Abstract

A biologically inspired compound-eye structure, which composes of ~5,867 honeycomb-patterned microlenses, was fabricated on a hemispherical shell. The fabrication process was simple and low-cost, which involves a femtosecond laser-enhanced wet etching and casting process followed by a thermomechanical process to convert the film into a hemispherical surface. By optimizing the parameters of thermomechanical process to form the curvilinear surface, the experimental result shows that the microlenses are omnidirectionally aligned on the dome with lens diameters of ~85 µm and the angle between two lens of ~2°, and the individual microlenses have rudimentary focusing and imaging properties. The artificial compound-eye structure fabricated by this method has great potential applications in scale-invariant processing, robot vision, and fast motion detection.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Kim, K. H. Jeong, and L. P. Lee, “Artificial ommatidia by self-aligned microlenses and waveguides,” Opt. Lett. 30(1), 5–7 (2005).
    [CrossRef] [PubMed]
  2. A. D. Straw, E. J. Warrant, and D. C. O’Carroll, “A “bright zone” in male hoverfly (Eristalis tenax) eyes and associated faster motion detection and increased contrast sensitivity,” J. Exp. Biol. 209(21), 4339–4354 (2006).
    [CrossRef] [PubMed]
  3. A. Brückner, J. Duparré, P. Dannberg, A. Bräuer, and A. Tünnermann, “Artificial neural superposition eye,” Opt. Express 15(19), 11922–11933 (2007).
    [CrossRef] [PubMed]
  4. K. H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science 312(5773), 557–561 (2006).
    [CrossRef] [PubMed]
  5. J. W. Kimball, “The compound eye,” Kimball’s Biology Pages, http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/C/CompoundEye.html .
  6. G. L. Lin and C. C. Cheng, “An artificial compound eye tracking pan-tilt motion,” IAENG Int. J. Comput. Sci. 35, 242–248 (2008).
  7. K. Hamanaka and H. Koshi, “An artificial compound eye using a microlens array and it’s application to scale-invariant processing,” Opt. Rev. 3(4), 264–268 (1996).
    [CrossRef]
  8. L. Lichtensteiger and P. Eggenberger, “Evolving the morphology of a compound eye on a robot,” 1999 Third European Workshop on Advanced Mobile Robots (Eurobot’ 99). Proceedings (Cat. No.99EX355) (Institute of Electrical and Electronics Engineers, Zurich, Switzerland, 1999), 127–134.
  9. R. Shogenji, Y. Kitamura, K. Yamada, S. Miyatake, and J. Tanida, “Bimodal fingerprint capturing system based on compound-eye imaging module,” Appl. Opt. 43(6), 1355–1359 (2004).
    [CrossRef] [PubMed]
  10. J. Duparré, F. Wippermann, P. Dannberg, and A. Bräuer, “Artificial compound eye zoom camera,” Bioinspir. Biomim. 3(4), 046008 (2008).
    [CrossRef] [PubMed]
  11. J. Tanida, T. Kumagai, K. Yamada, S. Miyatake, K. Ishida, T. Morimoto, N. Kondou, D. Miyazaki, and Y. Ichioka, “Thin observation module by bound optics (TOMBO): concept and experimental verification,” Appl. Opt. 40(11), 1806–1813 (2001).
    [CrossRef] [PubMed]
  12. J. W. Duparré and F. C. Wippermann, “Micro-optical artificial compound eyes,” Bioinspir. Biomim. 1(1), R1–R16 (2006).
    [CrossRef] [PubMed]
  13. J. Duparré, P. Dannberg, P. Schreiber, A. Bräuer, and A. Tünnermann, “Artificial apposition compound eye fabricated by micro-optics technology,” Appl. Opt. 43(22), 4303–4310 (2004).
    [CrossRef] [PubMed]
  14. D. Radtke, J. Duparré, U. D. Zeitner, and A. Tünnermann, “Laser lithographic fabrication and characterization of a spherical artificial compound eye,” Opt. Express 15(6), 3067–3077 (2007).
    [CrossRef] [PubMed]
  15. X. F. Gao, X. Yan, X. Yao, L. Xu, K. Zhang, J. H. Zhang, B. Yang, and L. Jiang, “The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography,” Adv. Mater. (Deerfield Beach Fla.) 19(17), 2213–2217 (2007).
    [CrossRef]
  16. L. P. Lee and R. Szema, “Inspirations from biological optics for advanced photonic systems,” Science 310(5751), 1148–1150 (2005).
    [CrossRef] [PubMed]
  17. F. H. Zhao, Y. J. Xie, S. P. He, S. Fu, and Z. W. Lu, “Single step fabrication of microlens arrays with hybrid HfO2-SiO2 sol-gel glass on conventional lens surface,” Opt. Express 13(15), 5846–5852 (2005).
    [CrossRef] [PubMed]
  18. F. Chen, H. W. Liu, Q. Yang, X. H. Wang, C. Hou, H. Bian, W. W. Liang, J. H. Si, and X. Hou, “Maskless fabrication of concave microlens arrays on silica glasses by a femtosecond-laser-enhanced local wet etching method,” Opt. Express 18(19), 20334–20343 (2010).
    [CrossRef] [PubMed]
  19. http://www.lzschool.com/show.aspx?id=12135&cid=71&page=13 .
  20. R. Völkel, M. Eisner, and K. J. Weible, “Miniaturized imaging systems,” Microelectron. Eng. 67–68, 461–472 (2003).
    [CrossRef]
  21. R. S. Stein and J. Powers, Topics in Polymer Physics (Imperial College Press, 2006), Chap. 1.
  22. D. Bower, An Introduction to Polymer Physics (Cambridge University Press, 2002), Chap. 6.
  23. B. Greiner, W. A. Ribi, and E. J. Warrant, “Retinal and optical adaptations for nocturnal vision in the halictid bee Megalopta genalis,” Cell Tissue Res. 316(3), 377–390 (2004).
    [CrossRef] [PubMed]
  24. D. G. Stavenga, “Angular and spectral sensitivity of fly photoreceptors. II. Dependence on facet lens F-number and rhabdomere type in Drosophila,” J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 189(3), 189–202 (2003).
    [PubMed]
  25. H. B. Barlow, “The size of ommatidia in apposition eyes,” J. Exp. Biol. 29, 667–674 (1952).

