Abstract

We present a novel system that can measure absolute distances of up to 300 mm with an uncertainty of the order of one micrometer, within a timeframe of 40 seconds. The proposed system uses a Michelson interferometer, a tunable laser, a wavelength meter and a computer for analysis. The principle of synthetic wave creation is used in a novel way in that the system employs an initial low precision estimate of the distance, obtained using a triangulation, or time-of-flight, laser system, or similar, and then iterates through a sequence of progressively smaller synthetic wavelengths until it reaches micrometer uncertainties in the determination of the distance. A further novel feature of the system is its use of Fourier transform phase analysis techniques to achieve sub-wavelength accuracy. This method has the major advantages of being relatively simple to realize, offering demonstrated high relative precisions better than 5 × 10?5. Finally, the fact that this device does not require a continuous line-of-sight to the target as is the case with other configurations offers significant advantages.

© 2012 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Ikezawa, K. Isozaki, E. Ogita, and T. Ueda, “Measurement of absolute distance employing a tunable CW dye laser,” IEEE Trans. Instrum. Meas. 41(1), 36–39 (1992).
    [CrossRef]
  2. C. E. Towers, D. T. Reid, W. N. MacPherson, P. R. J. Maier, and D. P. Towers, “Fibre interferometer for multi-wavelength interferometry with a femtosecond laser,” J. Opt. A, Pure Appl. Opt. 7(6), S415–S419 (2005).
    [CrossRef]
  3. R. Dändliker, Y. Salvad, and E. Zimmermann, “Distance measurement by multiple-wavelength interferometry,” J. Opt. 29(3), 105–114 (1998).
    [CrossRef]
  4. S. Le Floch, Y. Salvadé, R. Mitouassiwou, and P. Favre, “Radio frequency controlled synthetic wavelength sweep for absolute distance measurement by optical interferometry,” Appl. Opt. 47(16), 3027–3031 (2008).
    [CrossRef] [PubMed]
  5. L. Hartmann, K. Meiners-Hagen, and A. Abou-Zeid, “An absolute distance interferometer with two external cavity diode lasers,” Meas. Sci. Technol. 19(4), 045307 (2008).
    [CrossRef]
  6. J. Thiel, T. Pfeifer, and M. Hartmann, “Interferometric measurement of absolute distances of up to 40 m,” Measurement 16(1), 1–6 (1995).
    [CrossRef]
  7. H.-J. Yang, S. Nyberg, and K. Riles, “High-precision absolute distance measurement using dual-laser frequency scanned interferometry under realistic conditions,” Nucl. Instrum. Methods Phys. Res. A 575(3), 395–401 (2007).
    [CrossRef]
  8. G. P. Barwood, P. Gill, and W. R. C. Rowley, “High-accuracy length metrology using multiple-stage swept-frequency interferometry with laser diodes,” Meas. Sci. Technol. 9(7), 1036–1041 (1998).
    [CrossRef]
  9. T. Kinder and K.-D. Salewski, “Absolute distance interferometer with grating-stabilized tunable diode laser at 633 nm,” J. Opt. A, Pure Appl. Opt. 4(6), S364–S368 (2002).
    [CrossRef]
  10. L. Shaozeng and Z. Yang, “Contribution of laser technology in the development of metrology,” Measurement 7(2), 55–59 (1989).
    [CrossRef]
  11. A. Cabral and J. Rebordão, “Accuracy of frequency-sweeping interferometry for absolute distance metrology,” Opt. Eng. 46(073602), 1–10 (2007).
  12. P. A. Coe, D. F. Howell, and R. B. Nickerson, “Frequency scanning interferometry in ATLAS: remote, multiple, simultaneous and precise distance measurements in A hostile environment,” Meas. Sci. Technol. 15(11), 2175–2187 (2004).
    [CrossRef]
  13. S. M. Gibson, P. A. Coe, A. Mitra, D. F. Howell, and R. B. Nickerson, “Coordinate measurement in 2-D and 3-D geometries using frequency scanning interferometry,” Opt. Lasers Eng. 43(7), 815–831 (2005).
    [CrossRef]
  14. R. Schödel, “Ultra-high accuracy thermal expansion measurements with PTB’s precision interferometer,” Meas. Sci. Technol. 19(8), 084003 (2008).
    [CrossRef]
  15. A. Abou-Zeid, K. H. Bechstein, C. Enghave, and H. Kunzmann, “A multichannel diode laser interferometer for displacement measurements on a CMM,” Annals of the ClRP 45(1), 489–492 (1996).
    [CrossRef]
  16. U. Minoni, L. Rovati, M. Bonardi, and F. Docchio, “Metrological characterization of a novel absolute distance meter based on dispersive comb-spectrum interferometry,” in Proc. Of IEEE Instrumentation and Measurement Technology Conference, (St. Paul, Minnesota USA, 18–21 May 1998), pp. 1137–1140.
