andrews, J.

Anta, J. a.

S. Colodrero, A. Mihi, J. a. Anta, M. Ocaña, and H. Míguez, “Experimental demonstration of the mechanism of light harvesting enhancement in photonic-crystal-based dye-sensitized solar cells,” J. Phys. Chem. C 113, 1150–1154 (2009).
[CrossRef]

Baer, E.

Bartlett, P. N.

S. Coyle, G. V. Prakash, J. J. Baumberg, M. Abdelsalem, and P. N. Bartlett, “Spherical micromirrors from templated self-assembly: Polarization rotation on the micron scale,” Appl. Phys. Lett. 83, 767–769 (2003).
[CrossRef]

Baumberg, J.

M. Kolle, P. M. Cunha, M. R. J. Scherer, H. Fumin, P. Vukusic, S. Mahajan, J. Baumberg, and U. Steiner, “Mimicking the colourful wing scale structure of the Papilio blumei butterfly,” Nat. Nanotechnol. 5, 511–515 (2010).
[CrossRef] [PubMed]

Baumberg, J. J.

M. Kolle, B. Zheng, N. Gibbons, J. J. Baumberg, and U. Steiner, “Stretch-tuneable dielectric mirrors and optical microcavities,” Opt. Express 18, 575–581 (2010).
[CrossRef]

S. Coyle, G. V. Prakash, J. J. Baumberg, M. Abdelsalem, and P. N. Bartlett, “Spherical micromirrors from templated self-assembly: Polarization rotation on the micron scale,” Appl. Phys. Lett. 83, 767–769 (2003).
[CrossRef]

Boschloo, G.

S. Colodrero, A. Mihi, L. Häggman, M. Ocaña, G. Boschloo, A. Hagfeldt, and H. Míguez, “Porous one-dimensional photonic crystals improve the power-conversion efficiency of dye-sensitized solar cells,” Adv. Mater. 21, 764–770 (2009).
[CrossRef]

Cai, S.

J. Zhu, S. Cai, and Z. Suo, “Resonant behavior of a membrane of a dielectric elastomer,” Int. J. Solids Struct. 47, 3254–3262 (2010).
[CrossRef]

Calvo, M.

O. Sánchez-Sobrado, M. Calvo, N. Núñez, M. Ocaña, G. Lozano, and H. Míguez, “Environmentally responsive nanoparticle-based luminescent optical resonators,” Nanoscale 2, 936–941 (2010).
[CrossRef] [PubMed]

Calvo, M. E.

M. E. Calvo and H. Míguez, “Flexible, adhesive, and biocompatible Bragg mirrors based on polydimethylsiloxane infiltrated nanoparticle multilayers,” Chem. Mater. 22, 3909–3915 (2010).
[CrossRef]

Chang, C.

S. Chang, C. Chang, Y. Su, P. Chang, Y. Wu, K. Huang, and T. Chen, “Chirped GaAs-AlAs distributed Bragg reflectors for high brightness yellow-green light-emitting diodes,” IEEE Photon. Technol. Lett. 9, 182–184 (1997).
[CrossRef]

Chang, P.

S. Chang, C. Chang, Y. Su, P. Chang, Y. Wu, K. Huang, and T. Chen, “Chirped GaAs-AlAs distributed Bragg reflectors for high brightness yellow-green light-emitting diodes,” IEEE Photon. Technol. Lett. 9, 182–184 (1997).
[CrossRef]

Chang, S.

S. Chang, C. Chang, Y. Su, P. Chang, Y. Wu, K. Huang, and T. Chen, “Chirped GaAs-AlAs distributed Bragg reflectors for high brightness yellow-green light-emitting diodes,” IEEE Photon. Technol. Lett. 9, 182–184 (1997).
[CrossRef]

Chen, C. W.

S. W. Chiou, C. P. Lee, C. K. Huang, and C. W. Chen, “Wide angle distributed Bragg reflectors for 590 nm amber AlGaInP light-emitting diodes,” J. Appl. Phys. 87, 2052–2054 (2000).
[CrossRef]

Chen, T.

S. Chang, C. Chang, Y. Su, P. Chang, Y. Wu, K. Huang, and T. Chen, “Chirped GaAs-AlAs distributed Bragg reflectors for high brightness yellow-green light-emitting diodes,” IEEE Photon. Technol. Lett. 9, 182–184 (1997).
[CrossRef]

Chen, X.

Chiou, S. W.

S. W. Chiou, C. P. Lee, C. K. Huang, and C. W. Chen, “Wide angle distributed Bragg reflectors for 590 nm amber AlGaInP light-emitting diodes,” J. Appl. Phys. 87, 2052–2054 (2000).
[CrossRef]

Cho, A. Y.