2010 (1)

2008 (1)

J. Duparré, F. Wippermann, P. Dannberg, and A. Bräuer, “Artificial compound eye zoom camera,” Bioinspir. Biomim. 3(4), 046008 (2008).
[CrossRef] [PubMed]

2007 (3)

A. Brückner, J. Duparré, P. Dannberg, A. Bräuer, and A. Tünnermann, “Artificial neural superposition eye,” Opt. Express 15(19), 11922–11933 (2007).
[CrossRef] [PubMed]

D. Radtke, J. Duparré, U. D. Zeitner, and A. Tünnermann, “Laser lithographic fabrication and characterization of a spherical artificial compound eye,” Opt. Express 15(6), 3067–3077 (2007).
[CrossRef] [PubMed]

X. F. Gao, X. Yan, X. Yao, L. Xu, K. Zhang, J. H. Zhang, B. Yang, and L. Jiang, “The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography,” Adv. Mater. (Deerfield Beach Fla.) 19(17), 2213–2217 (2007).
[CrossRef]

2006 (3)

K. H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science 312(5773), 557–561 (2006).
[CrossRef] [PubMed]

A. D. Straw, E. J. Warrant, and D. C. O’Carroll, “A “bright zone” in male hoverfly (Eristalis tenax) eyes and associated faster motion detection and increased contrast sensitivity,” J. Exp. Biol. 209(21), 4339–4354 (2006).
[CrossRef] [PubMed]

J. W. Duparré and F. C. Wippermann, “Micro-optical artificial compound eyes,” Bioinspir. Biomim. 1(1), R1–R16 (2006).
[CrossRef] [PubMed]

2005 (3)

2004 (3)

2003 (2)

D. G. Stavenga, “Angular and spectral sensitivity of fly photoreceptors. II. Dependence on facet lens F-number and rhabdomere type in Drosophila,” J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 189(3), 189–202 (2003).
[PubMed]

R. Völkel, M. Eisner, and K. J. Weible, “Miniaturized imaging systems,” Microelectron. Eng. 67–68, 461–472 (2003).
[CrossRef]

2001 (1)

1996 (1)

K. Hamanaka and H. Koshi, “An artificial compound eye using a microlens array and it’s application to scale-invariant processing,” Opt. Rev. 3(4), 264–268 (1996).
[CrossRef]

1952 (1)

H. B. Barlow, “The size of ommatidia in apposition eyes,” J. Exp. Biol. 29, 667–674 (1952).

Barlow, H. B.