  17. Y. Salvadé, N. Schuhler, S. Lévêque, and S. Le Floch, “High-accuracy absolute distance measurement using frequency comb referenced multiwavelength source,” Appl. Opt. 47(14), 2715–2720 (2008).
    [CrossRef] [PubMed]
  18. D. Guo and M. Wang, “Self-mixing interferometry based on a double-modulation technique for absolute distance measurement,” Appl. Opt. 46(9), 1486–1491 (2007).
    [CrossRef] [PubMed]
  19. P. B. Harrison, R. R. J. Maier, J. S. Barton, J. D. C. Jones, S. McCulloch, and G. Burnell, “Component position measurement through polymer material by broadband absolute distance interferometry,” Meas. Sci. Technol. 16(10), 2066–2071 (2005).
    [CrossRef]
  20. A. Majumdar and H. Huang, “Development of an in-fiber white-light interferometric distance sensor for absolute measurement of arbitrary small distances,” Appl. Opt. 47(15), 2821–2828 (2008).
    [CrossRef] [PubMed]
  21. M. Norgia, G. Giuliani, and S. Donati, “Absolute distance measurement with improved accuracy using laser diode self-mixing interferometry in a closed loop,” IEEE Trans. Instrum. Meas. 56(5), 1894–1900 (2007).
    [CrossRef]
  22. V. Gusmeroli and M. Martinelli, “Two-wavelength interferometry filtering by superluminescent source,” Opt. Commun. 94, 309–312 (1992).
    [CrossRef]
  23. L. Kervevan, H. Gilles, S. Girard, M. Laroche, and Y. Monfort, “Absolute distance measurement with heterodyne optical feedback on a Yb:Er glass laser,” Appl. Opt. 45(17), 4084–4091 (2006).
    [CrossRef] [PubMed]
  24. U. Schnell, E. Zimmermann, and R. Dändliker, “Absolute distance measurement with synchronously sampled white-light channelled spectrum interferometry,” Pure Appl. Opt. 4(5), 643–651 (1995).
    [CrossRef]
  25. C. Yin, Z. Chao, D. Lin, Y. Xu, and J. Xu, “Absolute length measurement using changeable synthetic wavelength chain,” Opt. Eng. 41(4), 746–750 (2002).
    [CrossRef]
  26. Y. Zhao, T. Zhou, and D. Li, “Heterodyne absolute Distance Interferometer with a dual-mode HeNe laser,” Opt. Eng. 38(2), 246–249 (1999).
    [CrossRef]
  27. S.-H. Lu and C.-C. Lee, “Measuring large step heights by variable synthetic wavelength interferometry,” Meas. Sci. Technol. 13(9), 1382–1387 (2002).
    [CrossRef]
  28. K.-H. Bechstein and W. Fuchs, “Absolute interferometric distance measurements applying a variable synthetic wavelength,” J. Opt. Technical Note 29, 179–182 (1998).
  29. G. L. Bourdet and A. G. Orszag, “Absolute distance measurements by CO2 laser multiwavelength interferometry,” Appl. Opt. 18(2), 225–227 (1979).
    [CrossRef] [PubMed]
  30. H. Yu, C. Aleksoff, and J. Ni, “A multiple height-transfer interferometric technique,” Opt. Express 19(17), 16365–16374 (2011).
    [CrossRef] [PubMed]
  31. C. Aleksoff and H. Yu, “Discrete step wavemeter,” Proc. SPIE 7790, 77900H, 77900H-10 (2010).
    [CrossRef]
  32. J. C. Marron and K. W. Gleichman, “Three-dimensional imaging using a tunable laser source,” Opt. Eng. 39(1), 47–51 (2000).
    [CrossRef]
  33. J. Tan, H. Yang, P. Hu, and X. Diao, “Identification and elimination of half-synthetic wavelength error for multi-wavelength long absolute distance measurement,” Meas. Sci. Technol. 22(11), 115301 (2011).
    [CrossRef] [PubMed]
  34. R. Schödel, “Ultra-high accuracy thermal expansion measurements with PTB’s precision interferometer,” Meas. Sci. Technol. 19(8), 084003 (2008).
    [CrossRef]
  35. www.longdistanceproject.eu
  36. “TLB- VelocityTM Widely Tunable Lasers,” Accessed on 1st February 2011, http://www.newfocus.com/products/documents/catalog/216.pdf .
  37. “621 Series Laser Wavelength Meter,” Accessed on 1st February 2011, http://www.bristol-inst.com/index_files/pubwebdocs/brochure621wavelengthmeter.pdf .
  38. P. Hariharan, Basics of interferometry, (Elsevier, Second Edition 2007).
  39. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72(1), 156–160 (1982).
    [CrossRef]
  40. D. J. Bone, H. A. Bachor, and R. J. Sandeman, “Fringe-pattern analysis using a 2-D Fourier transform,” Appl. Opt. 25(10), 1653–1660 (1986).
    [CrossRef] [PubMed]
  41. G. James, Modern engineering mathematics, pp. 52–53, (Prentice Hall, 2008).
  42. C. E. Towers, D. P. Towers, and J. D. C. Jones, “Optimum frequency selection in multifrequency interferometry,” Opt. Lett. 28(11), 887–889 (2003).
    [CrossRef] [PubMed]
  43. J. Skiba-Szyma?ska and S. Patela, “Measurement accuracy of the white light interferometer with reference light beam,” International Students and Young Scientists Workshop „Photonics and Microsystems” (2005).