A. Y. Cho, G. J. Zydzik, E. F. Schubert, Y.-H. Wang, and L.-W. Tu, “Resonant cavity light-emitting diode,” Appl. Phys. Lett. 60, 921–923 (1992).
[CrossRef]

Clarke, S. M.

A. Hotta, S. M. Clarke, and E. M. Terentjev, “Stress relaxation in transient networks of symmetric triblock styrene-isoprene-styrene copolymer,” Macromolecules 35, 271–277 (2002).
[CrossRef]

Colodrero, S.

S. Colodrero, A. Mihi, J. a. Anta, M. Ocaña, and H. Míguez, “Experimental demonstration of the mechanism of light harvesting enhancement in photonic-crystal-based dye-sensitized solar cells,” J. Phys. Chem. C 113, 1150–1154 (2009).
[CrossRef]

S. Colodrero, A. Mihi, L. Häggman, M. Ocaña, G. Boschloo, A. Hagfeldt, and H. Míguez, “Porous one-dimensional photonic crystals improve the power-conversion efficiency of dye-sensitized solar cells,” Adv. Mater. 21, 764–770 (2009).
[CrossRef]

S. Colodrero, M. Ocaña, and H. Míguez, “Nanoparticle-based one-dimensional photonic crystals,” Langmuir 24, 4430–4434 (2008).
[CrossRef] [PubMed]

Coyle, S.

S. Coyle, G. V. Prakash, J. J. Baumberg, M. Abdelsalem, and P. N. Bartlett, “Spherical micromirrors from templated self-assembly: Polarization rotation on the micron scale,” Appl. Phys. Lett. 83, 767–769 (2003).
[CrossRef]

Cunha, P. M.

M. Kolle, P. M. Cunha, M. R. J. Scherer, H. Fumin, P. Vukusic, S. Mahajan, J. Baumberg, and U. Steiner, “Mimicking the colourful wing scale structure of the Papilio blumei butterfly,” Nat. Nanotechnol. 5, 511–515 (2010).
[CrossRef] [PubMed]

Dai, Y.

Eder, D.

S. Guldin, M. Kolle, M. Stefik, R. Langford, D. Eder, U. Wiesner, and U. Steiner, “Tunable mesoporous bragg reflectors based on block-copolymer self-assembly,” Adv. Mater. 23, 3664–3668 (2011).
[CrossRef] [PubMed]

Friend, R. H.

M. H. Song, B. Wenger, and R. H. Friend, “Tuning the wavelength of lasing emission in organic semiconducting laser by the orientation of liquid crystalline conjugated polymer,” J. Appl. Phys. 104, 033107 (2008).
[CrossRef]

Fumin, H.

M. Kolle, P. M. Cunha, M. R. J. Scherer, H. Fumin, P. Vukusic, S. Mahajan, J. Baumberg, and U. Steiner, “Mimicking the colourful wing scale structure of the Papilio blumei butterfly,” Nat. Nanotechnol. 5, 511–515 (2010).
[CrossRef] [PubMed]

Gibbons, N.

Gorishnyy, T.

Y. Kang, J. Walish, T. Gorishnyy, and E. Thomas, “Broad-wavelength-range chemically tunable block-copolymer photonic gels,” Nat. Mater. 6, 957–960 (2007).
[CrossRef] [PubMed]

Guldin, S.

S. Guldin, M. Kolle, M. Stefik, R. Langford, D. Eder, U. Wiesner, and U. Steiner, “Tunable mesoporous bragg reflectors based on block-copolymer self-assembly,” Adv. Mater. 23, 3664–3668 (2011).
[CrossRef] [PubMed]

Hagfeldt, A.

S. Colodrero, A. Mihi, L. Häggman, M. Ocaña, G. Boschloo, A. Hagfeldt, and H. Míguez, “Porous one-dimensional photonic crystals improve the power-conversion efficiency of dye-sensitized solar cells,” Adv. Mater. 21, 764–770 (2009).
[CrossRef]

Häggman, L.

S. Colodrero, A. Mihi, L. Häggman, M. Ocaña, G. Boschloo, A. Hagfeldt, and H. Míguez, “Porous one-dimensional photonic crystals improve the power-conversion efficiency of dye-sensitized solar cells,” Adv. Mater. 21, 764–770 (2009).
[CrossRef]

Hiltner, A.

Hotta, A.

A. Hotta, S. M. Clarke, and E. M. Terentjev, “Stress relaxation in transient networks of symmetric triblock styrene-isoprene-styrene copolymer,” Macromolecules 35, 271–277 (2002).
[CrossRef]

Huang, C. K.