H. B. Barlow, “The size of ommatidia in apposition eyes,” J. Exp. Biol. 29, 667–674 (1952).

Bian, H.

Bräuer, A.

Brückner, A.

Chen, F.

Dannberg, P.

Duparré, J.

Duparré, J. W.

J. W. Duparré and F. C. Wippermann, “Micro-optical artificial compound eyes,” Bioinspir. Biomim. 1(1), R1–R16 (2006).
[CrossRef] [PubMed]

Eisner, M.

R. Völkel, M. Eisner, and K. J. Weible, “Miniaturized imaging systems,” Microelectron. Eng. 67–68, 461–472 (2003).
[CrossRef]

Fu, S.

Gao, X. F.

X. F. Gao, X. Yan, X. Yao, L. Xu, K. Zhang, J. H. Zhang, B. Yang, and L. Jiang, “The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography,” Adv. Mater. (Deerfield Beach Fla.) 19(17), 2213–2217 (2007).
[CrossRef]

Greiner, B.

B. Greiner, W. A. Ribi, and E. J. Warrant, “Retinal and optical adaptations for nocturnal vision in the halictid bee Megalopta genalis,” Cell Tissue Res. 316(3), 377–390 (2004).
[CrossRef] [PubMed]

Hamanaka, K.

K. Hamanaka and H. Koshi, “An artificial compound eye using a microlens array and it’s application to scale-invariant processing,” Opt. Rev. 3(4), 264–268 (1996).
[CrossRef]

He, S. P.

Hou, C.

Hou, X.

Ichioka, Y.

Ishida, K.

Jeong, K. H.

K. H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science 312(5773), 557–561 (2006).
[CrossRef] [PubMed]

J. Kim, K. H. Jeong, and L. P. Lee, “Artificial ommatidia by self-aligned microlenses and waveguides,” Opt. Lett. 30(1), 5–7 (2005).
[CrossRef] [PubMed]

Jiang, L.

X. F. Gao, X. Yan, X. Yao, L. Xu, K. Zhang, J. H. Zhang, B. Yang, and L. Jiang, “The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography,” Adv. Mater. (Deerfield Beach Fla.) 19(17), 2213–2217 (2007).
[CrossRef]

Kim, J.

K. H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science 312(5773), 557–561 (2006).
[CrossRef] [PubMed]

J. Kim, K. H. Jeong, and L. P. Lee, “Artificial ommatidia by self-aligned microlenses and waveguides,” Opt. Lett. 30(1), 5–7 (2005).
[CrossRef] [PubMed]

Kitamura, Y.

Kondou, N.

Koshi, H.

K. Hamanaka and H. Koshi, “An artificial compound eye using a microlens array and it’s application to scale-invariant processing,” Opt. Rev. 3(4), 264–268 (1996).
[CrossRef]

Kumagai, T.

Lee, L. P.

K. H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science 312(5773), 557–561 (2006).
[CrossRef] [PubMed]

J. Kim, K. H. Jeong, and L. P. Lee, “Artificial ommatidia by self-aligned microlenses and waveguides,” Opt. Lett. 30(1), 5–7 (2005).
[CrossRef] [PubMed]

L. P. Lee and R. Szema, “Inspirations from biological optics for advanced photonic systems,” Science 310(5751), 1148–1150 (2005).
[CrossRef] [PubMed]

Liang, W. W.

Liu, H. W.

Lu, Z. W.

Miyatake, S.

Miyazaki, D.

Morimoto, T.

O’Carroll, D. C.

A. D. Straw, E. J. Warrant, and D. C. O’Carroll, “A “bright zone” in male hoverfly (Eristalis tenax) eyes and associated faster motion detection and increased contrast sensitivity,” J. Exp. Biol. 209(21), 4339–4354 (2006).
[CrossRef] [PubMed]

Radtke, D.

Ribi, W. A.

B. Greiner, W. A. Ribi, and E. J. Warrant, “Retinal and optical adaptations for nocturnal vision in the halictid bee Megalopta genalis,” Cell Tissue Res. 316(3), 377–390 (2004).
[CrossRef] [PubMed]

Schreiber, P.

Shogenji, R.

Si, J. H.

Stavenga, D. G.

D. G. Stavenga, “Angular and spectral sensitivity of fly photoreceptors. II. Dependence on facet lens F-number and rhabdomere type in Drosophila,” J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 189(3), 189–202 (2003).
[PubMed]

Straw, A. D.