2011 (2)

J. Tan, H. Yang, P. Hu, and X. Diao, “Identification and elimination of half-synthetic wavelength error for multi-wavelength long absolute distance measurement,” Meas. Sci. Technol. 22(11), 115301 (2011).
[CrossRef] [PubMed]

H. Yu, C. Aleksoff, and J. Ni, “A multiple height-transfer interferometric technique,” Opt. Express 19(17), 16365–16374 (2011).
[CrossRef] [PubMed]

2010 (1)

C. Aleksoff and H. Yu, “Discrete step wavemeter,” Proc. SPIE 7790, 77900H, 77900H-10 (2010).
[CrossRef]

2008 (6)

R. Schödel, “Ultra-high accuracy thermal expansion measurements with PTB’s precision interferometer,” Meas. Sci. Technol. 19(8), 084003 (2008).
[CrossRef]

Y. Salvadé, N. Schuhler, S. Lévêque, and S. Le Floch, “High-accuracy absolute distance measurement using frequency comb referenced multiwavelength source,” Appl. Opt. 47(14), 2715–2720 (2008).
[CrossRef] [PubMed]

A. Majumdar and H. Huang, “Development of an in-fiber white-light interferometric distance sensor for absolute measurement of arbitrary small distances,” Appl. Opt. 47(15), 2821–2828 (2008).
[CrossRef] [PubMed]

S. Le Floch, Y. Salvadé, R. Mitouassiwou, and P. Favre, “Radio frequency controlled synthetic wavelength sweep for absolute distance measurement by optical interferometry,” Appl. Opt. 47(16), 3027–3031 (2008).
[CrossRef] [PubMed]

L. Hartmann, K. Meiners-Hagen, and A. Abou-Zeid, “An absolute distance interferometer with two external cavity diode lasers,” Meas. Sci. Technol. 19(4), 045307 (2008).
[CrossRef]

R. Schödel, “Ultra-high accuracy thermal expansion measurements with PTB’s precision interferometer,” Meas. Sci. Technol. 19(8), 084003 (2008).
[CrossRef]

2007 (4)

M. Norgia, G. Giuliani, and S. Donati, “Absolute distance measurement with improved accuracy using laser diode self-mixing interferometry in a closed loop,” IEEE Trans. Instrum. Meas. 56(5), 1894–1900 (2007).
[CrossRef]

H.-J. Yang, S. Nyberg, and K. Riles, “High-precision absolute distance measurement using dual-laser frequency scanned interferometry under realistic conditions,” Nucl. Instrum. Methods Phys. Res. A 575(3), 395–401 (2007).
[CrossRef]

A. Cabral and J. Rebordão, “Accuracy of frequency-sweeping interferometry for absolute distance metrology,” Opt. Eng. 46(073602), 1–10 (2007).

D. Guo and M. Wang, “Self-mixing interferometry based on a double-modulation technique for absolute distance measurement,” Appl. Opt. 46(9), 1486–1491 (2007).
[CrossRef] [PubMed]

2006 (1)

2005 (3)

S. M. Gibson, P. A. Coe, A. Mitra, D. F. Howell, and R. B. Nickerson, “Coordinate measurement in 2-D and 3-D geometries using frequency scanning interferometry,” Opt. Lasers Eng. 43(7), 815–831 (2005).
[CrossRef]

P. B. Harrison, R. R. J. Maier, J. S. Barton, J. D. C. Jones, S. McCulloch, and G. Burnell, “Component position measurement through polymer material by broadband absolute distance interferometry,” Meas. Sci. Technol. 16(10), 2066–2071 (2005).
[CrossRef]

C. E. Towers, D. T. Reid, W. N. MacPherson, P. R. J. Maier, and D. P. Towers, “Fibre interferometer for multi-wavelength interferometry with a femtosecond laser,” J. Opt. A, Pure Appl. Opt. 7(6), S415–S419 (2005).
[CrossRef]

2004 (1)

P. A. Coe, D. F. Howell, and R. B. Nickerson, “Frequency scanning interferometry in ATLAS: remote, multiple, simultaneous and precise distance measurements in A hostile environment,” Meas. Sci. Technol. 15(11), 2175–2187 (2004).
[CrossRef]

2003 (1)

2002 (3)

C. Yin, Z. Chao, D. Lin, Y. Xu, and J. Xu, “Absolute length measurement using changeable synthetic wavelength chain,” Opt. Eng. 41(4), 746–750 (2002).
[CrossRef]

S.-H. Lu and C.-C. Lee, “Measuring large step heights by variable synthetic wavelength interferometry,” Meas. Sci. Technol. 13(9), 1382–1387 (2002).
[CrossRef]

T. Kinder and K.-D. Salewski, “Absolute distance interferometer with grating-stabilized tunable diode laser at 633 nm,” J. Opt. A, Pure Appl. Opt. 4(6), S364–S368 (2002).
[CrossRef]

2000 (1)

J. C. Marron and K. W. Gleichman, “Three-dimensional imaging using a tunable laser source,” Opt. Eng. 39(1), 47–51 (2000).
[CrossRef]

1999 (1)

Y. Zhao, T. Zhou, and D. Li, “Heterodyne absolute Distance Interferometer with a dual-mode HeNe laser,” Opt. Eng. 38(2), 246–249 (1999).
[CrossRef]

1998 (3)

K.-H. Bechstein and W. Fuchs, “Absolute interferometric distance measurements applying a variable synthetic wavelength,” J. Opt. Technical Note 29, 179–182 (1998).

G. P. Barwood, P. Gill, and W. R. C. Rowley, “High-accuracy length metrology using multiple-stage swept-frequency interferometry with laser diodes,” Meas. Sci. Technol. 9(7), 1036–1041 (1998).
[CrossRef]

R. Dändliker, Y. Salvad, and E. Zimmermann, “Distance measurement by multiple-wavelength interferometry,” J. Opt. 29(3), 105–114 (1998).
[CrossRef]

1996 (1)

A. Abou-Zeid, K. H. Bechstein, C. Enghave, and H. Kunzmann, “A multichannel diode laser interferometer for displacement measurements on a CMM,” Annals of the ClRP 45(1), 489–492 (1996).
[CrossRef]

1995 (2)

J. Thiel, T. Pfeifer, and M. Hartmann, “Interferometric measurement of absolute distances of up to 40 m,” Measurement 16(1), 1–6 (1995).
[CrossRef]

U. Schnell, E. Zimmermann, and R. Dändliker, “Absolute distance measurement with synchronously sampled white-light channelled spectrum interferometry,” Pure Appl. Opt. 4(5), 643–651 (1995).
[CrossRef]

1992 (2)

K. Ikezawa, K. Isozaki, E. Ogita, and T. Ueda, “Measurement of absolute distance employing a tunable CW dye laser,” IEEE Trans. Instrum. Meas. 41(1), 36–39 (1992).
[CrossRef]

V. Gusmeroli and M. Martinelli, “Two-wavelength interferometry filtering by superluminescent source,” Opt. Commun. 94, 309–312 (1992).
[CrossRef]

1989 (1)

L. Shaozeng and Z. Yang, “Contribution of laser technology in the development of metrology,” Measurement 7(2), 55–59 (1989).
[CrossRef]

1986 (1)

1982 (1)

1979 (1)

Abou-Zeid, A.