S. W. Chiou, C. P. Lee, C. K. Huang, and C. W. Chen, “Wide angle distributed Bragg reflectors for 590 nm amber AlGaInP light-emitting diodes,” J. Appl. Phys. 87, 2052–2054 (2000).
[CrossRef]

Huang, K.

S. Chang, C. Chang, Y. Su, P. Chang, Y. Wu, K. Huang, and T. Chen, “Chirped GaAs-AlAs distributed Bragg reflectors for high brightness yellow-green light-emitting diodes,” IEEE Photon. Technol. Lett. 9, 182–184 (1997).
[CrossRef]

Inoue, a.

T. Komikado, a. Inoue, K. Masuda, T. Ando, and S. Umegaki, “Multi-layered mirrors fabricated by spin-coating organic polymers,” Thin Solid Films 515, 3887–3892 (2007).
[CrossRef]

Jiang, D.

Kang, Y.

Y. Kang, J. Walish, T. Gorishnyy, and E. Thomas, “Broad-wavelength-range chemically tunable block-copolymer photonic gels,” Nat. Mater. 6, 957–960 (2007).
[CrossRef] [PubMed]

Kazmierczak, T.

Kim, K.-H.

S.-H. Yoon, V. Reyes-Ortiz, K.-H. Kim, Y. H. Seo, and M. R. K. Mofrad, “Analysis of circular PDMS microballoons with ultralarge deflection for MEMS design,” J. Microelectromech. S 19, 854–864 (2010).
[CrossRef]

Kinoshita, S.

Kolle, M.

S. Guldin, M. Kolle, M. Stefik, R. Langford, D. Eder, U. Wiesner, and U. Steiner, “Tunable mesoporous bragg reflectors based on block-copolymer self-assembly,” Adv. Mater. 23, 3664–3668 (2011).
[CrossRef] [PubMed]

M. Kolle, P. M. Cunha, M. R. J. Scherer, H. Fumin, P. Vukusic, S. Mahajan, J. Baumberg, and U. Steiner, “Mimicking the colourful wing scale structure of the Papilio blumei butterfly,” Nat. Nanotechnol. 5, 511–515 (2010).
[CrossRef] [PubMed]

M. Kolle, B. Zheng, N. Gibbons, J. J. Baumberg, and U. Steiner, “Stretch-tuneable dielectric mirrors and optical microcavities,” Opt. Express 18, 575–581 (2010).
[CrossRef]

Komikado, T.

T. Komikado, a. Inoue, K. Masuda, T. Ando, and S. Umegaki, “Multi-layered mirrors fabricated by spin-coating organic polymers,” Thin Solid Films 515, 3887–3892 (2007).
[CrossRef]

Langford, R.

S. Guldin, M. Kolle, M. Stefik, R. Langford, D. Eder, U. Wiesner, and U. Steiner, “Tunable mesoporous bragg reflectors based on block-copolymer self-assembly,” Adv. Mater. 23, 3664–3668 (2011).
[CrossRef] [PubMed]

Lawrence, C.

P. Vukusic, R. Sambles, C. Lawrence, and G. Wakely, “Sculpted-multilayer optical effects in two species of Papilio butterfly,” Appl. Optics 40, 1116–1125 (2001).
[CrossRef]

Lawrence, C. R.

P. Vukusic, J. R. Sambles, and C. R. Lawrence, “Colour mixing in wing scales of a butterfly,” Nature 404, 457 (2000).
[CrossRef] [PubMed]

Lee, C. P.

S. W. Chiou, C. P. Lee, C. K. Huang, and C. W. Chen, “Wide angle distributed Bragg reflectors for 590 nm amber AlGaInP light-emitting diodes,” J. Appl. Phys. 87, 2052–2054 (2000).
[CrossRef]

Lott, J.

Lozano, G.

O. Sánchez-Sobrado, M. Calvo, N. Núñez, M. Ocaña, G. Lozano, and H. Míguez, “Environmentally responsive nanoparticle-based luminescent optical resonators,” Nanoscale 2, 936–941 (2010).
[CrossRef] [PubMed]

Mahajan, S.

M. Kolle, P. M. Cunha, M. R. J. Scherer, H. Fumin, P. Vukusic, S. Mahajan, J. Baumberg, and U. Steiner, “Mimicking the colourful wing scale structure of the Papilio blumei butterfly,” Nat. Nanotechnol. 5, 511–515 (2010).
[CrossRef] [PubMed]

Masuda, K.

