Abstract

Updatable holography is considered as the ultimate technique for true 3D information recording and display. However, there is no practical solution to preserve the required features of both non-volatility and reversibility which conflict with each other when the reading has the same wavelength as the recording. We demonstrate a non-volatile and updatable holographic approach by exploiting new features of molecular transformations in a polymer recording system. In addition, by using a new composite recording film containing photo-reconfigurable liquid-crystal (LC) polymer, the holographic recording is enhanced due to the collective reorientation of LC molecules around the reconfigured polymer chains.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. T. Maloney and J. B. Thaxter, “Erasable ablative holographic recording,” Appl. Opt. 11(12), 2993–2994 (1972).
    [CrossRef] [PubMed]
  2. H. C. Külich, “A new approach to read volume holograms at different wavelengths,” Opt. Commun. 64(5), 407–411 (1987).
    [CrossRef]
  3. J. P. Fouassier and J. F. Rabek, Lasers in Polymer Science and Technology: Applications (CRC Press, 1990).
  4. A. G. Chen and D. J. Brady, “Two‐wavelength reversible holograms in azo‐dye doped nematic liquid crystals,” Appl. Phys. Lett. 62(23), 2920–2922 (1993).
    [CrossRef]
  5. J. F. Heanue, M. C. Bashaw, A. J. Daiber, R. Snyder, and L. Hesselink, “Digital holographic storage system incorporating thermal fixing in lithium niobate,” Opt. Lett. 21(19), 1615–1617 (1996).
    [CrossRef] [PubMed]
  6. V. Jerez, I. de Oliveira, and J. Frejlich, “Optical recording mechanisms in undoped titanosillenite crystals,” J. Appl. Phys. 109(2), 024901 (2011).
    [CrossRef]
  7. K. Choi, J. Kim, Y. Lim, and B. Lee, “Full parallax viewing-angle enhanced computer-generated holographic 3D display system using integral lens array,” Opt. Express 13(26), 10494–10502 (2005).
    [CrossRef] [PubMed]
  8. S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
    [CrossRef] [PubMed]
  9. K. Iizuka, “Welcome to the wonderful world of 3D: introduction, principles and history,” Opt. Photonics News 17(7), 42–51 (2006).
    [CrossRef]
  10. H. I. Bjelkhagen and E. Mirlis, “Color holography to produce highly realistic three-dimensional images,” Appl. Opt. 47(4), A123–A133 (2008).
    [CrossRef] [PubMed]
  11. S. A. Benton and V. M. Bove, Jr., Holographic Imaging (Wiley, Hoboken, NJ, 2008).
  12. P. Dean, M. R. Dickinson, and D. P. West, “Depth-resolved holographic imaging through scattering media by use of a photorefractive polymer composite device in the near infrared,” Opt. Lett. 30(15), 1941–1943 (2005) (References and further reading may be available for this article. To view references and further reading you must. purchase this article.).
    [CrossRef] [PubMed]
  13. M. Salvador, J. Prauzner, S. Köber, K. Meerholz, J. J. Turek, K. Jeong, and D. D. Nolte, “Three-dimensional holographic imaging of living tissue using a highly sensitive photorefractive polymer device,” Opt. Express 17(14), 11834–11849 (2009).
    [CrossRef] [PubMed]
  14. D. Psaltis and F. Mok, “Holographic memories,” Sci. Am. 273(5), 70–76 (1995).
    [CrossRef] [PubMed]
  15. R. H. Berg, S. Hvilsted, and P. S. Ramanujam, “Peptide oligomers for holographic data storage,” Nature 383(6600), 505–508 (1996).
    [CrossRef]
  16. P. Wu, Z. Liu, J. J. Yang, A. Flores, and M. R. Wang, “Wavelength-multiplexed submicron holograms for disk-compatible data storage,” Opt. Express 15(26), 17798–17804 (2007).
    [CrossRef] [PubMed]
  17. J. J. Amodei and D. L. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18(12), 540–542 (1971).
    [CrossRef]
  18. F. Träger, Handbook of Lasers and Optics (Springer; 2007) Part D, 20.7, 1234–1235.
  19. A. Adibi, K. Buse, and D. Psaltis, “System measure for persistence in holographic recording and application to singly-doped and doubly-doped lithium niobate,” Appl. Opt. 40(29), 5175–5182 (2001).
    [CrossRef] [PubMed]
  20. D. Psaltis, K. Buse, and A. Adibi, “Non-volatile holographic storage in doubly doped lithiumniobate crystals,” Nature 393(6686), 665–668 (1998).
    [CrossRef]
  21. T. Ikeda and O. Tsutsumi, “Optical switching and image storage by means of azobenzene liquid-crystal films,” Science 268(5219), 1873–1875 (1995).
    [CrossRef] [PubMed]
  22. A. Natansohn and P. Rochon, “Photoinduced motions in azo-containing polymers,” Chem. Rev. 102(11), 4139–4176 (2002).
    [CrossRef] [PubMed]
  23. P. Wu, L. Wang, J. Xu, B. Zou, X. Gong, G. Zhang, G. Tang, W. Chen, and W. Huang, “Transient biphotonic holographic grating in photoisomerizative azo materials,” Phys. Rev. B 57(7), 3874–3880 (1998).
    [CrossRef]
  24. J. F. Rabek, Photochemistry and Photophysics (CRC, Boca Raton, FL, 1990), 120–141.
  25. P. Wu, D. V. G. L. N. Rao, B. R. Kimball, M. Nakashima, and B. S. DeCristofano, “Nonvolatile grating in an azobenzene polymer with optimized molecular reorientation,” Appl. Phys. Lett. 78(9), 1189–1191 (2001).
    [CrossRef]
  26. P. Wu, S. Q. Sun, S. Baig, and M. R. Wang, “Nanoscale optical reinforcement for enhanced reversible holography,” Opt. Express 20(3), 3091–3097 (2012).
    [CrossRef] [PubMed]
  27. Y. H. Cho and Y. Kawakami, “A novel process for holographic polymer dispersed liquid crystal system via simultaneous photo-polymerization and siloxane network formation,” Silicon Chem. 3(5), 219–227 (2007).
    [CrossRef]
  28. J. Qi and G. P. Crawford, “Holographically formed polymer dispersed liquid crystal displays,” Displays 25(5), 177–186 (2004).
    [CrossRef]
  29. E. H. Kim, J. Y. Woo, and B. K. Kim, “LC dependent electro-optical properties of holographic polymer dispersed liquid crystals,” Displays 29(5), 482–486 (2008).
    [CrossRef]
  30. Y. Q. Lu, F. Du, and S. T. Wu, “Polarization switch using thick holographic polymer-dispersed liquid crystal grating,” J. Appl. Phys. 95(3), 810–815 (2004).
    [CrossRef]
  31. T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci. 30(1), 83–115 (2000).
    [CrossRef]
  32. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
  33. S. Xu, H. Ren, Y. J. Lin, M. G. J. Moharam, S. T. Wu, and N. Tabiryan, “Adaptive liquid lens actuated by photo-polymer,” Opt. Express 17(20), 17590–17595 (2009).
    [CrossRef] [PubMed]