L. Hartmann, K. Meiners-Hagen, and A. Abou-Zeid, “An absolute distance interferometer with two external cavity diode lasers,” Meas. Sci. Technol. 19(4), 045307 (2008).
[CrossRef]

A. Abou-Zeid, K. H. Bechstein, C. Enghave, and H. Kunzmann, “A multichannel diode laser interferometer for displacement measurements on a CMM,” Annals of the ClRP 45(1), 489–492 (1996).
[CrossRef]

Aleksoff, C.

Bachor, H. A.

Barton, J. S.

P. B. Harrison, R. R. J. Maier, J. S. Barton, J. D. C. Jones, S. McCulloch, and G. Burnell, “Component position measurement through polymer material by broadband absolute distance interferometry,” Meas. Sci. Technol. 16(10), 2066–2071 (2005).
[CrossRef]

Barwood, G. P.

G. P. Barwood, P. Gill, and W. R. C. Rowley, “High-accuracy length metrology using multiple-stage swept-frequency interferometry with laser diodes,” Meas. Sci. Technol. 9(7), 1036–1041 (1998).
[CrossRef]

Bechstein, K. H.

A. Abou-Zeid, K. H. Bechstein, C. Enghave, and H. Kunzmann, “A multichannel diode laser interferometer for displacement measurements on a CMM,” Annals of the ClRP 45(1), 489–492 (1996).
[CrossRef]

Bechstein, K.-H.

K.-H. Bechstein and W. Fuchs, “Absolute interferometric distance measurements applying a variable synthetic wavelength,” J. Opt. Technical Note 29, 179–182 (1998).

Bone, D. J.

Bourdet, G. L.

Burnell, G.

P. B. Harrison, R. R. J. Maier, J. S. Barton, J. D. C. Jones, S. McCulloch, and G. Burnell, “Component position measurement through polymer material by broadband absolute distance interferometry,” Meas. Sci. Technol. 16(10), 2066–2071 (2005).
[CrossRef]

Cabral, A.

A. Cabral and J. Rebordão, “Accuracy of frequency-sweeping interferometry for absolute distance metrology,” Opt. Eng. 46(073602), 1–10 (2007).

Chao, Z.

C. Yin, Z. Chao, D. Lin, Y. Xu, and J. Xu, “Absolute length measurement using changeable synthetic wavelength chain,” Opt. Eng. 41(4), 746–750 (2002).
[CrossRef]

Coe, P. A.

S. M. Gibson, P. A. Coe, A. Mitra, D. F. Howell, and R. B. Nickerson, “Coordinate measurement in 2-D and 3-D geometries using frequency scanning interferometry,” Opt. Lasers Eng. 43(7), 815–831 (2005).
[CrossRef]

P. A. Coe, D. F. Howell, and R. B. Nickerson, “Frequency scanning interferometry in ATLAS: remote, multiple, simultaneous and precise distance measurements in A hostile environment,” Meas. Sci. Technol. 15(11), 2175–2187 (2004).
[CrossRef]

Dändliker, R.

R. Dändliker, Y. Salvad, and E. Zimmermann, “Distance measurement by multiple-wavelength interferometry,” J. Opt. 29(3), 105–114 (1998).
[CrossRef]

U. Schnell, E. Zimmermann, and R. Dändliker, “Absolute distance measurement with synchronously sampled white-light channelled spectrum interferometry,” Pure Appl. Opt. 4(5), 643–651 (1995).
[CrossRef]

Diao, X.

J. Tan, H. Yang, P. Hu, and X. Diao, “Identification and elimination of half-synthetic wavelength error for multi-wavelength long absolute distance measurement,” Meas. Sci. Technol. 22(11), 115301 (2011).
[CrossRef] [PubMed]

Donati, S.

M. Norgia, G. Giuliani, and S. Donati, “Absolute distance measurement with improved accuracy using laser diode self-mixing interferometry in a closed loop,” IEEE Trans. Instrum. Meas. 56(5), 1894–1900 (2007).
[CrossRef]

Enghave, C.

A. Abou-Zeid, K. H. Bechstein, C. Enghave, and H. Kunzmann, “A multichannel diode laser interferometer for displacement measurements on a CMM,” Annals of the ClRP 45(1), 489–492 (1996).
[CrossRef]

Favre, P.

Fuchs, W.

K.-H. Bechstein and W. Fuchs, “Absolute interferometric distance measurements applying a variable synthetic wavelength,” J. Opt. Technical Note 29, 179–182 (1998).

Gibson, S. M.

S. M. Gibson, P. A. Coe, A. Mitra, D. F. Howell, and R. B. Nickerson, “Coordinate measurement in 2-D and 3-D geometries using frequency scanning interferometry,” Opt. Lasers Eng. 43(7), 815–831 (2005).
[CrossRef]

Gill, P.

G. P. Barwood, P. Gill, and W. R. C. Rowley, “High-accuracy length metrology using multiple-stage swept-frequency interferometry with laser diodes,” Meas. Sci. Technol. 9(7), 1036–1041 (1998).
[CrossRef]

Gilles, H.

Girard, S.

Giuliani, G.