T. Komikado, a. Inoue, K. Masuda, T. Ando, and S. Umegaki, “Multi-layered mirrors fabricated by spin-coating organic polymers,” Thin Solid Films 515, 3887–3892 (2007).
[CrossRef]

Míguez, H.

M. E. Calvo and H. Míguez, “Flexible, adhesive, and biocompatible Bragg mirrors based on polydimethylsiloxane infiltrated nanoparticle multilayers,” Chem. Mater. 22, 3909–3915 (2010).
[CrossRef]

O. Sánchez-Sobrado, M. Calvo, N. Núñez, M. Ocaña, G. Lozano, and H. Míguez, “Environmentally responsive nanoparticle-based luminescent optical resonators,” Nanoscale 2, 936–941 (2010).
[CrossRef] [PubMed]

S. Colodrero, A. Mihi, L. Häggman, M. Ocaña, G. Boschloo, A. Hagfeldt, and H. Míguez, “Porous one-dimensional photonic crystals improve the power-conversion efficiency of dye-sensitized solar cells,” Adv. Mater. 21, 764–770 (2009).
[CrossRef]

S. Colodrero, A. Mihi, J. a. Anta, M. Ocaña, and H. Míguez, “Experimental demonstration of the mechanism of light harvesting enhancement in photonic-crystal-based dye-sensitized solar cells,” J. Phys. Chem. C 113, 1150–1154 (2009).
[CrossRef]

S. Colodrero, M. Ocaña, and H. Míguez, “Nanoparticle-based one-dimensional photonic crystals,” Langmuir 24, 4430–4434 (2008).
[CrossRef] [PubMed]

Mihi, A.

S. Colodrero, A. Mihi, J. a. Anta, M. Ocaña, and H. Míguez, “Experimental demonstration of the mechanism of light harvesting enhancement in photonic-crystal-based dye-sensitized solar cells,” J. Phys. Chem. C 113, 1150–1154 (2009).
[CrossRef]

S. Colodrero, A. Mihi, L. Häggman, M. Ocaña, G. Boschloo, A. Hagfeldt, and H. Míguez, “Porous one-dimensional photonic crystals improve the power-conversion efficiency of dye-sensitized solar cells,” Adv. Mater. 21, 764–770 (2009).
[CrossRef]

Mofrad, M. R. K.

S.-H. Yoon, V. Reyes-Ortiz, K.-H. Kim, Y. H. Seo, and M. R. K. Mofrad, “Analysis of circular PDMS microballoons with ultralarge deflection for MEMS design,” J. Microelectromech. S 19, 854–864 (2010).
[CrossRef]

Núñez, N.

O. Sánchez-Sobrado, M. Calvo, N. Núñez, M. Ocaña, G. Lozano, and H. Míguez, “Environmentally responsive nanoparticle-based luminescent optical resonators,” Nanoscale 2, 936–941 (2010).
[CrossRef] [PubMed]

Ocaña, M.

O. Sánchez-Sobrado, M. Calvo, N. Núñez, M. Ocaña, G. Lozano, and H. Míguez, “Environmentally responsive nanoparticle-based luminescent optical resonators,” Nanoscale 2, 936–941 (2010).
[CrossRef] [PubMed]

S. Colodrero, A. Mihi, L. Häggman, M. Ocaña, G. Boschloo, A. Hagfeldt, and H. Míguez, “Porous one-dimensional photonic crystals improve the power-conversion efficiency of dye-sensitized solar cells,” Adv. Mater. 21, 764–770 (2009).
[CrossRef]

S. Colodrero, A. Mihi, J. a. Anta, M. Ocaña, and H. Míguez, “Experimental demonstration of the mechanism of light harvesting enhancement in photonic-crystal-based dye-sensitized solar cells,” J. Phys. Chem. C 113, 1150–1154 (2009).
[CrossRef]

S. Colodrero, M. Ocaña, and H. Míguez, “Nanoparticle-based one-dimensional photonic crystals,” Langmuir 24, 4430–4434 (2008).
[CrossRef] [PubMed]

Prakash, G. V.

S. Coyle, G. V. Prakash, J. J. Baumberg, M. Abdelsalem, and P. N. Bartlett, “Spherical micromirrors from templated self-assembly: Polarization rotation on the micron scale,” Appl. Phys. Lett. 83, 767–769 (2003).
[CrossRef]

Reyes-Ortiz, V.

S.-H. Yoon, V. Reyes-Ortiz, K.-H. Kim, Y. H. Seo, and M. R. K. Mofrad, “Analysis of circular PDMS microballoons with ultralarge deflection for MEMS design,” J. Microelectromech. S 19, 854–864 (2010).
[CrossRef]

Sambles, J. R.