2012 (1)

2011 (1)

V. Jerez, I. de Oliveira, and J. Frejlich, “Optical recording mechanisms in undoped titanosillenite crystals,” J. Appl. Phys. 109(2), 024901 (2011).
[CrossRef]

2009 (2)

2008 (3)

H. I. Bjelkhagen and E. Mirlis, “Color holography to produce highly realistic three-dimensional images,” Appl. Opt. 47(4), A123–A133 (2008).
[CrossRef] [PubMed]

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[CrossRef] [PubMed]

E. H. Kim, J. Y. Woo, and B. K. Kim, “LC dependent electro-optical properties of holographic polymer dispersed liquid crystals,” Displays 29(5), 482–486 (2008).
[CrossRef]

2007 (2)

Y. H. Cho and Y. Kawakami, “A novel process for holographic polymer dispersed liquid crystal system via simultaneous photo-polymerization and siloxane network formation,” Silicon Chem. 3(5), 219–227 (2007).
[CrossRef]

P. Wu, Z. Liu, J. J. Yang, A. Flores, and M. R. Wang, “Wavelength-multiplexed submicron holograms for disk-compatible data storage,” Opt. Express 15(26), 17798–17804 (2007).
[CrossRef] [PubMed]

2006 (1)

K. Iizuka, “Welcome to the wonderful world of 3D: introduction, principles and history,” Opt. Photonics News 17(7), 42–51 (2006).
[CrossRef]

2005 (2)

2004 (2)