A. D. Straw, E. J. Warrant, and D. C. O’Carroll, “A “bright zone” in male hoverfly (Eristalis tenax) eyes and associated faster motion detection and increased contrast sensitivity,” J. Exp. Biol. 209(21), 4339–4354 (2006).
[CrossRef] [PubMed]

Szema, R.

L. P. Lee and R. Szema, “Inspirations from biological optics for advanced photonic systems,” Science 310(5751), 1148–1150 (2005).
[CrossRef] [PubMed]

Tanida, J.

Tünnermann, A.

Völkel, R.

R. Völkel, M. Eisner, and K. J. Weible, “Miniaturized imaging systems,” Microelectron. Eng. 67–68, 461–472 (2003).
[CrossRef]

Wang, X. H.

Warrant, E. J.

A. D. Straw, E. J. Warrant, and D. C. O’Carroll, “A “bright zone” in male hoverfly (Eristalis tenax) eyes and associated faster motion detection and increased contrast sensitivity,” J. Exp. Biol. 209(21), 4339–4354 (2006).
[CrossRef] [PubMed]

B. Greiner, W. A. Ribi, and E. J. Warrant, “Retinal and optical adaptations for nocturnal vision in the halictid bee Megalopta genalis,” Cell Tissue Res. 316(3), 377–390 (2004).
[CrossRef] [PubMed]

Weible, K. J.

R. Völkel, M. Eisner, and K. J. Weible, “Miniaturized imaging systems,” Microelectron. Eng. 67–68, 461–472 (2003).
[CrossRef]

Wippermann, F.

J. Duparré, F. Wippermann, P. Dannberg, and A. Bräuer, “Artificial compound eye zoom camera,” Bioinspir. Biomim. 3(4), 046008 (2008).
[CrossRef] [PubMed]

Wippermann, F. C.

J. W. Duparré and F. C. Wippermann, “Micro-optical artificial compound eyes,” Bioinspir. Biomim. 1(1), R1–R16 (2006).
[CrossRef] [PubMed]

Xie, Y. J.

Xu, L.

X. F. Gao, X. Yan, X. Yao, L. Xu, K. Zhang, J. H. Zhang, B. Yang, and L. Jiang, “The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography,” Adv. Mater. (Deerfield Beach Fla.) 19(17), 2213–2217 (2007).
[CrossRef]

Yamada, K.

Yan, X.

X. F. Gao, X. Yan, X. Yao, L. Xu, K. Zhang, J. H. Zhang, B. Yang, and L. Jiang, “The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography,” Adv. Mater. (Deerfield Beach Fla.) 19(17), 2213–2217 (2007).
[CrossRef]

Yang, B.

X. F. Gao, X. Yan, X. Yao, L. Xu, K. Zhang, J. H. Zhang, B. Yang, and L. Jiang, “The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography,” Adv. Mater. (Deerfield Beach Fla.) 19(17), 2213–2217 (2007).
[CrossRef]

Yang, Q.

Yao, X.

X. F. Gao, X. Yan, X. Yao, L. Xu, K. Zhang, J. H. Zhang, B. Yang, and L. Jiang, “The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography,” Adv. Mater. (Deerfield Beach Fla.) 19(17), 2213–2217 (2007).
[CrossRef]

Zeitner, U. D.

Zhang, J. H.

X. F. Gao, X. Yan, X. Yao, L. Xu, K. Zhang, J. H. Zhang, B. Yang, and L. Jiang, “The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography,” Adv. Mater. (Deerfield Beach Fla.) 19(17), 2213–2217 (2007).
[CrossRef]

Zhang, K.

X. F. Gao, X. Yan, X. Yao, L. Xu, K. Zhang, J. H. Zhang, B. Yang, and L. Jiang, “The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography,” Adv. Mater. (Deerfield Beach Fla.) 19(17), 2213–2217 (2007).
[CrossRef]

Zhao, F. H.