P. Vukusic, J. R. Sambles, and C. R. Lawrence, “Colour mixing in wing scales of a butterfly,” Nature 404, 457 (2000).
[CrossRef] [PubMed]

Sambles, R.

P. Vukusic, R. Sambles, C. Lawrence, and G. Wakely, “Sculpted-multilayer optical effects in two species of Papilio butterfly,” Appl. Optics 40, 1116–1125 (2001).
[CrossRef]

Samuel, I. D. W.

Y. Yang, G. A. Turnbull, and I. D. W. Samuel, “Hybrid optoelectronics: A polymer laser pumped by a nitride light-emitting diode,” Appl. Phys. Lett. 92, 163306 (2008).
[CrossRef]

Sánchez-Sobrado, O.

O. Sánchez-Sobrado, M. Calvo, N. Núñez, M. Ocaña, G. Lozano, and H. Míguez, “Environmentally responsive nanoparticle-based luminescent optical resonators,” Nanoscale 2, 936–941 (2010).
[CrossRef] [PubMed]

Scherer, M. R. J.

M. Kolle, P. M. Cunha, M. R. J. Scherer, H. Fumin, P. Vukusic, S. Mahajan, J. Baumberg, and U. Steiner, “Mimicking the colourful wing scale structure of the Papilio blumei butterfly,” Nat. Nanotechnol. 5, 511–515 (2010).
[CrossRef] [PubMed]

Scherf, U.

U. Scherf, “Conjugated polymers: lasing and stimulated emission,” Curr. Opin. Solid State Mater. Sci. 5, 143–154 (2001).
[CrossRef]

Schubert, E. F.

A. Y. Cho, G. J. Zydzik, E. F. Schubert, Y.-H. Wang, and L.-W. Tu, “Resonant cavity light-emitting diode,” Appl. Phys. Lett. 60, 921–923 (1992).
[CrossRef]

Seo, Y. H.

S.-H. Yoon, V. Reyes-Ortiz, K.-H. Kim, Y. H. Seo, and M. R. K. Mofrad, “Analysis of circular PDMS microballoons with ultralarge deflection for MEMS design,” J. Microelectromech. S 19, 854–864 (2010).
[CrossRef]

Singer, K. D.

Song, H.

Song, M. H.

M. H. Song, B. Wenger, and R. H. Friend, “Tuning the wavelength of lasing emission in organic semiconducting laser by the orientation of liquid crystalline conjugated polymer,” J. Appl. Phys. 104, 033107 (2008).
[CrossRef]

Stefik, M.

S. Guldin, M. Kolle, M. Stefik, R. Langford, D. Eder, U. Wiesner, and U. Steiner, “Tunable mesoporous bragg reflectors based on block-copolymer self-assembly,” Adv. Mater. 23, 3664–3668 (2011).
[CrossRef] [PubMed]

Steiner, U.

S. Guldin, M. Kolle, M. Stefik, R. Langford, D. Eder, U. Wiesner, and U. Steiner, “Tunable mesoporous bragg reflectors based on block-copolymer self-assembly,” Adv. Mater. 23, 3664–3668 (2011).
[CrossRef] [PubMed]

M. Kolle, P. M. Cunha, M. R. J. Scherer, H. Fumin, P. Vukusic, S. Mahajan, J. Baumberg, and U. Steiner, “Mimicking the colourful wing scale structure of the Papilio blumei butterfly,” Nat. Nanotechnol. 5, 511–515 (2010).
[CrossRef] [PubMed]

M. Kolle, B. Zheng, N. Gibbons, J. J. Baumberg, and U. Steiner, “Stretch-tuneable dielectric mirrors and optical microcavities,” Opt. Express 18, 575–581 (2010).
[CrossRef]

Su, Y.

S. Chang, C. Chang, Y. Su, P. Chang, Y. Wu, K. Huang, and T. Chen, “Chirped GaAs-AlAs distributed Bragg reflectors for high brightness yellow-green light-emitting diodes,” IEEE Photon. Technol. Lett. 9, 182–184 (1997).
[CrossRef]

Suo, Z.

J. Zhu, S. Cai, and Z. Suo, “Resonant behavior of a membrane of a dielectric elastomer,” Int. J. Solids Struct. 47, 3254–3262 (2010).
[CrossRef]

Terentjev, E. M.

A. Hotta, S. M. Clarke, and E. M. Terentjev, “Stress relaxation in transient networks of symmetric triblock styrene-isoprene-styrene copolymer,” Macromolecules 35, 271–277 (2002).
[CrossRef]

Thomas, E.