M. Norgia, G. Giuliani, and S. Donati, “Absolute distance measurement with improved accuracy using laser diode self-mixing interferometry in a closed loop,” IEEE Trans. Instrum. Meas. 56(5), 1894–1900 (2007).
[CrossRef]

Gleichman, K. W.

J. C. Marron and K. W. Gleichman, “Three-dimensional imaging using a tunable laser source,” Opt. Eng. 39(1), 47–51 (2000).
[CrossRef]

Guo, D.

Gusmeroli, V.

V. Gusmeroli and M. Martinelli, “Two-wavelength interferometry filtering by superluminescent source,” Opt. Commun. 94, 309–312 (1992).
[CrossRef]

Harrison, P. B.

P. B. Harrison, R. R. J. Maier, J. S. Barton, J. D. C. Jones, S. McCulloch, and G. Burnell, “Component position measurement through polymer material by broadband absolute distance interferometry,” Meas. Sci. Technol. 16(10), 2066–2071 (2005).
[CrossRef]

Hartmann, L.

L. Hartmann, K. Meiners-Hagen, and A. Abou-Zeid, “An absolute distance interferometer with two external cavity diode lasers,” Meas. Sci. Technol. 19(4), 045307 (2008).
[CrossRef]

Hartmann, M.

J. Thiel, T. Pfeifer, and M. Hartmann, “Interferometric measurement of absolute distances of up to 40 m,” Measurement 16(1), 1–6 (1995).
[CrossRef]

Howell, D. F.

S. M. Gibson, P. A. Coe, A. Mitra, D. F. Howell, and R. B. Nickerson, “Coordinate measurement in 2-D and 3-D geometries using frequency scanning interferometry,” Opt. Lasers Eng. 43(7), 815–831 (2005).
[CrossRef]

P. A. Coe, D. F. Howell, and R. B. Nickerson, “Frequency scanning interferometry in ATLAS: remote, multiple, simultaneous and precise distance measurements in A hostile environment,” Meas. Sci. Technol. 15(11), 2175–2187 (2004).
[CrossRef]

Hu, P.

J. Tan, H. Yang, P. Hu, and X. Diao, “Identification and elimination of half-synthetic wavelength error for multi-wavelength long absolute distance measurement,” Meas. Sci. Technol. 22(11), 115301 (2011).
[CrossRef] [PubMed]

Huang, H.

Ikezawa, K.

K. Ikezawa, K. Isozaki, E. Ogita, and T. Ueda, “Measurement of absolute distance employing a tunable CW dye laser,” IEEE Trans. Instrum. Meas. 41(1), 36–39 (1992).
[CrossRef]

Ina, H.

Isozaki, K.

K. Ikezawa, K. Isozaki, E. Ogita, and T. Ueda, “Measurement of absolute distance employing a tunable CW dye laser,” IEEE Trans. Instrum. Meas. 41(1), 36–39 (1992).
[CrossRef]

Jones, J. D. C.

P. B. Harrison, R. R. J. Maier, J. S. Barton, J. D. C. Jones, S. McCulloch, and G. Burnell, “Component position measurement through polymer material by broadband absolute distance interferometry,” Meas. Sci. Technol. 16(10), 2066–2071 (2005).
[CrossRef]

C. E. Towers, D. P. Towers, and J. D. C. Jones, “Optimum frequency selection in multifrequency interferometry,” Opt. Lett. 28(11), 887–889 (2003).
[CrossRef] [PubMed]

Kervevan, L.

Kinder, T.

T. Kinder and K.-D. Salewski, “Absolute distance interferometer with grating-stabilized tunable diode laser at 633 nm,” J. Opt. A, Pure Appl. Opt. 4(6), S364–S368 (2002).
[CrossRef]

Kobayashi, S.

Kunzmann, H.

A. Abou-Zeid, K. H. Bechstein, C. Enghave, and H. Kunzmann, “A multichannel diode laser interferometer for displacement measurements on a CMM,” Annals of the ClRP 45(1), 489–492 (1996).
[CrossRef]

Laroche, M.

Le Floch, S.

Lee, C.-C.

S.-H. Lu and C.-C. Lee, “Measuring large step heights by variable synthetic wavelength interferometry,” Meas. Sci. Technol. 13(9), 1382–1387 (2002).
[CrossRef]

Lévêque, S.

Li, D.

Y. Zhao, T. Zhou, and D. Li, “Heterodyne absolute Distance Interferometer with a dual-mode HeNe laser,” Opt. Eng. 38(2), 246–249 (1999).
[CrossRef]

Lin, D.

C. Yin, Z. Chao, D. Lin, Y. Xu, and J. Xu, “Absolute length measurement using changeable synthetic wavelength chain,” Opt. Eng. 41(4), 746–750 (2002).
[CrossRef]

Lu, S.-H.

S.-H. Lu and C.-C. Lee, “Measuring large step heights by variable synthetic wavelength interferometry,” Meas. Sci. Technol. 13(9), 1382–1387 (2002).
[CrossRef]

MacPherson, W. N.

C. E. Towers, D. T. Reid, W. N. MacPherson, P. R. J. Maier, and D. P. Towers, “Fibre interferometer for multi-wavelength interferometry with a femtosecond laser,” J. Opt. A, Pure Appl. Opt. 7(6), S415–S419 (2005).
[CrossRef]

Maier, P. R. J.

C. E. Towers, D. T. Reid, W. N. MacPherson, P. R. J. Maier, and D. P. Towers, “Fibre interferometer for multi-wavelength interferometry with a femtosecond laser,” J. Opt. A, Pure Appl. Opt. 7(6), S415–S419 (2005).
[CrossRef]

Maier, R. R. J.

P. B. Harrison, R. R. J. Maier, J. S. Barton, J. D. C. Jones, S. McCulloch, and G. Burnell, “Component position measurement through polymer material by broadband absolute distance interferometry,” Meas. Sci. Technol. 16(10), 2066–2071 (2005).
[CrossRef]

Majumdar, A.