J. Qi and G. P. Crawford, “Holographically formed polymer dispersed liquid crystal displays,” Displays 25(5), 177–186 (2004).
[CrossRef]

Y. Q. Lu, F. Du, and S. T. Wu, “Polarization switch using thick holographic polymer-dispersed liquid crystal grating,” J. Appl. Phys. 95(3), 810–815 (2004).
[CrossRef]

2002 (1)

A. Natansohn and P. Rochon, “Photoinduced motions in azo-containing polymers,” Chem. Rev. 102(11), 4139–4176 (2002).
[CrossRef] [PubMed]

2001 (2)

P. Wu, D. V. G. L. N. Rao, B. R. Kimball, M. Nakashima, and B. S. DeCristofano, “Nonvolatile grating in an azobenzene polymer with optimized molecular reorientation,” Appl. Phys. Lett. 78(9), 1189–1191 (2001).
[CrossRef]

A. Adibi, K. Buse, and D. Psaltis, “System measure for persistence in holographic recording and application to singly-doped and doubly-doped lithium niobate,” Appl. Opt. 40(29), 5175–5182 (2001).
[CrossRef] [PubMed]

2000 (1)

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci. 30(1), 83–115 (2000).
[CrossRef]

1998 (2)

P. Wu, L. Wang, J. Xu, B. Zou, X. Gong, G. Zhang, G. Tang, W. Chen, and W. Huang, “Transient biphotonic holographic grating in photoisomerizative azo materials,” Phys. Rev. B 57(7), 3874–3880 (1998).
[CrossRef]

D. Psaltis, K. Buse, and A. Adibi, “Non-volatile holographic storage in doubly doped lithiumniobate crystals,” Nature 393(6686), 665–668 (1998).
[CrossRef]

1996 (2)

1995 (2)

D. Psaltis and F. Mok, “Holographic memories,” Sci. Am. 273(5), 70–76 (1995).
[CrossRef] [PubMed]

T. Ikeda and O. Tsutsumi, “Optical switching and image storage by means of azobenzene liquid-crystal films,” Science 268(5219), 1873–1875 (1995).
[CrossRef] [PubMed]

1993 (1)

A. G. Chen and D. J. Brady, “Two‐wavelength reversible holograms in azo‐dye doped nematic liquid crystals,” Appl. Phys. Lett. 62(23), 2920–2922 (1993).
[CrossRef]

1987 (1)

H. C. Külich, “A new approach to read volume holograms at different wavelengths,” Opt. Commun. 64(5), 407–411 (1987).
[CrossRef]

1972 (1)

1971 (1)

J. J. Amodei and D. L. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18(12), 540–542 (1971).
[CrossRef]

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).

Adibi, A.

Amodei, J. J.

J. J. Amodei and D. L. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18(12), 540–542 (1971).
[CrossRef]

Baig, S.

Bashaw, M. C.

Berg, R. H.

R. H. Berg, S. Hvilsted, and P. S. Ramanujam, “Peptide oligomers for holographic data storage,” Nature 383(6600), 505–508 (1996).
[CrossRef]

Bjelkhagen, H. I.

Blanche, P. A.

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[CrossRef] [PubMed]

Brady, D. J.

A. G. Chen and D. J. Brady, “Two‐wavelength reversible holograms in azo‐dye doped nematic liquid crystals,” Appl. Phys. Lett. 62(23), 2920–2922 (1993).
[CrossRef]

Bunning, T. J.

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci. 30(1), 83–115 (2000).
[CrossRef]

Buse, K.

Chen, A. G.

A. G. Chen and D. J. Brady, “Two‐wavelength reversible holograms in azo‐dye doped nematic liquid crystals,” Appl. Phys. Lett. 62(23), 2920–2922 (1993).
[CrossRef]

Chen, W.

P. Wu, L. Wang, J. Xu, B. Zou, X. Gong, G. Zhang, G. Tang, W. Chen, and W. Huang, “Transient biphotonic holographic grating in photoisomerizative azo materials,” Phys. Rev. B 57(7), 3874–3880 (1998).
[CrossRef]

Cho, Y. H.

Y. H. Cho and Y. Kawakami, “A novel process for holographic polymer dispersed liquid crystal system via simultaneous photo-polymerization and siloxane network formation,” Silicon Chem. 3(5), 219–227 (2007).
[CrossRef]

Choi, K.

Crawford, G. P.