Y. Kang, J. Walish, T. Gorishnyy, and E. Thomas, “Broad-wavelength-range chemically tunable block-copolymer photonic gels,” Nat. Mater. 6, 957–960 (2007).
[CrossRef] [PubMed]

Tu, L.-W.

A. Y. Cho, G. J. Zydzik, E. F. Schubert, Y.-H. Wang, and L.-W. Tu, “Resonant cavity light-emitting diode,” Appl. Phys. Lett. 60, 921–923 (1992).
[CrossRef]

Turnbull, G. A.

Y. Yang, G. A. Turnbull, and I. D. W. Samuel, “Hybrid optoelectronics: A polymer laser pumped by a nitride light-emitting diode,” Appl. Phys. Lett. 92, 163306 (2008).
[CrossRef]

Umegaki, S.

T. Komikado, a. Inoue, K. Masuda, T. Ando, and S. Umegaki, “Multi-layered mirrors fabricated by spin-coating organic polymers,” Thin Solid Films 515, 3887–3892 (2007).
[CrossRef]

Vukusic, P.

M. Kolle, P. M. Cunha, M. R. J. Scherer, H. Fumin, P. Vukusic, S. Mahajan, J. Baumberg, and U. Steiner, “Mimicking the colourful wing scale structure of the Papilio blumei butterfly,” Nat. Nanotechnol. 5, 511–515 (2010).
[CrossRef] [PubMed]

P. Vukusic, R. Sambles, C. Lawrence, and G. Wakely, “Sculpted-multilayer optical effects in two species of Papilio butterfly,” Appl. Optics 40, 1116–1125 (2001).
[CrossRef]

P. Vukusic, J. R. Sambles, and C. R. Lawrence, “Colour mixing in wing scales of a butterfly,” Nature 404, 457 (2000).
[CrossRef] [PubMed]

Wakely, G.

P. Vukusic, R. Sambles, C. Lawrence, and G. Wakely, “Sculpted-multilayer optical effects in two species of Papilio butterfly,” Appl. Optics 40, 1116–1125 (2001).
[CrossRef]

Walish, J.

Y. Kang, J. Walish, T. Gorishnyy, and E. Thomas, “Broad-wavelength-range chemically tunable block-copolymer photonic gels,” Nat. Mater. 6, 957–960 (2007).
[CrossRef] [PubMed]

Wang, Y.-H.

A. Y. Cho, G. J. Zydzik, E. F. Schubert, Y.-H. Wang, and L.-W. Tu, “Resonant cavity light-emitting diode,” Appl. Phys. Lett. 60, 921–923 (1992).
[CrossRef]

Weder, C.

Wenger, B.

M. H. Song, B. Wenger, and R. H. Friend, “Tuning the wavelength of lasing emission in organic semiconducting laser by the orientation of liquid crystalline conjugated polymer,” J. Appl. Phys. 104, 033107 (2008).
[CrossRef]

Wiesner, U.

S. Guldin, M. Kolle, M. Stefik, R. Langford, D. Eder, U. Wiesner, and U. Steiner, “Tunable mesoporous bragg reflectors based on block-copolymer self-assembly,” Adv. Mater. 23, 3664–3668 (2011).
[CrossRef] [PubMed]

Wu, Y.

K. D. Singer, T. Kazmierczak, J. Lott, H. Song, Y. Wu, J. Andrews, E. Baer, A. Hiltner, and C. Weder, “Melt-processed all-polymer distributed bragg reflector laser,” Opt. Express 16, 10358–10363 (2008).
[CrossRef] [PubMed]

S. Chang, C. Chang, Y. Su, P. Chang, Y. Wu, K. Huang, and T. Chen, “Chirped GaAs-AlAs distributed Bragg reflectors for high brightness yellow-green light-emitting diodes,” IEEE Photon. Technol. Lett. 9, 182–184 (1997).
[CrossRef]

Xie, S.

Xu, X.

Yang, Y.

Y. Yang, G. A. Turnbull, and I. D. W. Samuel, “Hybrid optoelectronics: A polymer laser pumped by a nitride light-emitting diode,” Appl. Phys. Lett. 92, 163306 (2008).
[CrossRef]

Yoon, S.-H.

S.-H. Yoon, V. Reyes-Ortiz, K.-H. Kim, Y. H. Seo, and M. R. K. Mofrad, “Analysis of circular PDMS microballoons with ultralarge deflection for MEMS design,” J. Microelectromech. S 19, 854–864 (2010).
[CrossRef]

Yoshioka, S.

Zheng, B.

Zhu, J.