Marron, J. C.

J. C. Marron and K. W. Gleichman, “Three-dimensional imaging using a tunable laser source,” Opt. Eng. 39(1), 47–51 (2000).
[CrossRef]

Martinelli, M.

V. Gusmeroli and M. Martinelli, “Two-wavelength interferometry filtering by superluminescent source,” Opt. Commun. 94, 309–312 (1992).
[CrossRef]

McCulloch, S.

P. B. Harrison, R. R. J. Maier, J. S. Barton, J. D. C. Jones, S. McCulloch, and G. Burnell, “Component position measurement through polymer material by broadband absolute distance interferometry,” Meas. Sci. Technol. 16(10), 2066–2071 (2005).
[CrossRef]

Meiners-Hagen, K.

L. Hartmann, K. Meiners-Hagen, and A. Abou-Zeid, “An absolute distance interferometer with two external cavity diode lasers,” Meas. Sci. Technol. 19(4), 045307 (2008).
[CrossRef]

Mitouassiwou, R.

Mitra, A.

S. M. Gibson, P. A. Coe, A. Mitra, D. F. Howell, and R. B. Nickerson, “Coordinate measurement in 2-D and 3-D geometries using frequency scanning interferometry,” Opt. Lasers Eng. 43(7), 815–831 (2005).
[CrossRef]

Monfort, Y.

Ni, J.

Nickerson, R. B.

S. M. Gibson, P. A. Coe, A. Mitra, D. F. Howell, and R. B. Nickerson, “Coordinate measurement in 2-D and 3-D geometries using frequency scanning interferometry,” Opt. Lasers Eng. 43(7), 815–831 (2005).
[CrossRef]

P. A. Coe, D. F. Howell, and R. B. Nickerson, “Frequency scanning interferometry in ATLAS: remote, multiple, simultaneous and precise distance measurements in A hostile environment,” Meas. Sci. Technol. 15(11), 2175–2187 (2004).
[CrossRef]

Norgia, M.

M. Norgia, G. Giuliani, and S. Donati, “Absolute distance measurement with improved accuracy using laser diode self-mixing interferometry in a closed loop,” IEEE Trans. Instrum. Meas. 56(5), 1894–1900 (2007).
[CrossRef]

Nyberg, S.

H.-J. Yang, S. Nyberg, and K. Riles, “High-precision absolute distance measurement using dual-laser frequency scanned interferometry under realistic conditions,” Nucl. Instrum. Methods Phys. Res. A 575(3), 395–401 (2007).
[CrossRef]

Ogita, E.

K. Ikezawa, K. Isozaki, E. Ogita, and T. Ueda, “Measurement of absolute distance employing a tunable CW dye laser,” IEEE Trans. Instrum. Meas. 41(1), 36–39 (1992).
[CrossRef]

Orszag, A. G.

Pfeifer, T.

J. Thiel, T. Pfeifer, and M. Hartmann, “Interferometric measurement of absolute distances of up to 40 m,” Measurement 16(1), 1–6 (1995).
[CrossRef]

Rebordão, J.

A. Cabral and J. Rebordão, “Accuracy of frequency-sweeping interferometry for absolute distance metrology,” Opt. Eng. 46(073602), 1–10 (2007).

Reid, D. T.

C. E. Towers, D. T. Reid, W. N. MacPherson, P. R. J. Maier, and D. P. Towers, “Fibre interferometer for multi-wavelength interferometry with a femtosecond laser,” J. Opt. A, Pure Appl. Opt. 7(6), S415–S419 (2005).
[CrossRef]

Riles, K.

H.-J. Yang, S. Nyberg, and K. Riles, “High-precision absolute distance measurement using dual-laser frequency scanned interferometry under realistic conditions,” Nucl. Instrum. Methods Phys. Res. A 575(3), 395–401 (2007).
[CrossRef]

Rowley, W. R. C.

G. P. Barwood, P. Gill, and W. R. C. Rowley, “High-accuracy length metrology using multiple-stage swept-frequency interferometry with laser diodes,” Meas. Sci. Technol. 9(7), 1036–1041 (1998).
[CrossRef]

Salewski, K.-D.

T. Kinder and K.-D. Salewski, “Absolute distance interferometer with grating-stabilized tunable diode laser at 633 nm,” J. Opt. A, Pure Appl. Opt. 4(6), S364–S368 (2002).
[CrossRef]

Salvad, Y.

R. Dändliker, Y. Salvad, and E. Zimmermann, “Distance measurement by multiple-wavelength interferometry,” J. Opt. 29(3), 105–114 (1998).
[CrossRef]

Salvadé, Y.

Sandeman, R. J.

Schnell, U.

U. Schnell, E. Zimmermann, and R. Dändliker, “Absolute distance measurement with synchronously sampled white-light channelled spectrum interferometry,” Pure Appl. Opt. 4(5), 643–651 (1995).
[CrossRef]

Schödel, R.

R. Schödel, “Ultra-high accuracy thermal expansion measurements with PTB’s precision interferometer,” Meas. Sci. Technol. 19(8), 084003 (2008).
[CrossRef]

R. Schödel, “Ultra-high accuracy thermal expansion measurements with PTB’s precision interferometer,” Meas. Sci. Technol. 19(8), 084003 (2008).
[CrossRef]

Schuhler, N.

Shaozeng, L.

L. Shaozeng and Z. Yang, “Contribution of laser technology in the development of metrology,” Measurement 7(2), 55–59 (1989).
[CrossRef]

Takeda, M.

Tan, J.