J. Qi and G. P. Crawford, “Holographically formed polymer dispersed liquid crystal displays,” Displays 25(5), 177–186 (2004).
[CrossRef]

Daiber, A. J.

de Oliveira, I.

V. Jerez, I. de Oliveira, and J. Frejlich, “Optical recording mechanisms in undoped titanosillenite crystals,” J. Appl. Phys. 109(2), 024901 (2011).
[CrossRef]

Dean, P.

DeCristofano, B. S.

P. Wu, D. V. G. L. N. Rao, B. R. Kimball, M. Nakashima, and B. S. DeCristofano, “Nonvolatile grating in an azobenzene polymer with optimized molecular reorientation,” Appl. Phys. Lett. 78(9), 1189–1191 (2001).
[CrossRef]

Dickinson, M. R.

Du, F.

Y. Q. Lu, F. Du, and S. T. Wu, “Polarization switch using thick holographic polymer-dispersed liquid crystal grating,” J. Appl. Phys. 95(3), 810–815 (2004).
[CrossRef]

Flores, A.

Flores, D.

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[CrossRef] [PubMed]

Frejlich, J.

V. Jerez, I. de Oliveira, and J. Frejlich, “Optical recording mechanisms in undoped titanosillenite crystals,” J. Appl. Phys. 109(2), 024901 (2011).
[CrossRef]

Gong, X.

P. Wu, L. Wang, J. Xu, B. Zou, X. Gong, G. Zhang, G. Tang, W. Chen, and W. Huang, “Transient biphotonic holographic grating in photoisomerizative azo materials,” Phys. Rev. B 57(7), 3874–3880 (1998).
[CrossRef]

Gu, T.

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[CrossRef] [PubMed]

Heanue, J. F.

Hesselink, L.

Huang, W.

P. Wu, L. Wang, J. Xu, B. Zou, X. Gong, G. Zhang, G. Tang, W. Chen, and W. Huang, “Transient biphotonic holographic grating in photoisomerizative azo materials,” Phys. Rev. B 57(7), 3874–3880 (1998).
[CrossRef]

Hvilsted, S.

R. H. Berg, S. Hvilsted, and P. S. Ramanujam, “Peptide oligomers for holographic data storage,” Nature 383(6600), 505–508 (1996).
[CrossRef]

Iizuka, K.

K. Iizuka, “Welcome to the wonderful world of 3D: introduction, principles and history,” Opt. Photonics News 17(7), 42–51 (2006).
[CrossRef]

Ikeda, T.

T. Ikeda and O. Tsutsumi, “Optical switching and image storage by means of azobenzene liquid-crystal films,” Science 268(5219), 1873–1875 (1995).
[CrossRef] [PubMed]

Jeong, K.

Jerez, V.

V. Jerez, I. de Oliveira, and J. Frejlich, “Optical recording mechanisms in undoped titanosillenite crystals,” J. Appl. Phys. 109(2), 024901 (2011).
[CrossRef]

Kawakami, Y.

Y. H. Cho and Y. Kawakami, “A novel process for holographic polymer dispersed liquid crystal system via simultaneous photo-polymerization and siloxane network formation,” Silicon Chem. 3(5), 219–227 (2007).
[CrossRef]

Kim, B. K.

E. H. Kim, J. Y. Woo, and B. K. Kim, “LC dependent electro-optical properties of holographic polymer dispersed liquid crystals,” Displays 29(5), 482–486 (2008).
[CrossRef]

Kim, E. H.

E. H. Kim, J. Y. Woo, and B. K. Kim, “LC dependent electro-optical properties of holographic polymer dispersed liquid crystals,” Displays 29(5), 482–486 (2008).
[CrossRef]

Kim, J.

Kimball, B. R.

P. Wu, D. V. G. L. N. Rao, B. R. Kimball, M. Nakashima, and B. S. DeCristofano, “Nonvolatile grating in an azobenzene polymer with optimized molecular reorientation,” Appl. Phys. Lett. 78(9), 1189–1191 (2001).
[CrossRef]

Köber, S.

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).

Külich, H. C.

H. C. Külich, “A new approach to read volume holograms at different wavelengths,” Opt. Commun. 64(5), 407–411 (1987).
[CrossRef]

Lee, B.

Li, G.

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[CrossRef] [PubMed]

Lim, Y.

Lin, W.

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[CrossRef] [PubMed]

Lin, Y. J.