J. Zhu, S. Cai, and Z. Suo, “Resonant behavior of a membrane of a dielectric elastomer,” Int. J. Solids Struct. 47, 3254–3262 (2010).
[CrossRef]

Zydzik, G. J.

A. Y. Cho, G. J. Zydzik, E. F. Schubert, Y.-H. Wang, and L.-W. Tu, “Resonant cavity light-emitting diode,” Appl. Phys. Lett. 60, 921–923 (1992).
[CrossRef]

Adv. Mater. (2)

S. Guldin, M. Kolle, M. Stefik, R. Langford, D. Eder, U. Wiesner, and U. Steiner, “Tunable mesoporous bragg reflectors based on block-copolymer self-assembly,” Adv. Mater. 23, 3664–3668 (2011).
[CrossRef] [PubMed]

S. Colodrero, A. Mihi, L. Häggman, M. Ocaña, G. Boschloo, A. Hagfeldt, and H. Míguez, “Porous one-dimensional photonic crystals improve the power-conversion efficiency of dye-sensitized solar cells,” Adv. Mater. 21, 764–770 (2009).
[CrossRef]

Appl. Optics (1)

P. Vukusic, R. Sambles, C. Lawrence, and G. Wakely, “Sculpted-multilayer optical effects in two species of Papilio butterfly,” Appl. Optics 40, 1116–1125 (2001).
[CrossRef]

Appl. Phys. Lett. (3)

A. Y. Cho, G. J. Zydzik, E. F. Schubert, Y.-H. Wang, and L.-W. Tu, “Resonant cavity light-emitting diode,” Appl. Phys. Lett. 60, 921–923 (1992).
[CrossRef]

S. Coyle, G. V. Prakash, J. J. Baumberg, M. Abdelsalem, and P. N. Bartlett, “Spherical micromirrors from templated self-assembly: Polarization rotation on the micron scale,” Appl. Phys. Lett. 83, 767–769 (2003).
[CrossRef]

Y. Yang, G. A. Turnbull, and I. D. W. Samuel, “Hybrid optoelectronics: A polymer laser pumped by a nitride light-emitting diode,” Appl. Phys. Lett. 92, 163306 (2008).
[CrossRef]

Chem. Mater. (1)

M. E. Calvo and H. Míguez, “Flexible, adhesive, and biocompatible Bragg mirrors based on polydimethylsiloxane infiltrated nanoparticle multilayers,” Chem. Mater. 22, 3909–3915 (2010).
[CrossRef]

Curr. Opin. Solid State Mater. Sci. (1)

U. Scherf, “Conjugated polymers: lasing and stimulated emission,” Curr. Opin. Solid State Mater. Sci. 5, 143–154 (2001).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

S. Chang, C. Chang, Y. Su, P. Chang, Y. Wu, K. Huang, and T. Chen, “Chirped GaAs-AlAs distributed Bragg reflectors for high brightness yellow-green light-emitting diodes,” IEEE Photon. Technol. Lett. 9, 182–184 (1997).
[CrossRef]

Int. J. Solids Struct. (1)

J. Zhu, S. Cai, and Z. Suo, “Resonant behavior of a membrane of a dielectric elastomer,” Int. J. Solids Struct. 47, 3254–3262 (2010).
[CrossRef]

J. Appl. Phys. (2)

M. H. Song, B. Wenger, and R. H. Friend, “Tuning the wavelength of lasing emission in organic semiconducting laser by the orientation of liquid crystalline conjugated polymer,” J. Appl. Phys. 104, 033107 (2008).
[CrossRef]

S. W. Chiou, C. P. Lee, C. K. Huang, and C. W. Chen, “Wide angle distributed Bragg reflectors for 590 nm amber AlGaInP light-emitting diodes,” J. Appl. Phys. 87, 2052–2054 (2000).
[CrossRef]

J. Microelectromech. S (1)

S.-H. Yoon, V. Reyes-Ortiz, K.-H. Kim, Y. H. Seo, and M. R. K. Mofrad, “Analysis of circular PDMS microballoons with ultralarge deflection for MEMS design,” J. Microelectromech. S 19, 854–864 (2010).
[CrossRef]

J. Phys. Chem. C (1)

S. Colodrero, A. Mihi, J. a. Anta, M. Ocaña, and H. Míguez, “Experimental demonstration of the mechanism of light harvesting enhancement in photonic-crystal-based dye-sensitized solar cells,” J. Phys. Chem. C 113, 1150–1154 (2009).
[CrossRef]

Langmuir (1)

S. Colodrero, M. Ocaña, and H. Míguez, “Nanoparticle-based one-dimensional photonic crystals,” Langmuir 24, 4430–4434 (2008).
[CrossRef] [PubMed]