Adv. Mater. (Deerfield Beach Fla.) (1)

X. F. Gao, X. Yan, X. Yao, L. Xu, K. Zhang, J. H. Zhang, B. Yang, and L. Jiang, “The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography,” Adv. Mater. (Deerfield Beach Fla.) 19(17), 2213–2217 (2007).
[CrossRef]

Appl. Opt. (3)

Bioinspir. Biomim. (2)

J. Duparré, F. Wippermann, P. Dannberg, and A. Bräuer, “Artificial compound eye zoom camera,” Bioinspir. Biomim. 3(4), 046008 (2008).
[CrossRef] [PubMed]

J. W. Duparré and F. C. Wippermann, “Micro-optical artificial compound eyes,” Bioinspir. Biomim. 1(1), R1–R16 (2006).
[CrossRef] [PubMed]

Cell Tissue Res. (1)

B. Greiner, W. A. Ribi, and E. J. Warrant, “Retinal and optical adaptations for nocturnal vision in the halictid bee Megalopta genalis,” Cell Tissue Res. 316(3), 377–390 (2004).
[CrossRef] [PubMed]

J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. (1)

D. G. Stavenga, “Angular and spectral sensitivity of fly photoreceptors. II. Dependence on facet lens F-number and rhabdomere type in Drosophila,” J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 189(3), 189–202 (2003).
[PubMed]

J. Exp. Biol. (2)

H. B. Barlow, “The size of ommatidia in apposition eyes,” J. Exp. Biol. 29, 667–674 (1952).

A. D. Straw, E. J. Warrant, and D. C. O’Carroll, “A “bright zone” in male hoverfly (Eristalis tenax) eyes and associated faster motion detection and increased contrast sensitivity,” J. Exp. Biol. 209(21), 4339–4354 (2006).
[CrossRef] [PubMed]

Microelectron. Eng. (1)

R. Völkel, M. Eisner, and K. J. Weible, “Miniaturized imaging systems,” Microelectron. Eng. 67–68, 461–472 (2003).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Opt. Rev. (1)

K. Hamanaka and H. Koshi, “An artificial compound eye using a microlens array and it’s application to scale-invariant processing,” Opt. Rev. 3(4), 264–268 (1996).
[CrossRef]

Science (2)

K. H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science 312(5773), 557–561 (2006).
[CrossRef] [PubMed]

L. P. Lee and R. Szema, “Inspirations from biological optics for advanced photonic systems,” Science 310(5751), 1148–1150 (2005).
[CrossRef] [PubMed]

Other (6)

http://www.lzschool.com/show.aspx?id=12135&cid=71&page=13 .

J. W. Kimball, “The compound eye,” Kimball’s Biology Pages, http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/C/CompoundEye.html .

G. L. Lin and C. C. Cheng, “An artificial compound eye tracking pan-tilt motion,” IAENG Int. J. Comput. Sci. 35, 242–248 (2008).

L. Lichtensteiger and P. Eggenberger, “Evolving the morphology of a compound eye on a robot,” 1999 Third European Workshop on Advanced Mobile Robots (Eurobot’ 99). Proceedings (Cat. No.99EX355) (Institute of Electrical and Electronics Engineers, Zurich, Switzerland, 1999), 127–134.

R. S. Stein and J. Powers, Topics in Polymer Physics (Imperial College Press, 2006), Chap. 1.

D. Bower, An Introduction to Polymer Physics (Cambridge University Press, 2002), Chap. 6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic illustration of fabrication process of artificial compound eye structure (a) three-step process to produce hexagonal-packed concave microlens array on glass. (b) surface profiles of glass MLA. (c) casting and thermomechanical process to produce artificial compound eye structure.

Fig. 2
Fig. 2

(a) a fly’s compound eye in nature. (b) a macro picture of the artificial compound eye, (c) and (d) the FE-SEM images with different magnifications.

Fig. 3
Fig. 3

Parameters of casting and thermomechanical process (a) thickness of fabricated PMMA thin films versus areas of MLA molds in different concentrations. (b) diameters of hemispherical shells versus processing temperatures.

Fig. 4
Fig. 4

Structure of the planar MLA thin film fabricated through casting. (a) FE-SEM image of surface structure of planar film, and (b) a line-scan of surface profilometry of the planar film.

Fig. 5
Fig. 5

(a) Elastic modulus versus temperature for polymer. Tg is the glass-transition temperature. (b) relative deformation rate of microlens diameter versus X-axis of nine microlens on the same longitudinal section of the dome.

Fig. 6
Fig. 6

Schematic illustration of optical properties of artificial compound eye (a) A simple testing system to demonstrate the shape uniformity of artificial compound eye (b) diffraction pattern of microlens (c) a microscope projection experiment to illustrate the imaging function of artificial compound eye (d) miniaturized letter are observed on every microlens of artificial compound eye when imaged through the objective lens.

Tables (1)

Tables Icon

Table 1 Comparisons Between Artificial and Natural Compound Eyes

Metrics