Liu, Z.

Lu, Y. Q.

Y. Q. Lu, F. Du, and S. T. Wu, “Polarization switch using thick holographic polymer-dispersed liquid crystal grating,” J. Appl. Phys. 95(3), 810–815 (2004).
[CrossRef]

Maloney, W. T.

Meerholz, K.

Mirlis, E.

Moharam, M. G. J.

Mok, F.

D. Psaltis and F. Mok, “Holographic memories,” Sci. Am. 273(5), 70–76 (1995).
[CrossRef] [PubMed]

Nakashima, M.

P. Wu, D. V. G. L. N. Rao, B. R. Kimball, M. Nakashima, and B. S. DeCristofano, “Nonvolatile grating in an azobenzene polymer with optimized molecular reorientation,” Appl. Phys. Lett. 78(9), 1189–1191 (2001).
[CrossRef]

Natansohn, A.

A. Natansohn and P. Rochon, “Photoinduced motions in azo-containing polymers,” Chem. Rev. 102(11), 4139–4176 (2002).
[CrossRef] [PubMed]

Natarajan, L. V.

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci. 30(1), 83–115 (2000).
[CrossRef]

Nolte, D. D.

Norwood, R. A.

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[CrossRef] [PubMed]

Peyghambarian, N.

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[CrossRef] [PubMed]

Prauzner, J.

Psaltis, D.

A. Adibi, K. Buse, and D. Psaltis, “System measure for persistence in holographic recording and application to singly-doped and doubly-doped lithium niobate,” Appl. Opt. 40(29), 5175–5182 (2001).
[CrossRef] [PubMed]

D. Psaltis, K. Buse, and A. Adibi, “Non-volatile holographic storage in doubly doped lithiumniobate crystals,” Nature 393(6686), 665–668 (1998).
[CrossRef]

D. Psaltis and F. Mok, “Holographic memories,” Sci. Am. 273(5), 70–76 (1995).
[CrossRef] [PubMed]

Qi, J.

J. Qi and G. P. Crawford, “Holographically formed polymer dispersed liquid crystal displays,” Displays 25(5), 177–186 (2004).
[CrossRef]

Ramanujam, P. S.

R. H. Berg, S. Hvilsted, and P. S. Ramanujam, “Peptide oligomers for holographic data storage,” Nature 383(6600), 505–508 (1996).
[CrossRef]

Rao, D. V. G. L. N.

P. Wu, D. V. G. L. N. Rao, B. R. Kimball, M. Nakashima, and B. S. DeCristofano, “Nonvolatile grating in an azobenzene polymer with optimized molecular reorientation,” Appl. Phys. Lett. 78(9), 1189–1191 (2001).
[CrossRef]

Ren, H.

Rochon, P.

A. Natansohn and P. Rochon, “Photoinduced motions in azo-containing polymers,” Chem. Rev. 102(11), 4139–4176 (2002).
[CrossRef] [PubMed]

Rokutanda, S.

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[CrossRef] [PubMed]

Salvador, M.

Snyder, R.

St Hilaire, P.

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[CrossRef] [PubMed]

Staebler, D. L.

J. J. Amodei and D. L. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18(12), 540–542 (1971).
[CrossRef]

Sun, S. Q.

Sutherland, R. L.

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci. 30(1), 83–115 (2000).
[CrossRef]

Tabiryan, N.

Tang, G.

P. Wu, L. Wang, J. Xu, B. Zou, X. Gong, G. Zhang, G. Tang, W. Chen, and W. Huang, “Transient biphotonic holographic grating in photoisomerizative azo materials,” Phys. Rev. B 57(7), 3874–3880 (1998).
[CrossRef]

Tay, S.

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[CrossRef] [PubMed]

Thaxter, J. B.

Thomas, J.

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[CrossRef] [PubMed]

Tondiglia, V. P.

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci. 30(1), 83–115 (2000).
[CrossRef]

Tsutsumi, O.

T. Ikeda and O. Tsutsumi, “Optical switching and image storage by means of azobenzene liquid-crystal films,” Science 268(5219), 1873–1875 (1995).
[CrossRef] [PubMed]

Tunç, A. V.

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[CrossRef] [PubMed]

Turek, J. J.

Voorakaranam, R.

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[CrossRef] [PubMed]

Wang, L.

P. Wu, L. Wang, J. Xu, B. Zou, X. Gong, G. Zhang, G. Tang, W. Chen, and W. Huang, “Transient biphotonic holographic grating in photoisomerizative azo materials,” Phys. Rev. B 57(7), 3874–3880 (1998).
[CrossRef]

Wang, M. R.

Wang, P.

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[CrossRef] [PubMed]

West, D. P.

Woo, J. Y.

E. H. Kim, J. Y. Woo, and B. K. Kim, “LC dependent electro-optical properties of holographic polymer dispersed liquid crystals,” Displays 29(5), 482–486 (2008).
[CrossRef]

Wu, P.

P. Wu, S. Q. Sun, S. Baig, and M. R. Wang, “Nanoscale optical reinforcement for enhanced reversible holography,” Opt. Express 20(3), 3091–3097 (2012).
[CrossRef] [PubMed]

P. Wu, Z. Liu, J. J. Yang, A. Flores, and M. R. Wang, “Wavelength-multiplexed submicron holograms for disk-compatible data storage,” Opt. Express 15(26), 17798–17804 (2007).
[CrossRef] [PubMed]

P. Wu, D. V. G. L. N. Rao, B. R. Kimball, M. Nakashima, and B. S. DeCristofano, “Nonvolatile grating in an azobenzene polymer with optimized molecular reorientation,” Appl. Phys. Lett. 78(9), 1189–1191 (2001).
[CrossRef]

P. Wu, L. Wang, J. Xu, B. Zou, X. Gong, G. Zhang, G. Tang, W. Chen, and W. Huang, “Transient biphotonic holographic grating in photoisomerizative azo materials,” Phys. Rev. B 57(7), 3874–3880 (1998).
[CrossRef]

Wu, S. T.

S. Xu, H. Ren, Y. J. Lin, M. G. J. Moharam, S. T. Wu, and N. Tabiryan, “Adaptive liquid lens actuated by photo-polymer,” Opt. Express 17(20), 17590–17595 (2009).
[CrossRef] [PubMed]

Y. Q. Lu, F. Du, and S. T. Wu, “Polarization switch using thick holographic polymer-dispersed liquid crystal grating,” J. Appl. Phys. 95(3), 810–815 (2004).
[CrossRef]

Xu, J.

P. Wu, L. Wang, J. Xu, B. Zou, X. Gong, G. Zhang, G. Tang, W. Chen, and W. Huang, “Transient biphotonic holographic grating in photoisomerizative azo materials,” Phys. Rev. B 57(7), 3874–3880 (1998).
[CrossRef]

Xu, S.

Yamamoto, M.

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[CrossRef] [PubMed]

Yang, J. J.

Zhang, G.

P. Wu, L. Wang, J. Xu, B. Zou, X. Gong, G. Zhang, G. Tang, W. Chen, and W. Huang, “Transient biphotonic holographic grating in photoisomerizative azo materials,” Phys. Rev. B 57(7), 3874–3880 (1998).
[CrossRef]

Zou, B.

P. Wu, L. Wang, J. Xu, B. Zou, X. Gong, G. Zhang, G. Tang, W. Chen, and W. Huang, “Transient biphotonic holographic grating in photoisomerizative azo materials,” Phys. Rev. B 57(7), 3874–3880 (1998).
[CrossRef]

Annu. Rev. Mater. Sci. (1)

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci. 30(1), 83–115 (2000).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (3)

J. J. Amodei and D. L. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18(12), 540–542 (1971).
[CrossRef]

P. Wu, D. V. G. L. N. Rao, B. R. Kimball, M. Nakashima, and B. S. DeCristofano, “Nonvolatile grating in an azobenzene polymer with optimized molecular reorientation,” Appl. Phys. Lett. 78(9), 1189–1191 (2001).
[CrossRef]

A. G. Chen and D. J. Brady, “Two‐wavelength reversible holograms in azo‐dye doped nematic liquid crystals,” Appl. Phys. Lett. 62(23), 2920–2922 (1993).
[CrossRef]

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).

Chem. Rev. (1)

A. Natansohn and P. Rochon, “Photoinduced motions in azo-containing polymers,” Chem. Rev. 102(11), 4139–4176 (2002).
[CrossRef] [PubMed]

Displays (2)

J. Qi and G. P. Crawford, “Holographically formed polymer dispersed liquid crystal displays,” Displays 25(5), 177–186 (2004).
[CrossRef]

E. H. Kim, J. Y. Woo, and B. K. Kim, “LC dependent electro-optical properties of holographic polymer dispersed liquid crystals,” Displays 29(5), 482–486 (2008).
[CrossRef]

J. Appl. Phys. (2)

Y. Q. Lu, F. Du, and S. T. Wu, “Polarization switch using thick holographic polymer-dispersed liquid crystal grating,” J. Appl. Phys. 95(3), 810–815 (2004).
[CrossRef]

V. Jerez, I. de Oliveira, and J. Frejlich, “Optical recording mechanisms in undoped titanosillenite crystals,” J. Appl. Phys. 109(2), 024901 (2011).
[CrossRef]

Nature (3)

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[CrossRef] [PubMed]

R. H. Berg, S. Hvilsted, and P. S. Ramanujam, “Peptide oligomers for holographic data storage,” Nature 383(6600), 505–508 (1996).
[CrossRef]

D. Psaltis, K. Buse, and A. Adibi, “Non-volatile holographic storage in doubly doped lithiumniobate crystals,” Nature 393(6686), 665–668 (1998).
[CrossRef]

Opt. Commun. (1)

H. C. Külich, “A new approach to read volume holograms at different wavelengths,” Opt. Commun. 64(5), 407–411 (1987).
[CrossRef]

Opt. Express (5)

Opt. Lett. (2)

Opt. Photonics News (1)

K. Iizuka, “Welcome to the wonderful world of 3D: introduction, principles and history,” Opt. Photonics News 17(7), 42–51 (2006).
[CrossRef]

Phys. Rev. B (1)

P. Wu, L. Wang, J. Xu, B. Zou, X. Gong, G. Zhang, G. Tang, W. Chen, and W. Huang, “Transient biphotonic holographic grating in photoisomerizative azo materials,” Phys. Rev. B 57(7), 3874–3880 (1998).
[CrossRef]

Sci. Am. (1)

D. Psaltis and F. Mok, “Holographic memories,” Sci. Am. 273(5), 70–76 (1995).
[CrossRef] [PubMed]

Science (1)

T. Ikeda and O. Tsutsumi, “Optical switching and image storage by means of azobenzene liquid-crystal films,” Science 268(5219), 1873–1875 (1995).
[CrossRef] [PubMed]

Silicon Chem. (1)

Y. H. Cho and Y. Kawakami, “A novel process for holographic polymer dispersed liquid crystal system via simultaneous photo-polymerization and siloxane network formation,” Silicon Chem. 3(5), 219–227 (2007).
[CrossRef]

Other (4)

J. F. Rabek, Photochemistry and Photophysics (CRC, Boca Raton, FL, 1990), 120–141.

J. P. Fouassier and J. F. Rabek, Lasers in Polymer Science and Technology: Applications (CRC Press, 1990).

S. A. Benton and V. M. Bove, Jr., Holographic Imaging (Wiley, Hoboken, NJ, 2008).

F. Träger, Handbook of Lasers and Optics (Springer; 2007) Part D, 20.7, 1234–1235.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Mechanism of recording a non-volatile and updatable hologram based on unique photoisomerization and molecular reorientation features. The Azo-chromophore has two states (shown on the top), elongated trans form with a molecular axis and bent cis form with no axis. (a) The chromophores are initially in their stable trans state (blue strips) with randomly-distributed reorientation. (b) Upon short-wavelength light irradiation, isomerized to their cis state (red circles). (c) Molecular reorientation occurs only in the bright interference fringes. (d) A non-volatile grating is formed after turning off all light beams.

Fig. 2
Fig. 2

(a) Optical enhancement due to the collective alignment of LC molecules nearby polymer chains. (b) Experimental results of non-volatile holography using the same wavelength for both recording and reading. Inlaid: The recorded information can be erased thermally (within a few seconds).

Fig. 3
Fig. 3

Schematic of proposed large-area updatable and non-volatile holographic recording. (a) A non-volatile hologram is formed in the area illuminated by the object beam combined with an incoherent light beam. Instead of sample movement, a 2-D beam steering device can be used to scan the combined beams. (b) The reference beam can be used to reconstruct the stored holograms by turning off the coherent object beam along with the incoherent light.

Fig. 4
Fig. 4

Experimental result of a hologram reconstruction. The recorded surface-relief image contains both spatial and phase information.

Metrics