Macromolecules (1)

A. Hotta, S. M. Clarke, and E. M. Terentjev, “Stress relaxation in transient networks of symmetric triblock styrene-isoprene-styrene copolymer,” Macromolecules 35, 271–277 (2002).
[CrossRef]

Nanoscale (1)

O. Sánchez-Sobrado, M. Calvo, N. Núñez, M. Ocaña, G. Lozano, and H. Míguez, “Environmentally responsive nanoparticle-based luminescent optical resonators,” Nanoscale 2, 936–941 (2010).
[CrossRef] [PubMed]

Nat. Mater. (1)

Y. Kang, J. Walish, T. Gorishnyy, and E. Thomas, “Broad-wavelength-range chemically tunable block-copolymer photonic gels,” Nat. Mater. 6, 957–960 (2007).
[CrossRef] [PubMed]

Nat. Nanotechnol. (1)

M. Kolle, P. M. Cunha, M. R. J. Scherer, H. Fumin, P. Vukusic, S. Mahajan, J. Baumberg, and U. Steiner, “Mimicking the colourful wing scale structure of the Papilio blumei butterfly,” Nat. Nanotechnol. 5, 511–515 (2010).
[CrossRef] [PubMed]

Nature (1)

P. Vukusic, J. R. Sambles, and C. R. Lawrence, “Colour mixing in wing scales of a butterfly,” Nature 404, 457 (2000).
[CrossRef] [PubMed]

Opt. Express (4)

Thin Solid Films (1)

T. Komikado, a. Inoue, K. Masuda, T. Ando, and S. Umegaki, “Multi-layered mirrors fabricated by spin-coating organic polymers,” Thin Solid Films 515, 3887–3892 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Illustration of the Origami technique. The elastic DBR is assembled by immersing the Si wafer coated with a PSS-PDMS-PSPI trilayer into water. The PDSM-PSPI double layer floats onto the water surface by dissolving an underlying PSS layer until it reaches a scratch in the PSS film, stopping PSS dissolution. Further immersion causes the PDMS-PSPI bilayer to fold back to the upper half of the wafer. The folding steps completes by full submersion of the wafer. (b) Elastic DBR after 4 folding steps. (c) Illustration of the home-made sample holder supporting an elastic DBR over a pinhole.

Fig. 2
Fig. 2

(a) Experimental and simulated reflection spectra of a flat elastic DBR still attached to its Si substrate. Simulation parameters were dPDMS = 175 nm, dPSPI = 123 nm, nPDMS = 1.41, and nPSPI = 1.53. The inset shows an elastic DBR on a 300 μm-wide pinhole in its initial flat state. (b) A deformed DBR under increasing pressure showing color shifts from red (top left) to blue (bottom right). (c) Reflection spectra taken during actuation showing shift of stop-band to 400 nm with pressure difference ΔP = 0.33 bar. (d,e) Stop-band tuning of the DBR performed over ten cycles by repeatedly switching ΔP between 0 to 0.32 bar. (f) Peak reflectance position extracted from a time resolved spectral measurement after pressure difference was increased to ΔP = 0.25 bar.

Fig. 3
Fig. 3

(a–d) Observation of rotation by polarization microscopy and micro spectroscopy. Images of the deformed DBR, both (a,b) without and (c,d) with crossed polarizers for (a,c) ΔP = 0.20, (b,d) ΔP = 0.30. Optical reflection from the center is blocked by the crossed polarizer while regions near the rim remain bright, which is characteristic for a polarization rotation by double reflection. The insets show images at the indicated wavelengths. (e–h) reflectance along the path indicated by the arrows in (a–d), respectively.

Fig. 4
Fig. 4

(a–d) Spatial distribution of transmitted intensity at different wavelengths. The maps were taken (a) in the initial non-deformed state, (b) the residual concavity state after deformation and relaxation, (c) ΔP = 0.17 bar and (d) ΔP = 0.27 bar. (e–h) Spectra extracted from (a–d), respectively. The small red shift in (f) is due to the permanent deformation of the multilayer after actuation.

Fig. 5
Fig. 5

(a–c) Images of a deformed DBR taken in the permanently deformed state, and with applied pressures of 0, 0.17 and 0.27 bar. (d) PDMS and PSPI layer thickness variation of the elastic DBR across the pinhole extracted from the spectral maps, together with (e) its dependence on the local deflection. (f) Extracted strain at the mirror centre vs the deflection produced by different pressures.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

n = 2 m 1
m λ / 2 = d 1 n 1 2 sin 2 θ + d 2 n 2 2 sin 2 θ

Metrics