J. Tan, H. Yang, P. Hu, and X. Diao, “Identification and elimination of half-synthetic wavelength error for multi-wavelength long absolute distance measurement,” Meas. Sci. Technol. 22(11), 115301 (2011).
[CrossRef] [PubMed]

Thiel, J.

J. Thiel, T. Pfeifer, and M. Hartmann, “Interferometric measurement of absolute distances of up to 40 m,” Measurement 16(1), 1–6 (1995).
[CrossRef]

Towers, C. E.

C. E. Towers, D. T. Reid, W. N. MacPherson, P. R. J. Maier, and D. P. Towers, “Fibre interferometer for multi-wavelength interferometry with a femtosecond laser,” J. Opt. A, Pure Appl. Opt. 7(6), S415–S419 (2005).
[CrossRef]

C. E. Towers, D. P. Towers, and J. D. C. Jones, “Optimum frequency selection in multifrequency interferometry,” Opt. Lett. 28(11), 887–889 (2003).
[CrossRef] [PubMed]

Towers, D. P.

C. E. Towers, D. T. Reid, W. N. MacPherson, P. R. J. Maier, and D. P. Towers, “Fibre interferometer for multi-wavelength interferometry with a femtosecond laser,” J. Opt. A, Pure Appl. Opt. 7(6), S415–S419 (2005).
[CrossRef]

C. E. Towers, D. P. Towers, and J. D. C. Jones, “Optimum frequency selection in multifrequency interferometry,” Opt. Lett. 28(11), 887–889 (2003).
[CrossRef] [PubMed]

Ueda, T.

K. Ikezawa, K. Isozaki, E. Ogita, and T. Ueda, “Measurement of absolute distance employing a tunable CW dye laser,” IEEE Trans. Instrum. Meas. 41(1), 36–39 (1992).
[CrossRef]

Wang, M.

Xu, J.

C. Yin, Z. Chao, D. Lin, Y. Xu, and J. Xu, “Absolute length measurement using changeable synthetic wavelength chain,” Opt. Eng. 41(4), 746–750 (2002).
[CrossRef]

Xu, Y.

C. Yin, Z. Chao, D. Lin, Y. Xu, and J. Xu, “Absolute length measurement using changeable synthetic wavelength chain,” Opt. Eng. 41(4), 746–750 (2002).
[CrossRef]

Yang, H.

J. Tan, H. Yang, P. Hu, and X. Diao, “Identification and elimination of half-synthetic wavelength error for multi-wavelength long absolute distance measurement,” Meas. Sci. Technol. 22(11), 115301 (2011).
[CrossRef] [PubMed]

Yang, H.-J.

H.-J. Yang, S. Nyberg, and K. Riles, “High-precision absolute distance measurement using dual-laser frequency scanned interferometry under realistic conditions,” Nucl. Instrum. Methods Phys. Res. A 575(3), 395–401 (2007).
[CrossRef]

Yang, Z.

L. Shaozeng and Z. Yang, “Contribution of laser technology in the development of metrology,” Measurement 7(2), 55–59 (1989).
[CrossRef]

Yin, C.

C. Yin, Z. Chao, D. Lin, Y. Xu, and J. Xu, “Absolute length measurement using changeable synthetic wavelength chain,” Opt. Eng. 41(4), 746–750 (2002).
[CrossRef]

Yu, H.

Zhao, Y.

Y. Zhao, T. Zhou, and D. Li, “Heterodyne absolute Distance Interferometer with a dual-mode HeNe laser,” Opt. Eng. 38(2), 246–249 (1999).
[CrossRef]

Zhou, T.

Y. Zhao, T. Zhou, and D. Li, “Heterodyne absolute Distance Interferometer with a dual-mode HeNe laser,” Opt. Eng. 38(2), 246–249 (1999).
[CrossRef]

Zimmermann, E.

R. Dändliker, Y. Salvad, and E. Zimmermann, “Distance measurement by multiple-wavelength interferometry,” J. Opt. 29(3), 105–114 (1998).
[CrossRef]

U. Schnell, E. Zimmermann, and R. Dändliker, “Absolute distance measurement with synchronously sampled white-light channelled spectrum interferometry,” Pure Appl. Opt. 4(5), 643–651 (1995).
[CrossRef]

Annals of the ClRP (1)

A. Abou-Zeid, K. H. Bechstein, C. Enghave, and H. Kunzmann, “A multichannel diode laser interferometer for displacement measurements on a CMM,” Annals of the ClRP 45(1), 489–492 (1996).
[CrossRef]

Appl. Opt. (7)

IEEE Trans. Instrum. Meas. (2)

K. Ikezawa, K. Isozaki, E. Ogita, and T. Ueda, “Measurement of absolute distance employing a tunable CW dye laser,” IEEE Trans. Instrum. Meas. 41(1), 36–39 (1992).
[CrossRef]

M. Norgia, G. Giuliani, and S. Donati, “Absolute distance measurement with improved accuracy using laser diode self-mixing interferometry in a closed loop,” IEEE Trans. Instrum. Meas. 56(5), 1894–1900 (2007).
[CrossRef]

J. Opt. (1)

R. Dändliker, Y. Salvad, and E. Zimmermann, “Distance measurement by multiple-wavelength interferometry,” J. Opt. 29(3), 105–114 (1998).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (2)

C. E. Towers, D. T. Reid, W. N. MacPherson, P. R. J. Maier, and D. P. Towers, “Fibre interferometer for multi-wavelength interferometry with a femtosecond laser,” J. Opt. A, Pure Appl. Opt. 7(6), S415–S419 (2005).
[CrossRef]

T. Kinder and K.-D. Salewski, “Absolute distance interferometer with grating-stabilized tunable diode laser at 633 nm,” J. Opt. A, Pure Appl. Opt. 4(6), S364–S368 (2002).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Technical Note (1)

K.-H. Bechstein and W. Fuchs, “Absolute interferometric distance measurements applying a variable synthetic wavelength,” J. Opt. Technical Note 29, 179–182 (1998).

Meas. Sci. Technol. (8)

S.-H. Lu and C.-C. Lee, “Measuring large step heights by variable synthetic wavelength interferometry,” Meas. Sci. Technol. 13(9), 1382–1387 (2002).
[CrossRef]

J. Tan, H. Yang, P. Hu, and X. Diao, “Identification and elimination of half-synthetic wavelength error for multi-wavelength long absolute distance measurement,” Meas. Sci. Technol. 22(11), 115301 (2011).
[CrossRef] [PubMed]

R. Schödel, “Ultra-high accuracy thermal expansion measurements with PTB’s precision interferometer,” Meas. Sci. Technol. 19(8), 084003 (2008).
[CrossRef]

L. Hartmann, K. Meiners-Hagen, and A. Abou-Zeid, “An absolute distance interferometer with two external cavity diode lasers,” Meas. Sci. Technol. 19(4), 045307 (2008).
[CrossRef]

P. A. Coe, D. F. Howell, and R. B. Nickerson, “Frequency scanning interferometry in ATLAS: remote, multiple, simultaneous and precise distance measurements in A hostile environment,” Meas. Sci. Technol. 15(11), 2175–2187 (2004).
[CrossRef]

G. P. Barwood, P. Gill, and W. R. C. Rowley, “High-accuracy length metrology using multiple-stage swept-frequency interferometry with laser diodes,” Meas. Sci. Technol. 9(7), 1036–1041 (1998).
[CrossRef]

R. Schödel, “Ultra-high accuracy thermal expansion measurements with PTB’s precision interferometer,” Meas. Sci. Technol. 19(8), 084003 (2008).
[CrossRef]

P. B. Harrison, R. R. J. Maier, J. S. Barton, J. D. C. Jones, S. McCulloch, and G. Burnell, “Component position measurement through polymer material by broadband absolute distance interferometry,” Meas. Sci. Technol. 16(10), 2066–2071 (2005).
[CrossRef]

Measurement (2)

J. Thiel, T. Pfeifer, and M. Hartmann, “Interferometric measurement of absolute distances of up to 40 m,” Measurement 16(1), 1–6 (1995).
[CrossRef]

L. Shaozeng and Z. Yang, “Contribution of laser technology in the development of metrology,” Measurement 7(2), 55–59 (1989).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. A (1)

H.-J. Yang, S. Nyberg, and K. Riles, “High-precision absolute distance measurement using dual-laser frequency scanned interferometry under realistic conditions,” Nucl. Instrum. Methods Phys. Res. A 575(3), 395–401 (2007).
[CrossRef]

Opt. Commun. (1)

V. Gusmeroli and M. Martinelli, “Two-wavelength interferometry filtering by superluminescent source,” Opt. Commun. 94, 309–312 (1992).
[CrossRef]

Opt. Eng. (4)

A. Cabral and J. Rebordão, “Accuracy of frequency-sweeping interferometry for absolute distance metrology,” Opt. Eng. 46(073602), 1–10 (2007).

J. C. Marron and K. W. Gleichman, “Three-dimensional imaging using a tunable laser source,” Opt. Eng. 39(1), 47–51 (2000).
[CrossRef]

C. Yin, Z. Chao, D. Lin, Y. Xu, and J. Xu, “Absolute length measurement using changeable synthetic wavelength chain,” Opt. Eng. 41(4), 746–750 (2002).
[CrossRef]

Y. Zhao, T. Zhou, and D. Li, “Heterodyne absolute Distance Interferometer with a dual-mode HeNe laser,” Opt. Eng. 38(2), 246–249 (1999).
[CrossRef]

Opt. Express (1)

Opt. Lasers Eng. (1)

S. M. Gibson, P. A. Coe, A. Mitra, D. F. Howell, and R. B. Nickerson, “Coordinate measurement in 2-D and 3-D geometries using frequency scanning interferometry,” Opt. Lasers Eng. 43(7), 815–831 (2005).
[CrossRef]

Opt. Lett. (1)

Proc. SPIE (1)

C. Aleksoff and H. Yu, “Discrete step wavemeter,” Proc. SPIE 7790, 77900H, 77900H-10 (2010).
[CrossRef]

Pure Appl. Opt. (1)

U. Schnell, E. Zimmermann, and R. Dändliker, “Absolute distance measurement with synchronously sampled white-light channelled spectrum interferometry,” Pure Appl. Opt. 4(5), 643–651 (1995).
[CrossRef]

Other (7)

www.longdistanceproject.eu

“TLB- VelocityTM Widely Tunable Lasers,” Accessed on 1st February 2011, http://www.newfocus.com/products/documents/catalog/216.pdf .

“621 Series Laser Wavelength Meter,” Accessed on 1st February 2011, http://www.bristol-inst.com/index_files/pubwebdocs/brochure621wavelengthmeter.pdf .

P. Hariharan, Basics of interferometry, (Elsevier, Second Edition 2007).

U. Minoni, L. Rovati, M. Bonardi, and F. Docchio, “Metrological characterization of a novel absolute distance meter based on dispersive comb-spectrum interferometry,” in Proc. Of IEEE Instrumentation and Measurement Technology Conference, (St. Paul, Minnesota USA, 18–21 May 1998), pp. 1137–1140.

G. James, Modern engineering mathematics, pp. 52–53, (Prentice Hall, 2008).

J. Skiba-Szyma?ska and S. Patela, “Measurement accuracy of the white light interferometer with reference light beam,” International Students and Young Scientists Workshop „Photonics and Microsystems” (2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics