Abstract

A GaN/Si nanoheterostructure array was prepared by growing GaN nanostructures on silicon nanoporous pillar array (Si-NPA). Based on as-grown and annealed GaN/Si-NPA, two light-emitting diodes (LEDs) were fabricated. It was found that after the annealing treatment, both the turn-on voltage and the leakage current density of the nanoheterostructure varied greatly, together with the electroluminescence (EL) changed from a yellow band to a near infrared band. The EL variation was attributed to the radiative transition being transformed from a defect-related recombination in GaN to an interfacial recombination of GaN/Si-NPA. Ours might have provided an effective approach for fabricating GaN/Si-based LEDs with different emission wavelengths.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Morkoç and S. N. Mohammad, “High-luminosity blue and blue-green gallium nitride light-emitting diodes,” Science 267(5194), 51–55 (1995).
    [CrossRef] [PubMed]
  2. G. Fasol, “Room-temperature blue gallium nitride laser diode,” Science 272(5269), 1751–1752 (1996).
    [CrossRef]
  3. H. Jia, L. Guo, W. Wang, and H. Chen, “Recent progress in GaN-based light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.) 21(45), 4641–4646 (2009).
    [CrossRef]
  4. P. Javorka, A. Alam, M. Wolter, A. Fox, M. Marso, M. Heuken, H. Luth, and P. Kordos, “AlGaN/GaN HEMTs on (111) silicon substrates,” IEEE Electron Device Lett. 23(1), 4–6 (2002).
    [CrossRef]
  5. K. Radhakrishnan, N. Dharmarasu, Z. Sun, S. Arulkumaran, and G. I. Ng, “Demonstration of AlGaN/GaN high-electron-mobility transistors on 100 mm diameter Si(111) by plasma-assisted molecular beam epitaxy,” Appl. Phys. Lett. 97(23), 232107 (2010).
    [CrossRef]
  6. B. Hughes, Y. Y. Yoon, D. M. Zehnder, and K. S. Boutros, “A 95% efficient normally-off GaN-on-Si HEMT hybrid-IC boost-converter with 425-W output power at 1 MHz,” presented at the Compound Semiconductor Integrated Circuit Symposium (CSICS), 2011 IEEE, USA, 16–19 Oct. 2011.
  7. A. Krost and A. Dadgar, “GaN-based devices on Si,” Phys. Status Solidi (a) 194(2), 361–375 (2002).
    [CrossRef]
  8. S. Yoshida, S. Misawa, and S. Gonda, “Improvements on the electrical and luminescent properties of reactive molecular beam epitaxially grown GaN films by using AlN-coated sapphire substrates,” Appl. Phys. Lett. 42(5), 427 (1983).
    [CrossRef]
  9. S. Luryi and E. Suhir, “New approach to the high quality epitaxial growth of lattice-mismatched materials,” Appl. Phys. Lett. 49(3), 140–142 (1986).
    [CrossRef]
  10. C. I. Park, J. H. Kang, K. C. Kim, K. S. Nahm, E. K. Suh, and K. Y. Lim, “Metal-organic chemical vapor deposition growth of GaN thin film on 3C-SiC/Si(111) substrate using various buffer layers,” Thin Solid Films 401(1–2), 60–66 (2001).
    [CrossRef]
  11. M. Jamil, J. R. Grandusky, V. Jindal, N. Tripathi, and F. Shahedipour-Sandvik, “Mechanism of large area dislocation defect reduction in GaN layers on AlN/Si (111) by substrate engineering,” J. Appl. Phys. 102(2), 023701 (2007).
    [CrossRef]
  12. D. Zubia and S. D. Hersee, “Nanoheteroepitaxy: The Application of nanostructuring and substrate compliance to the heteroepitaxy of mismatched semiconductor materials,” J. Appl. Phys. 85(9), 6492–6496 (1999).
    [CrossRef]
  13. Y.-K. Ee, J. M. Biser, W. Cao, H. M. Chan, R. P. Vinci, and N. Tansu, “Metalorganic vapor phase epitaxy of III-nitride light-emitting diodes on nanopatterned AGOG sapphire substrate by abbreviated growth mode,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1066–1072 (2009).
    [CrossRef]
  14. Y. Li, S. You, M. Zhu, L. Zhao, W. Hou, T. Detchprohm, Y. Taniguchi, N. Tamura, S. Tanaka, and C. Wetzel, “Defect-reduced green GaInN/GaN light-emitting diode on nanopatterned sapphire,” Appl. Phys. Lett. 98(15), 151102 (2011).
    [CrossRef]
  15. J. Liang, S. K. Hong, N. Kouklin, R. Beresford, and J. M. Xu, “Nanoheteroepitaxy of GaN on a nanopore array Si surface,” Appl. Phys. Lett. 83(9), 1752 (2003).
    [CrossRef]
  16. S. Manna, V. D. Ashok, and S. K. De, “Rectifying properties of p-GaN nanowires and an n-silicon heterojunction vertical diode,” ACS Appl. Mater. Interfaces 2(12), 3539–3543 (2010).
    [CrossRef] [PubMed]
  17. H. J. Xu and X. J. Li, “Silicon nanoporous pillar array: a silicon hierarchical structure with high light absorption and triple-band photoluminescence,” Opt. Express 16(5), 2933–2941 (2008).
    [CrossRef] [PubMed]
  18. C. B. Han, C. He, and X. J. Li, “Near-infrared light emission from a GaN/Si nanoheterostructure array,” Adv. Mater. (Deerfield Beach Fla.) 23(41), 4811–4814 (2011).
    [CrossRef] [PubMed]
  19. J. H. Lee, J. Y. Lee, J. J. Kim, H. S. Kim, N. W. Jang, W. J. Lee, and C. R. Cho, “Dependence of the diode characteristics of n-ZnO/p-Si (111) on the Si substrate doping,” J. Kor. Phys. Soc. 56(1), 429–433 (2010).
    [CrossRef]
  20. N. H. Alvi, M. Willander, and O. Nur, “The effect of the post-growth annealing on the electroluminescence properties of n-ZnO nanorods/p-GaN light emitting diodes,” Superlattices Microstruct. 47(6), 754–761 (2010).
    [CrossRef]
  21. H. J. Xu and X. J. Li, “Rectification effect and electron transport property of CdS/Si nanoheterostructure based on silicon nanoporous pillar array,” Appl. Phys. Lett. 93(17), 172105 (2008).
    [CrossRef]
  22. B. L. Sharma and R. K. Purohit, Semiconductor heterojunctions. (Pergamon Press, Oxford, 1974).
  23. S. Liu, T. Chen, Y. Jiang, G. Ru, and X. Qu, “The effect of postannealing on the electrical properties of well-aligned n-ZnO nanorods/p-Si heterojunction,” J. Appl. Phys. 105(11), 114504 (2009).
    [CrossRef]
  24. A. Rose, “Space-charge-limited currents in solids,” Phys. Rev. 97(6), 1538–1544 (1955).
    [CrossRef]
  25. R. Ghosh and D. Basak, “Electrical and ultraviolet photoresponse properties of quasialigned ZnO nanowires/p-Si heterojunction,” Appl. Phys. Lett. 90(24), 243106 (2007).
    [CrossRef]
  26. M. Dutta and D. Basak, “p-ZnO/n-Si heterojunction: Sol-gel fabrication, photoresponse properties, and transport mechanism,” Appl. Phys. Lett. 92(21), 212112 (2008).
    [CrossRef]
  27. N. Bano, I. Hussain, O. Nur, M. Willander, and P. Klason, “Study of radiative defects using current-voltage characteristics in ZnO rods catalytically grown on 4H-p-SiC,” J. Nanomater. 2010, 1–5 (2010).
    [CrossRef]
  28. T. A. Burr, A. A. Seraphin, E. Werwa, and K. D. Kolenbrander, “Carrier transport in thin films of silicon nanoparticles,” Phys. Rev. B 56(8), 4818–4824 (1997).
    [CrossRef]
  29. M. A. Reshchikov and H. Morkoç, “Luminescence properties of defects in GaN,” J. Appl. Phys. 97(6), 061301 (2005).
    [CrossRef]
  30. J. Neugebauer and C. G. Van de Walle, “Gallium vacancies and the yellow luminescence in GaN,” Appl. Phys. Lett. 69(4), 503–505 (1996).
    [CrossRef]
  31. T. Mattila and R. M. Nieminen, “Point-defect complexes and broadband luminescence in GaN and AlN,” Phys. Rev. B 55(15), 9571–9576 (1997).
    [CrossRef]
  32. S. Limpijumnong and C. G. Van de Walle, “Diffusivity of native defects in GaN,” Phys. Rev. B 69(3), 035207 (2004).
    [CrossRef]
  33. B. Unal and S. C. Bayliss, “Photovoltaic effects from porous Si,” J. Phys. D Appl. Phys. 30(19), 2763–2769 (1997).
    [CrossRef]
  34. H.-J. Xu, X.-N. Fu, X.-R. Sun, and X.-J. Li, “Investigations on the structural and optical properties of silicon nanoporous pillar array,” Acta Chimi. Sin. 54(5), 2352–2357 (2005).
  35. J. I. Pankove and H. Schade, “Photoemission from GaN,” Appl. Phys. Lett. 25(1), 53–55 (1974).
    [CrossRef]
  36. J. I. Pankove, Electroluminescence (Springer, New York 1977).
  37. R. M. Farrell, P. S. Hsu, D. A. Haeger, K. Fujito, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Low-threshold-current-density AlGaN-cladding-free m-plane InGaN/GaN laser diodes,” Appl. Phys. Lett. 96(23), 231113 (2010).
    [CrossRef]
  38. H. Zhao and N. Tansu, “Optical gain characteristics of staggered InGaN quantum wells lasers,” J. Appl. Phys. 107(11), 113110 (2010).
    [CrossRef]
  39. H. Zhao, J. Zhang, G. Liu, and N. Tansu, “Surface plasmon dispersion engineering via double-metallic Au/Ag layers for III-nitride based light-emitting diodes,” Appl. Phys. Lett. 98(15), 151115 (2011).
    [CrossRef]
  40. C.-H. Lu, C.-C. Lan, Y.-L. Lai, Y.-L. Li, and C.-P. Liu, “Enhancement of green emission from InGaN/GaN multiple quantum wells via coupling to surface plasmons in a two-dimensional silver array,” Adv. Funct. Mater. 21(24), 4719–4723 (2011).
    [CrossRef]

2011 (4)

Y. Li, S. You, M. Zhu, L. Zhao, W. Hou, T. Detchprohm, Y. Taniguchi, N. Tamura, S. Tanaka, and C. Wetzel, “Defect-reduced green GaInN/GaN light-emitting diode on nanopatterned sapphire,” Appl. Phys. Lett. 98(15), 151102 (2011).
[CrossRef]

C. B. Han, C. He, and X. J. Li, “Near-infrared light emission from a GaN/Si nanoheterostructure array,” Adv. Mater. (Deerfield Beach Fla.) 23(41), 4811–4814 (2011).
[CrossRef] [PubMed]

H. Zhao, J. Zhang, G. Liu, and N. Tansu, “Surface plasmon dispersion engineering via double-metallic Au/Ag layers for III-nitride based light-emitting diodes,” Appl. Phys. Lett. 98(15), 151115 (2011).
[CrossRef]

C.-H. Lu, C.-C. Lan, Y.-L. Lai, Y.-L. Li, and C.-P. Liu, “Enhancement of green emission from InGaN/GaN multiple quantum wells via coupling to surface plasmons in a two-dimensional silver array,” Adv. Funct. Mater. 21(24), 4719–4723 (2011).
[CrossRef]

2010 (7)

R. M. Farrell, P. S. Hsu, D. A. Haeger, K. Fujito, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Low-threshold-current-density AlGaN-cladding-free m-plane InGaN/GaN laser diodes,” Appl. Phys. Lett. 96(23), 231113 (2010).
[CrossRef]

H. Zhao and N. Tansu, “Optical gain characteristics of staggered InGaN quantum wells lasers,” J. Appl. Phys. 107(11), 113110 (2010).
[CrossRef]

J. H. Lee, J. Y. Lee, J. J. Kim, H. S. Kim, N. W. Jang, W. J. Lee, and C. R. Cho, “Dependence of the diode characteristics of n-ZnO/p-Si (111) on the Si substrate doping,” J. Kor. Phys. Soc. 56(1), 429–433 (2010).
[CrossRef]

N. H. Alvi, M. Willander, and O. Nur, “The effect of the post-growth annealing on the electroluminescence properties of n-ZnO nanorods/p-GaN light emitting diodes,” Superlattices Microstruct. 47(6), 754–761 (2010).
[CrossRef]

K. Radhakrishnan, N. Dharmarasu, Z. Sun, S. Arulkumaran, and G. I. Ng, “Demonstration of AlGaN/GaN high-electron-mobility transistors on 100 mm diameter Si(111) by plasma-assisted molecular beam epitaxy,” Appl. Phys. Lett. 97(23), 232107 (2010).
[CrossRef]

S. Manna, V. D. Ashok, and S. K. De, “Rectifying properties of p-GaN nanowires and an n-silicon heterojunction vertical diode,” ACS Appl. Mater. Interfaces 2(12), 3539–3543 (2010).
[CrossRef] [PubMed]

N. Bano, I. Hussain, O. Nur, M. Willander, and P. Klason, “Study of radiative defects using current-voltage characteristics in ZnO rods catalytically grown on 4H-p-SiC,” J. Nanomater. 2010, 1–5 (2010).
[CrossRef]

2009 (3)

Y.-K. Ee, J. M. Biser, W. Cao, H. M. Chan, R. P. Vinci, and N. Tansu, “Metalorganic vapor phase epitaxy of III-nitride light-emitting diodes on nanopatterned AGOG sapphire substrate by abbreviated growth mode,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1066–1072 (2009).
[CrossRef]

S. Liu, T. Chen, Y. Jiang, G. Ru, and X. Qu, “The effect of postannealing on the electrical properties of well-aligned n-ZnO nanorods/p-Si heterojunction,” J. Appl. Phys. 105(11), 114504 (2009).
[CrossRef]

H. Jia, L. Guo, W. Wang, and H. Chen, “Recent progress in GaN-based light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.) 21(45), 4641–4646 (2009).
[CrossRef]

2008 (3)

H. J. Xu and X. J. Li, “Rectification effect and electron transport property of CdS/Si nanoheterostructure based on silicon nanoporous pillar array,” Appl. Phys. Lett. 93(17), 172105 (2008).
[CrossRef]

H. J. Xu and X. J. Li, “Silicon nanoporous pillar array: a silicon hierarchical structure with high light absorption and triple-band photoluminescence,” Opt. Express 16(5), 2933–2941 (2008).
[CrossRef] [PubMed]

M. Dutta and D. Basak, “p-ZnO/n-Si heterojunction: Sol-gel fabrication, photoresponse properties, and transport mechanism,” Appl. Phys. Lett. 92(21), 212112 (2008).
[CrossRef]

2007 (2)

R. Ghosh and D. Basak, “Electrical and ultraviolet photoresponse properties of quasialigned ZnO nanowires/p-Si heterojunction,” Appl. Phys. Lett. 90(24), 243106 (2007).
[CrossRef]

M. Jamil, J. R. Grandusky, V. Jindal, N. Tripathi, and F. Shahedipour-Sandvik, “Mechanism of large area dislocation defect reduction in GaN layers on AlN/Si (111) by substrate engineering,” J. Appl. Phys. 102(2), 023701 (2007).
[CrossRef]

2005 (2)

M. A. Reshchikov and H. Morkoç, “Luminescence properties of defects in GaN,” J. Appl. Phys. 97(6), 061301 (2005).
[CrossRef]

H.-J. Xu, X.-N. Fu, X.-R. Sun, and X.-J. Li, “Investigations on the structural and optical properties of silicon nanoporous pillar array,” Acta Chimi. Sin. 54(5), 2352–2357 (2005).

2004 (1)

S. Limpijumnong and C. G. Van de Walle, “Diffusivity of native defects in GaN,” Phys. Rev. B 69(3), 035207 (2004).
[CrossRef]

2003 (1)

J. Liang, S. K. Hong, N. Kouklin, R. Beresford, and J. M. Xu, “Nanoheteroepitaxy of GaN on a nanopore array Si surface,” Appl. Phys. Lett. 83(9), 1752 (2003).
[CrossRef]

2002 (2)

P. Javorka, A. Alam, M. Wolter, A. Fox, M. Marso, M. Heuken, H. Luth, and P. Kordos, “AlGaN/GaN HEMTs on (111) silicon substrates,” IEEE Electron Device Lett. 23(1), 4–6 (2002).
[CrossRef]

A. Krost and A. Dadgar, “GaN-based devices on Si,” Phys. Status Solidi (a) 194(2), 361–375 (2002).
[CrossRef]

2001 (1)

C. I. Park, J. H. Kang, K. C. Kim, K. S. Nahm, E. K. Suh, and K. Y. Lim, “Metal-organic chemical vapor deposition growth of GaN thin film on 3C-SiC/Si(111) substrate using various buffer layers,” Thin Solid Films 401(1–2), 60–66 (2001).
[CrossRef]

1999 (1)

D. Zubia and S. D. Hersee, “Nanoheteroepitaxy: The Application of nanostructuring and substrate compliance to the heteroepitaxy of mismatched semiconductor materials,” J. Appl. Phys. 85(9), 6492–6496 (1999).
[CrossRef]

1997 (3)

B. Unal and S. C. Bayliss, “Photovoltaic effects from porous Si,” J. Phys. D Appl. Phys. 30(19), 2763–2769 (1997).
[CrossRef]

T. Mattila and R. M. Nieminen, “Point-defect complexes and broadband luminescence in GaN and AlN,” Phys. Rev. B 55(15), 9571–9576 (1997).
[CrossRef]

T. A. Burr, A. A. Seraphin, E. Werwa, and K. D. Kolenbrander, “Carrier transport in thin films of silicon nanoparticles,” Phys. Rev. B 56(8), 4818–4824 (1997).
[CrossRef]

1996 (2)

J. Neugebauer and C. G. Van de Walle, “Gallium vacancies and the yellow luminescence in GaN,” Appl. Phys. Lett. 69(4), 503–505 (1996).
[CrossRef]

G. Fasol, “Room-temperature blue gallium nitride laser diode,” Science 272(5269), 1751–1752 (1996).
[CrossRef]

1995 (1)

H. Morkoç and S. N. Mohammad, “High-luminosity blue and blue-green gallium nitride light-emitting diodes,” Science 267(5194), 51–55 (1995).
[CrossRef] [PubMed]

1986 (1)

S. Luryi and E. Suhir, “New approach to the high quality epitaxial growth of lattice-mismatched materials,” Appl. Phys. Lett. 49(3), 140–142 (1986).
[CrossRef]

1983 (1)

S. Yoshida, S. Misawa, and S. Gonda, “Improvements on the electrical and luminescent properties of reactive molecular beam epitaxially grown GaN films by using AlN-coated sapphire substrates,” Appl. Phys. Lett. 42(5), 427 (1983).
[CrossRef]

1974 (1)

J. I. Pankove and H. Schade, “Photoemission from GaN,” Appl. Phys. Lett. 25(1), 53–55 (1974).
[CrossRef]

1955 (1)

A. Rose, “Space-charge-limited currents in solids,” Phys. Rev. 97(6), 1538–1544 (1955).
[CrossRef]

Alam, A.

P. Javorka, A. Alam, M. Wolter, A. Fox, M. Marso, M. Heuken, H. Luth, and P. Kordos, “AlGaN/GaN HEMTs on (111) silicon substrates,” IEEE Electron Device Lett. 23(1), 4–6 (2002).
[CrossRef]

Alvi, N. H.

N. H. Alvi, M. Willander, and O. Nur, “The effect of the post-growth annealing on the electroluminescence properties of n-ZnO nanorods/p-GaN light emitting diodes,” Superlattices Microstruct. 47(6), 754–761 (2010).
[CrossRef]

Arulkumaran, S.

K. Radhakrishnan, N. Dharmarasu, Z. Sun, S. Arulkumaran, and G. I. Ng, “Demonstration of AlGaN/GaN high-electron-mobility transistors on 100 mm diameter Si(111) by plasma-assisted molecular beam epitaxy,” Appl. Phys. Lett. 97(23), 232107 (2010).
[CrossRef]

Ashok, V. D.

S. Manna, V. D. Ashok, and S. K. De, “Rectifying properties of p-GaN nanowires and an n-silicon heterojunction vertical diode,” ACS Appl. Mater. Interfaces 2(12), 3539–3543 (2010).
[CrossRef] [PubMed]

Bano, N.

N. Bano, I. Hussain, O. Nur, M. Willander, and P. Klason, “Study of radiative defects using current-voltage characteristics in ZnO rods catalytically grown on 4H-p-SiC,” J. Nanomater. 2010, 1–5 (2010).
[CrossRef]

Basak, D.

M. Dutta and D. Basak, “p-ZnO/n-Si heterojunction: Sol-gel fabrication, photoresponse properties, and transport mechanism,” Appl. Phys. Lett. 92(21), 212112 (2008).
[CrossRef]

R. Ghosh and D. Basak, “Electrical and ultraviolet photoresponse properties of quasialigned ZnO nanowires/p-Si heterojunction,” Appl. Phys. Lett. 90(24), 243106 (2007).
[CrossRef]

Bayliss, S. C.

B. Unal and S. C. Bayliss, “Photovoltaic effects from porous Si,” J. Phys. D Appl. Phys. 30(19), 2763–2769 (1997).
[CrossRef]

Beresford, R.

J. Liang, S. K. Hong, N. Kouklin, R. Beresford, and J. M. Xu, “Nanoheteroepitaxy of GaN on a nanopore array Si surface,” Appl. Phys. Lett. 83(9), 1752 (2003).
[CrossRef]

Biser, J. M.

Y.-K. Ee, J. M. Biser, W. Cao, H. M. Chan, R. P. Vinci, and N. Tansu, “Metalorganic vapor phase epitaxy of III-nitride light-emitting diodes on nanopatterned AGOG sapphire substrate by abbreviated growth mode,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1066–1072 (2009).
[CrossRef]

Burr, T. A.

T. A. Burr, A. A. Seraphin, E. Werwa, and K. D. Kolenbrander, “Carrier transport in thin films of silicon nanoparticles,” Phys. Rev. B 56(8), 4818–4824 (1997).
[CrossRef]

Cao, W.

Y.-K. Ee, J. M. Biser, W. Cao, H. M. Chan, R. P. Vinci, and N. Tansu, “Metalorganic vapor phase epitaxy of III-nitride light-emitting diodes on nanopatterned AGOG sapphire substrate by abbreviated growth mode,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1066–1072 (2009).
[CrossRef]

Chan, H. M.

Y.-K. Ee, J. M. Biser, W. Cao, H. M. Chan, R. P. Vinci, and N. Tansu, “Metalorganic vapor phase epitaxy of III-nitride light-emitting diodes on nanopatterned AGOG sapphire substrate by abbreviated growth mode,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1066–1072 (2009).
[CrossRef]

Chen, H.

H. Jia, L. Guo, W. Wang, and H. Chen, “Recent progress in GaN-based light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.) 21(45), 4641–4646 (2009).
[CrossRef]

Chen, T.

S. Liu, T. Chen, Y. Jiang, G. Ru, and X. Qu, “The effect of postannealing on the electrical properties of well-aligned n-ZnO nanorods/p-Si heterojunction,” J. Appl. Phys. 105(11), 114504 (2009).
[CrossRef]

Cho, C. R.

J. H. Lee, J. Y. Lee, J. J. Kim, H. S. Kim, N. W. Jang, W. J. Lee, and C. R. Cho, “Dependence of the diode characteristics of n-ZnO/p-Si (111) on the Si substrate doping,” J. Kor. Phys. Soc. 56(1), 429–433 (2010).
[CrossRef]

Dadgar, A.

A. Krost and A. Dadgar, “GaN-based devices on Si,” Phys. Status Solidi (a) 194(2), 361–375 (2002).
[CrossRef]

De, S. K.

S. Manna, V. D. Ashok, and S. K. De, “Rectifying properties of p-GaN nanowires and an n-silicon heterojunction vertical diode,” ACS Appl. Mater. Interfaces 2(12), 3539–3543 (2010).
[CrossRef] [PubMed]

DenBaars, S. P.

R. M. Farrell, P. S. Hsu, D. A. Haeger, K. Fujito, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Low-threshold-current-density AlGaN-cladding-free m-plane InGaN/GaN laser diodes,” Appl. Phys. Lett. 96(23), 231113 (2010).
[CrossRef]

Detchprohm, T.

Y. Li, S. You, M. Zhu, L. Zhao, W. Hou, T. Detchprohm, Y. Taniguchi, N. Tamura, S. Tanaka, and C. Wetzel, “Defect-reduced green GaInN/GaN light-emitting diode on nanopatterned sapphire,” Appl. Phys. Lett. 98(15), 151102 (2011).
[CrossRef]

Dharmarasu, N.

K. Radhakrishnan, N. Dharmarasu, Z. Sun, S. Arulkumaran, and G. I. Ng, “Demonstration of AlGaN/GaN high-electron-mobility transistors on 100 mm diameter Si(111) by plasma-assisted molecular beam epitaxy,” Appl. Phys. Lett. 97(23), 232107 (2010).
[CrossRef]

Dutta, M.

M. Dutta and D. Basak, “p-ZnO/n-Si heterojunction: Sol-gel fabrication, photoresponse properties, and transport mechanism,” Appl. Phys. Lett. 92(21), 212112 (2008).
[CrossRef]

Ee, Y.-K.

Y.-K. Ee, J. M. Biser, W. Cao, H. M. Chan, R. P. Vinci, and N. Tansu, “Metalorganic vapor phase epitaxy of III-nitride light-emitting diodes on nanopatterned AGOG sapphire substrate by abbreviated growth mode,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1066–1072 (2009).
[CrossRef]

Farrell, R. M.

R. M. Farrell, P. S. Hsu, D. A. Haeger, K. Fujito, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Low-threshold-current-density AlGaN-cladding-free m-plane InGaN/GaN laser diodes,” Appl. Phys. Lett. 96(23), 231113 (2010).
[CrossRef]

Fasol, G.

G. Fasol, “Room-temperature blue gallium nitride laser diode,” Science 272(5269), 1751–1752 (1996).
[CrossRef]

Fox, A.

P. Javorka, A. Alam, M. Wolter, A. Fox, M. Marso, M. Heuken, H. Luth, and P. Kordos, “AlGaN/GaN HEMTs on (111) silicon substrates,” IEEE Electron Device Lett. 23(1), 4–6 (2002).
[CrossRef]

Fu, X.-N.

H.-J. Xu, X.-N. Fu, X.-R. Sun, and X.-J. Li, “Investigations on the structural and optical properties of silicon nanoporous pillar array,” Acta Chimi. Sin. 54(5), 2352–2357 (2005).

Fujito, K.

R. M. Farrell, P. S. Hsu, D. A. Haeger, K. Fujito, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Low-threshold-current-density AlGaN-cladding-free m-plane InGaN/GaN laser diodes,” Appl. Phys. Lett. 96(23), 231113 (2010).
[CrossRef]

Ghosh, R.

R. Ghosh and D. Basak, “Electrical and ultraviolet photoresponse properties of quasialigned ZnO nanowires/p-Si heterojunction,” Appl. Phys. Lett. 90(24), 243106 (2007).
[CrossRef]

Gonda, S.

S. Yoshida, S. Misawa, and S. Gonda, “Improvements on the electrical and luminescent properties of reactive molecular beam epitaxially grown GaN films by using AlN-coated sapphire substrates,” Appl. Phys. Lett. 42(5), 427 (1983).
[CrossRef]

Grandusky, J. R.

M. Jamil, J. R. Grandusky, V. Jindal, N. Tripathi, and F. Shahedipour-Sandvik, “Mechanism of large area dislocation defect reduction in GaN layers on AlN/Si (111) by substrate engineering,” J. Appl. Phys. 102(2), 023701 (2007).
[CrossRef]

Guo, L.

H. Jia, L. Guo, W. Wang, and H. Chen, “Recent progress in GaN-based light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.) 21(45), 4641–4646 (2009).
[CrossRef]

Haeger, D. A.

R. M. Farrell, P. S. Hsu, D. A. Haeger, K. Fujito, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Low-threshold-current-density AlGaN-cladding-free m-plane InGaN/GaN laser diodes,” Appl. Phys. Lett. 96(23), 231113 (2010).
[CrossRef]

Han, C. B.

C. B. Han, C. He, and X. J. Li, “Near-infrared light emission from a GaN/Si nanoheterostructure array,” Adv. Mater. (Deerfield Beach Fla.) 23(41), 4811–4814 (2011).
[CrossRef] [PubMed]

He, C.

C. B. Han, C. He, and X. J. Li, “Near-infrared light emission from a GaN/Si nanoheterostructure array,” Adv. Mater. (Deerfield Beach Fla.) 23(41), 4811–4814 (2011).
[CrossRef] [PubMed]

Hersee, S. D.

D. Zubia and S. D. Hersee, “Nanoheteroepitaxy: The Application of nanostructuring and substrate compliance to the heteroepitaxy of mismatched semiconductor materials,” J. Appl. Phys. 85(9), 6492–6496 (1999).
[CrossRef]

Heuken, M.

P. Javorka, A. Alam, M. Wolter, A. Fox, M. Marso, M. Heuken, H. Luth, and P. Kordos, “AlGaN/GaN HEMTs on (111) silicon substrates,” IEEE Electron Device Lett. 23(1), 4–6 (2002).
[CrossRef]

Hong, S. K.

J. Liang, S. K. Hong, N. Kouklin, R. Beresford, and J. M. Xu, “Nanoheteroepitaxy of GaN on a nanopore array Si surface,” Appl. Phys. Lett. 83(9), 1752 (2003).
[CrossRef]

Hou, W.

Y. Li, S. You, M. Zhu, L. Zhao, W. Hou, T. Detchprohm, Y. Taniguchi, N. Tamura, S. Tanaka, and C. Wetzel, “Defect-reduced green GaInN/GaN light-emitting diode on nanopatterned sapphire,” Appl. Phys. Lett. 98(15), 151102 (2011).
[CrossRef]

Hsu, P. S.

R. M. Farrell, P. S. Hsu, D. A. Haeger, K. Fujito, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Low-threshold-current-density AlGaN-cladding-free m-plane InGaN/GaN laser diodes,” Appl. Phys. Lett. 96(23), 231113 (2010).
[CrossRef]

Hussain, I.

N. Bano, I. Hussain, O. Nur, M. Willander, and P. Klason, “Study of radiative defects using current-voltage characteristics in ZnO rods catalytically grown on 4H-p-SiC,” J. Nanomater. 2010, 1–5 (2010).
[CrossRef]

Jamil, M.

M. Jamil, J. R. Grandusky, V. Jindal, N. Tripathi, and F. Shahedipour-Sandvik, “Mechanism of large area dislocation defect reduction in GaN layers on AlN/Si (111) by substrate engineering,” J. Appl. Phys. 102(2), 023701 (2007).
[CrossRef]

Jang, N. W.

J. H. Lee, J. Y. Lee, J. J. Kim, H. S. Kim, N. W. Jang, W. J. Lee, and C. R. Cho, “Dependence of the diode characteristics of n-ZnO/p-Si (111) on the Si substrate doping,” J. Kor. Phys. Soc. 56(1), 429–433 (2010).
[CrossRef]

Javorka, P.

P. Javorka, A. Alam, M. Wolter, A. Fox, M. Marso, M. Heuken, H. Luth, and P. Kordos, “AlGaN/GaN HEMTs on (111) silicon substrates,” IEEE Electron Device Lett. 23(1), 4–6 (2002).
[CrossRef]

Jia, H.

H. Jia, L. Guo, W. Wang, and H. Chen, “Recent progress in GaN-based light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.) 21(45), 4641–4646 (2009).
[CrossRef]

Jiang, Y.

S. Liu, T. Chen, Y. Jiang, G. Ru, and X. Qu, “The effect of postannealing on the electrical properties of well-aligned n-ZnO nanorods/p-Si heterojunction,” J. Appl. Phys. 105(11), 114504 (2009).
[CrossRef]

Jindal, V.

M. Jamil, J. R. Grandusky, V. Jindal, N. Tripathi, and F. Shahedipour-Sandvik, “Mechanism of large area dislocation defect reduction in GaN layers on AlN/Si (111) by substrate engineering,” J. Appl. Phys. 102(2), 023701 (2007).
[CrossRef]

Kang, J. H.

C. I. Park, J. H. Kang, K. C. Kim, K. S. Nahm, E. K. Suh, and K. Y. Lim, “Metal-organic chemical vapor deposition growth of GaN thin film on 3C-SiC/Si(111) substrate using various buffer layers,” Thin Solid Films 401(1–2), 60–66 (2001).
[CrossRef]

Kim, H. S.

J. H. Lee, J. Y. Lee, J. J. Kim, H. S. Kim, N. W. Jang, W. J. Lee, and C. R. Cho, “Dependence of the diode characteristics of n-ZnO/p-Si (111) on the Si substrate doping,” J. Kor. Phys. Soc. 56(1), 429–433 (2010).
[CrossRef]

Kim, J. J.

J. H. Lee, J. Y. Lee, J. J. Kim, H. S. Kim, N. W. Jang, W. J. Lee, and C. R. Cho, “Dependence of the diode characteristics of n-ZnO/p-Si (111) on the Si substrate doping,” J. Kor. Phys. Soc. 56(1), 429–433 (2010).
[CrossRef]

Kim, K. C.

C. I. Park, J. H. Kang, K. C. Kim, K. S. Nahm, E. K. Suh, and K. Y. Lim, “Metal-organic chemical vapor deposition growth of GaN thin film on 3C-SiC/Si(111) substrate using various buffer layers,” Thin Solid Films 401(1–2), 60–66 (2001).
[CrossRef]

Klason, P.

N. Bano, I. Hussain, O. Nur, M. Willander, and P. Klason, “Study of radiative defects using current-voltage characteristics in ZnO rods catalytically grown on 4H-p-SiC,” J. Nanomater. 2010, 1–5 (2010).
[CrossRef]

Kolenbrander, K. D.

T. A. Burr, A. A. Seraphin, E. Werwa, and K. D. Kolenbrander, “Carrier transport in thin films of silicon nanoparticles,” Phys. Rev. B 56(8), 4818–4824 (1997).
[CrossRef]

Kordos, P.

P. Javorka, A. Alam, M. Wolter, A. Fox, M. Marso, M. Heuken, H. Luth, and P. Kordos, “AlGaN/GaN HEMTs on (111) silicon substrates,” IEEE Electron Device Lett. 23(1), 4–6 (2002).
[CrossRef]

Kouklin, N.

J. Liang, S. K. Hong, N. Kouklin, R. Beresford, and J. M. Xu, “Nanoheteroepitaxy of GaN on a nanopore array Si surface,” Appl. Phys. Lett. 83(9), 1752 (2003).
[CrossRef]

Krost, A.

A. Krost and A. Dadgar, “GaN-based devices on Si,” Phys. Status Solidi (a) 194(2), 361–375 (2002).
[CrossRef]

Lai, Y.-L.

C.-H. Lu, C.-C. Lan, Y.-L. Lai, Y.-L. Li, and C.-P. Liu, “Enhancement of green emission from InGaN/GaN multiple quantum wells via coupling to surface plasmons in a two-dimensional silver array,” Adv. Funct. Mater. 21(24), 4719–4723 (2011).
[CrossRef]

Lan, C.-C.

C.-H. Lu, C.-C. Lan, Y.-L. Lai, Y.-L. Li, and C.-P. Liu, “Enhancement of green emission from InGaN/GaN multiple quantum wells via coupling to surface plasmons in a two-dimensional silver array,” Adv. Funct. Mater. 21(24), 4719–4723 (2011).
[CrossRef]

Lee, J. H.

J. H. Lee, J. Y. Lee, J. J. Kim, H. S. Kim, N. W. Jang, W. J. Lee, and C. R. Cho, “Dependence of the diode characteristics of n-ZnO/p-Si (111) on the Si substrate doping,” J. Kor. Phys. Soc. 56(1), 429–433 (2010).
[CrossRef]

Lee, J. Y.

J. H. Lee, J. Y. Lee, J. J. Kim, H. S. Kim, N. W. Jang, W. J. Lee, and C. R. Cho, “Dependence of the diode characteristics of n-ZnO/p-Si (111) on the Si substrate doping,” J. Kor. Phys. Soc. 56(1), 429–433 (2010).
[CrossRef]

Lee, W. J.

J. H. Lee, J. Y. Lee, J. J. Kim, H. S. Kim, N. W. Jang, W. J. Lee, and C. R. Cho, “Dependence of the diode characteristics of n-ZnO/p-Si (111) on the Si substrate doping,” J. Kor. Phys. Soc. 56(1), 429–433 (2010).
[CrossRef]

Li, X. J.

C. B. Han, C. He, and X. J. Li, “Near-infrared light emission from a GaN/Si nanoheterostructure array,” Adv. Mater. (Deerfield Beach Fla.) 23(41), 4811–4814 (2011).
[CrossRef] [PubMed]

H. J. Xu and X. J. Li, “Silicon nanoporous pillar array: a silicon hierarchical structure with high light absorption and triple-band photoluminescence,” Opt. Express 16(5), 2933–2941 (2008).
[CrossRef] [PubMed]

H. J. Xu and X. J. Li, “Rectification effect and electron transport property of CdS/Si nanoheterostructure based on silicon nanoporous pillar array,” Appl. Phys. Lett. 93(17), 172105 (2008).
[CrossRef]

Li, X.-J.

H.-J. Xu, X.-N. Fu, X.-R. Sun, and X.-J. Li, “Investigations on the structural and optical properties of silicon nanoporous pillar array,” Acta Chimi. Sin. 54(5), 2352–2357 (2005).

Li, Y.

Y. Li, S. You, M. Zhu, L. Zhao, W. Hou, T. Detchprohm, Y. Taniguchi, N. Tamura, S. Tanaka, and C. Wetzel, “Defect-reduced green GaInN/GaN light-emitting diode on nanopatterned sapphire,” Appl. Phys. Lett. 98(15), 151102 (2011).
[CrossRef]

Li, Y.-L.

C.-H. Lu, C.-C. Lan, Y.-L. Lai, Y.-L. Li, and C.-P. Liu, “Enhancement of green emission from InGaN/GaN multiple quantum wells via coupling to surface plasmons in a two-dimensional silver array,” Adv. Funct. Mater. 21(24), 4719–4723 (2011).
[CrossRef]

Liang, J.

J. Liang, S. K. Hong, N. Kouklin, R. Beresford, and J. M. Xu, “Nanoheteroepitaxy of GaN on a nanopore array Si surface,” Appl. Phys. Lett. 83(9), 1752 (2003).
[CrossRef]

Lim, K. Y.

C. I. Park, J. H. Kang, K. C. Kim, K. S. Nahm, E. K. Suh, and K. Y. Lim, “Metal-organic chemical vapor deposition growth of GaN thin film on 3C-SiC/Si(111) substrate using various buffer layers,” Thin Solid Films 401(1–2), 60–66 (2001).
[CrossRef]

Limpijumnong, S.

S. Limpijumnong and C. G. Van de Walle, “Diffusivity of native defects in GaN,” Phys. Rev. B 69(3), 035207 (2004).
[CrossRef]

Liu, C.-P.

C.-H. Lu, C.-C. Lan, Y.-L. Lai, Y.-L. Li, and C.-P. Liu, “Enhancement of green emission from InGaN/GaN multiple quantum wells via coupling to surface plasmons in a two-dimensional silver array,” Adv. Funct. Mater. 21(24), 4719–4723 (2011).
[CrossRef]

Liu, G.

H. Zhao, J. Zhang, G. Liu, and N. Tansu, “Surface plasmon dispersion engineering via double-metallic Au/Ag layers for III-nitride based light-emitting diodes,” Appl. Phys. Lett. 98(15), 151115 (2011).
[CrossRef]

Liu, S.

S. Liu, T. Chen, Y. Jiang, G. Ru, and X. Qu, “The effect of postannealing on the electrical properties of well-aligned n-ZnO nanorods/p-Si heterojunction,” J. Appl. Phys. 105(11), 114504 (2009).
[CrossRef]

Lu, C.-H.

C.-H. Lu, C.-C. Lan, Y.-L. Lai, Y.-L. Li, and C.-P. Liu, “Enhancement of green emission from InGaN/GaN multiple quantum wells via coupling to surface plasmons in a two-dimensional silver array,” Adv. Funct. Mater. 21(24), 4719–4723 (2011).
[CrossRef]

Luryi, S.

S. Luryi and E. Suhir, “New approach to the high quality epitaxial growth of lattice-mismatched materials,” Appl. Phys. Lett. 49(3), 140–142 (1986).
[CrossRef]

Luth, H.

P. Javorka, A. Alam, M. Wolter, A. Fox, M. Marso, M. Heuken, H. Luth, and P. Kordos, “AlGaN/GaN HEMTs on (111) silicon substrates,” IEEE Electron Device Lett. 23(1), 4–6 (2002).
[CrossRef]

Manna, S.

S. Manna, V. D. Ashok, and S. K. De, “Rectifying properties of p-GaN nanowires and an n-silicon heterojunction vertical diode,” ACS Appl. Mater. Interfaces 2(12), 3539–3543 (2010).
[CrossRef] [PubMed]

Marso, M.

P. Javorka, A. Alam, M. Wolter, A. Fox, M. Marso, M. Heuken, H. Luth, and P. Kordos, “AlGaN/GaN HEMTs on (111) silicon substrates,” IEEE Electron Device Lett. 23(1), 4–6 (2002).
[CrossRef]

Mattila, T.

T. Mattila and R. M. Nieminen, “Point-defect complexes and broadband luminescence in GaN and AlN,” Phys. Rev. B 55(15), 9571–9576 (1997).
[CrossRef]

Misawa, S.

S. Yoshida, S. Misawa, and S. Gonda, “Improvements on the electrical and luminescent properties of reactive molecular beam epitaxially grown GaN films by using AlN-coated sapphire substrates,” Appl. Phys. Lett. 42(5), 427 (1983).
[CrossRef]

Mohammad, S. N.

H. Morkoç and S. N. Mohammad, “High-luminosity blue and blue-green gallium nitride light-emitting diodes,” Science 267(5194), 51–55 (1995).
[CrossRef] [PubMed]

Morkoç, H.

M. A. Reshchikov and H. Morkoç, “Luminescence properties of defects in GaN,” J. Appl. Phys. 97(6), 061301 (2005).
[CrossRef]

H. Morkoç and S. N. Mohammad, “High-luminosity blue and blue-green gallium nitride light-emitting diodes,” Science 267(5194), 51–55 (1995).
[CrossRef] [PubMed]

Nahm, K. S.

C. I. Park, J. H. Kang, K. C. Kim, K. S. Nahm, E. K. Suh, and K. Y. Lim, “Metal-organic chemical vapor deposition growth of GaN thin film on 3C-SiC/Si(111) substrate using various buffer layers,” Thin Solid Films 401(1–2), 60–66 (2001).
[CrossRef]

Nakamura, S.

R. M. Farrell, P. S. Hsu, D. A. Haeger, K. Fujito, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Low-threshold-current-density AlGaN-cladding-free m-plane InGaN/GaN laser diodes,” Appl. Phys. Lett. 96(23), 231113 (2010).
[CrossRef]

Neugebauer, J.

J. Neugebauer and C. G. Van de Walle, “Gallium vacancies and the yellow luminescence in GaN,” Appl. Phys. Lett. 69(4), 503–505 (1996).
[CrossRef]

Ng, G. I.

K. Radhakrishnan, N. Dharmarasu, Z. Sun, S. Arulkumaran, and G. I. Ng, “Demonstration of AlGaN/GaN high-electron-mobility transistors on 100 mm diameter Si(111) by plasma-assisted molecular beam epitaxy,” Appl. Phys. Lett. 97(23), 232107 (2010).
[CrossRef]

Nieminen, R. M.

T. Mattila and R. M. Nieminen, “Point-defect complexes and broadband luminescence in GaN and AlN,” Phys. Rev. B 55(15), 9571–9576 (1997).
[CrossRef]

Nur, O.

N. Bano, I. Hussain, O. Nur, M. Willander, and P. Klason, “Study of radiative defects using current-voltage characteristics in ZnO rods catalytically grown on 4H-p-SiC,” J. Nanomater. 2010, 1–5 (2010).
[CrossRef]

N. H. Alvi, M. Willander, and O. Nur, “The effect of the post-growth annealing on the electroluminescence properties of n-ZnO nanorods/p-GaN light emitting diodes,” Superlattices Microstruct. 47(6), 754–761 (2010).
[CrossRef]

Pankove, J. I.

J. I. Pankove and H. Schade, “Photoemission from GaN,” Appl. Phys. Lett. 25(1), 53–55 (1974).
[CrossRef]

Park, C. I.

C. I. Park, J. H. Kang, K. C. Kim, K. S. Nahm, E. K. Suh, and K. Y. Lim, “Metal-organic chemical vapor deposition growth of GaN thin film on 3C-SiC/Si(111) substrate using various buffer layers,” Thin Solid Films 401(1–2), 60–66 (2001).
[CrossRef]

Qu, X.

S. Liu, T. Chen, Y. Jiang, G. Ru, and X. Qu, “The effect of postannealing on the electrical properties of well-aligned n-ZnO nanorods/p-Si heterojunction,” J. Appl. Phys. 105(11), 114504 (2009).
[CrossRef]

Radhakrishnan, K.

K. Radhakrishnan, N. Dharmarasu, Z. Sun, S. Arulkumaran, and G. I. Ng, “Demonstration of AlGaN/GaN high-electron-mobility transistors on 100 mm diameter Si(111) by plasma-assisted molecular beam epitaxy,” Appl. Phys. Lett. 97(23), 232107 (2010).
[CrossRef]

Reshchikov, M. A.

M. A. Reshchikov and H. Morkoç, “Luminescence properties of defects in GaN,” J. Appl. Phys. 97(6), 061301 (2005).
[CrossRef]

Rose, A.

A. Rose, “Space-charge-limited currents in solids,” Phys. Rev. 97(6), 1538–1544 (1955).
[CrossRef]

Ru, G.

S. Liu, T. Chen, Y. Jiang, G. Ru, and X. Qu, “The effect of postannealing on the electrical properties of well-aligned n-ZnO nanorods/p-Si heterojunction,” J. Appl. Phys. 105(11), 114504 (2009).
[CrossRef]

Schade, H.

J. I. Pankove and H. Schade, “Photoemission from GaN,” Appl. Phys. Lett. 25(1), 53–55 (1974).
[CrossRef]

Seraphin, A. A.

T. A. Burr, A. A. Seraphin, E. Werwa, and K. D. Kolenbrander, “Carrier transport in thin films of silicon nanoparticles,” Phys. Rev. B 56(8), 4818–4824 (1997).
[CrossRef]

Shahedipour-Sandvik, F.

M. Jamil, J. R. Grandusky, V. Jindal, N. Tripathi, and F. Shahedipour-Sandvik, “Mechanism of large area dislocation defect reduction in GaN layers on AlN/Si (111) by substrate engineering,” J. Appl. Phys. 102(2), 023701 (2007).
[CrossRef]

Speck, J. S.

R. M. Farrell, P. S. Hsu, D. A. Haeger, K. Fujito, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Low-threshold-current-density AlGaN-cladding-free m-plane InGaN/GaN laser diodes,” Appl. Phys. Lett. 96(23), 231113 (2010).
[CrossRef]

Suh, E. K.

C. I. Park, J. H. Kang, K. C. Kim, K. S. Nahm, E. K. Suh, and K. Y. Lim, “Metal-organic chemical vapor deposition growth of GaN thin film on 3C-SiC/Si(111) substrate using various buffer layers,” Thin Solid Films 401(1–2), 60–66 (2001).
[CrossRef]

Suhir, E.

S. Luryi and E. Suhir, “New approach to the high quality epitaxial growth of lattice-mismatched materials,” Appl. Phys. Lett. 49(3), 140–142 (1986).
[CrossRef]

Sun, X.-R.

H.-J. Xu, X.-N. Fu, X.-R. Sun, and X.-J. Li, “Investigations on the structural and optical properties of silicon nanoporous pillar array,” Acta Chimi. Sin. 54(5), 2352–2357 (2005).

Sun, Z.

K. Radhakrishnan, N. Dharmarasu, Z. Sun, S. Arulkumaran, and G. I. Ng, “Demonstration of AlGaN/GaN high-electron-mobility transistors on 100 mm diameter Si(111) by plasma-assisted molecular beam epitaxy,” Appl. Phys. Lett. 97(23), 232107 (2010).
[CrossRef]

Tamura, N.

Y. Li, S. You, M. Zhu, L. Zhao, W. Hou, T. Detchprohm, Y. Taniguchi, N. Tamura, S. Tanaka, and C. Wetzel, “Defect-reduced green GaInN/GaN light-emitting diode on nanopatterned sapphire,” Appl. Phys. Lett. 98(15), 151102 (2011).
[CrossRef]

Tanaka, S.

Y. Li, S. You, M. Zhu, L. Zhao, W. Hou, T. Detchprohm, Y. Taniguchi, N. Tamura, S. Tanaka, and C. Wetzel, “Defect-reduced green GaInN/GaN light-emitting diode on nanopatterned sapphire,” Appl. Phys. Lett. 98(15), 151102 (2011).
[CrossRef]

Taniguchi, Y.

Y. Li, S. You, M. Zhu, L. Zhao, W. Hou, T. Detchprohm, Y. Taniguchi, N. Tamura, S. Tanaka, and C. Wetzel, “Defect-reduced green GaInN/GaN light-emitting diode on nanopatterned sapphire,” Appl. Phys. Lett. 98(15), 151102 (2011).
[CrossRef]

Tansu, N.

H. Zhao, J. Zhang, G. Liu, and N. Tansu, “Surface plasmon dispersion engineering via double-metallic Au/Ag layers for III-nitride based light-emitting diodes,” Appl. Phys. Lett. 98(15), 151115 (2011).
[CrossRef]

H. Zhao and N. Tansu, “Optical gain characteristics of staggered InGaN quantum wells lasers,” J. Appl. Phys. 107(11), 113110 (2010).
[CrossRef]

Y.-K. Ee, J. M. Biser, W. Cao, H. M. Chan, R. P. Vinci, and N. Tansu, “Metalorganic vapor phase epitaxy of III-nitride light-emitting diodes on nanopatterned AGOG sapphire substrate by abbreviated growth mode,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1066–1072 (2009).
[CrossRef]

Tripathi, N.

M. Jamil, J. R. Grandusky, V. Jindal, N. Tripathi, and F. Shahedipour-Sandvik, “Mechanism of large area dislocation defect reduction in GaN layers on AlN/Si (111) by substrate engineering,” J. Appl. Phys. 102(2), 023701 (2007).
[CrossRef]

Unal, B.

B. Unal and S. C. Bayliss, “Photovoltaic effects from porous Si,” J. Phys. D Appl. Phys. 30(19), 2763–2769 (1997).
[CrossRef]

Van de Walle, C. G.

S. Limpijumnong and C. G. Van de Walle, “Diffusivity of native defects in GaN,” Phys. Rev. B 69(3), 035207 (2004).
[CrossRef]

J. Neugebauer and C. G. Van de Walle, “Gallium vacancies and the yellow luminescence in GaN,” Appl. Phys. Lett. 69(4), 503–505 (1996).
[CrossRef]

Vinci, R. P.

Y.-K. Ee, J. M. Biser, W. Cao, H. M. Chan, R. P. Vinci, and N. Tansu, “Metalorganic vapor phase epitaxy of III-nitride light-emitting diodes on nanopatterned AGOG sapphire substrate by abbreviated growth mode,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1066–1072 (2009).
[CrossRef]

Wang, W.

H. Jia, L. Guo, W. Wang, and H. Chen, “Recent progress in GaN-based light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.) 21(45), 4641–4646 (2009).
[CrossRef]

Werwa, E.

T. A. Burr, A. A. Seraphin, E. Werwa, and K. D. Kolenbrander, “Carrier transport in thin films of silicon nanoparticles,” Phys. Rev. B 56(8), 4818–4824 (1997).
[CrossRef]

Wetzel, C.

Y. Li, S. You, M. Zhu, L. Zhao, W. Hou, T. Detchprohm, Y. Taniguchi, N. Tamura, S. Tanaka, and C. Wetzel, “Defect-reduced green GaInN/GaN light-emitting diode on nanopatterned sapphire,” Appl. Phys. Lett. 98(15), 151102 (2011).
[CrossRef]

Willander, M.

N. Bano, I. Hussain, O. Nur, M. Willander, and P. Klason, “Study of radiative defects using current-voltage characteristics in ZnO rods catalytically grown on 4H-p-SiC,” J. Nanomater. 2010, 1–5 (2010).
[CrossRef]

N. H. Alvi, M. Willander, and O. Nur, “The effect of the post-growth annealing on the electroluminescence properties of n-ZnO nanorods/p-GaN light emitting diodes,” Superlattices Microstruct. 47(6), 754–761 (2010).
[CrossRef]

Wolter, M.

P. Javorka, A. Alam, M. Wolter, A. Fox, M. Marso, M. Heuken, H. Luth, and P. Kordos, “AlGaN/GaN HEMTs on (111) silicon substrates,” IEEE Electron Device Lett. 23(1), 4–6 (2002).
[CrossRef]

Xu, H. J.

H. J. Xu and X. J. Li, “Silicon nanoporous pillar array: a silicon hierarchical structure with high light absorption and triple-band photoluminescence,” Opt. Express 16(5), 2933–2941 (2008).
[CrossRef] [PubMed]

H. J. Xu and X. J. Li, “Rectification effect and electron transport property of CdS/Si nanoheterostructure based on silicon nanoporous pillar array,” Appl. Phys. Lett. 93(17), 172105 (2008).
[CrossRef]

Xu, H.-J.

H.-J. Xu, X.-N. Fu, X.-R. Sun, and X.-J. Li, “Investigations on the structural and optical properties of silicon nanoporous pillar array,” Acta Chimi. Sin. 54(5), 2352–2357 (2005).

Xu, J. M.

J. Liang, S. K. Hong, N. Kouklin, R. Beresford, and J. M. Xu, “Nanoheteroepitaxy of GaN on a nanopore array Si surface,” Appl. Phys. Lett. 83(9), 1752 (2003).
[CrossRef]

Yoshida, S.

S. Yoshida, S. Misawa, and S. Gonda, “Improvements on the electrical and luminescent properties of reactive molecular beam epitaxially grown GaN films by using AlN-coated sapphire substrates,” Appl. Phys. Lett. 42(5), 427 (1983).
[CrossRef]

You, S.

Y. Li, S. You, M. Zhu, L. Zhao, W. Hou, T. Detchprohm, Y. Taniguchi, N. Tamura, S. Tanaka, and C. Wetzel, “Defect-reduced green GaInN/GaN light-emitting diode on nanopatterned sapphire,” Appl. Phys. Lett. 98(15), 151102 (2011).
[CrossRef]

Zhang, J.

H. Zhao, J. Zhang, G. Liu, and N. Tansu, “Surface plasmon dispersion engineering via double-metallic Au/Ag layers for III-nitride based light-emitting diodes,” Appl. Phys. Lett. 98(15), 151115 (2011).
[CrossRef]

Zhao, H.

H. Zhao, J. Zhang, G. Liu, and N. Tansu, “Surface plasmon dispersion engineering via double-metallic Au/Ag layers for III-nitride based light-emitting diodes,” Appl. Phys. Lett. 98(15), 151115 (2011).
[CrossRef]

H. Zhao and N. Tansu, “Optical gain characteristics of staggered InGaN quantum wells lasers,” J. Appl. Phys. 107(11), 113110 (2010).
[CrossRef]

Zhao, L.

Y. Li, S. You, M. Zhu, L. Zhao, W. Hou, T. Detchprohm, Y. Taniguchi, N. Tamura, S. Tanaka, and C. Wetzel, “Defect-reduced green GaInN/GaN light-emitting diode on nanopatterned sapphire,” Appl. Phys. Lett. 98(15), 151102 (2011).
[CrossRef]

Zhu, M.

Y. Li, S. You, M. Zhu, L. Zhao, W. Hou, T. Detchprohm, Y. Taniguchi, N. Tamura, S. Tanaka, and C. Wetzel, “Defect-reduced green GaInN/GaN light-emitting diode on nanopatterned sapphire,” Appl. Phys. Lett. 98(15), 151102 (2011).
[CrossRef]

Zubia, D.

D. Zubia and S. D. Hersee, “Nanoheteroepitaxy: The Application of nanostructuring and substrate compliance to the heteroepitaxy of mismatched semiconductor materials,” J. Appl. Phys. 85(9), 6492–6496 (1999).
[CrossRef]

ACS Appl. Mater. Interfaces (1)

S. Manna, V. D. Ashok, and S. K. De, “Rectifying properties of p-GaN nanowires and an n-silicon heterojunction vertical diode,” ACS Appl. Mater. Interfaces 2(12), 3539–3543 (2010).
[CrossRef] [PubMed]

Acta Chimi. Sin. (1)

H.-J. Xu, X.-N. Fu, X.-R. Sun, and X.-J. Li, “Investigations on the structural and optical properties of silicon nanoporous pillar array,” Acta Chimi. Sin. 54(5), 2352–2357 (2005).

Adv. Funct. Mater. (1)

C.-H. Lu, C.-C. Lan, Y.-L. Lai, Y.-L. Li, and C.-P. Liu, “Enhancement of green emission from InGaN/GaN multiple quantum wells via coupling to surface plasmons in a two-dimensional silver array,” Adv. Funct. Mater. 21(24), 4719–4723 (2011).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.) (2)

C. B. Han, C. He, and X. J. Li, “Near-infrared light emission from a GaN/Si nanoheterostructure array,” Adv. Mater. (Deerfield Beach Fla.) 23(41), 4811–4814 (2011).
[CrossRef] [PubMed]

H. Jia, L. Guo, W. Wang, and H. Chen, “Recent progress in GaN-based light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.) 21(45), 4641–4646 (2009).
[CrossRef]

Appl. Phys. Lett. (12)

K. Radhakrishnan, N. Dharmarasu, Z. Sun, S. Arulkumaran, and G. I. Ng, “Demonstration of AlGaN/GaN high-electron-mobility transistors on 100 mm diameter Si(111) by plasma-assisted molecular beam epitaxy,” Appl. Phys. Lett. 97(23), 232107 (2010).
[CrossRef]

S. Yoshida, S. Misawa, and S. Gonda, “Improvements on the electrical and luminescent properties of reactive molecular beam epitaxially grown GaN films by using AlN-coated sapphire substrates,” Appl. Phys. Lett. 42(5), 427 (1983).
[CrossRef]

S. Luryi and E. Suhir, “New approach to the high quality epitaxial growth of lattice-mismatched materials,” Appl. Phys. Lett. 49(3), 140–142 (1986).
[CrossRef]

Y. Li, S. You, M. Zhu, L. Zhao, W. Hou, T. Detchprohm, Y. Taniguchi, N. Tamura, S. Tanaka, and C. Wetzel, “Defect-reduced green GaInN/GaN light-emitting diode on nanopatterned sapphire,” Appl. Phys. Lett. 98(15), 151102 (2011).
[CrossRef]

J. Liang, S. K. Hong, N. Kouklin, R. Beresford, and J. M. Xu, “Nanoheteroepitaxy of GaN on a nanopore array Si surface,” Appl. Phys. Lett. 83(9), 1752 (2003).
[CrossRef]

H. J. Xu and X. J. Li, “Rectification effect and electron transport property of CdS/Si nanoheterostructure based on silicon nanoporous pillar array,” Appl. Phys. Lett. 93(17), 172105 (2008).
[CrossRef]

R. Ghosh and D. Basak, “Electrical and ultraviolet photoresponse properties of quasialigned ZnO nanowires/p-Si heterojunction,” Appl. Phys. Lett. 90(24), 243106 (2007).
[CrossRef]

M. Dutta and D. Basak, “p-ZnO/n-Si heterojunction: Sol-gel fabrication, photoresponse properties, and transport mechanism,” Appl. Phys. Lett. 92(21), 212112 (2008).
[CrossRef]

J. I. Pankove and H. Schade, “Photoemission from GaN,” Appl. Phys. Lett. 25(1), 53–55 (1974).
[CrossRef]

J. Neugebauer and C. G. Van de Walle, “Gallium vacancies and the yellow luminescence in GaN,” Appl. Phys. Lett. 69(4), 503–505 (1996).
[CrossRef]

H. Zhao, J. Zhang, G. Liu, and N. Tansu, “Surface plasmon dispersion engineering via double-metallic Au/Ag layers for III-nitride based light-emitting diodes,” Appl. Phys. Lett. 98(15), 151115 (2011).
[CrossRef]

R. M. Farrell, P. S. Hsu, D. A. Haeger, K. Fujito, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Low-threshold-current-density AlGaN-cladding-free m-plane InGaN/GaN laser diodes,” Appl. Phys. Lett. 96(23), 231113 (2010).
[CrossRef]

IEEE Electron Device Lett. (1)

P. Javorka, A. Alam, M. Wolter, A. Fox, M. Marso, M. Heuken, H. Luth, and P. Kordos, “AlGaN/GaN HEMTs on (111) silicon substrates,” IEEE Electron Device Lett. 23(1), 4–6 (2002).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

Y.-K. Ee, J. M. Biser, W. Cao, H. M. Chan, R. P. Vinci, and N. Tansu, “Metalorganic vapor phase epitaxy of III-nitride light-emitting diodes on nanopatterned AGOG sapphire substrate by abbreviated growth mode,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1066–1072 (2009).
[CrossRef]

J. Appl. Phys. (5)

M. Jamil, J. R. Grandusky, V. Jindal, N. Tripathi, and F. Shahedipour-Sandvik, “Mechanism of large area dislocation defect reduction in GaN layers on AlN/Si (111) by substrate engineering,” J. Appl. Phys. 102(2), 023701 (2007).
[CrossRef]

D. Zubia and S. D. Hersee, “Nanoheteroepitaxy: The Application of nanostructuring and substrate compliance to the heteroepitaxy of mismatched semiconductor materials,” J. Appl. Phys. 85(9), 6492–6496 (1999).
[CrossRef]

S. Liu, T. Chen, Y. Jiang, G. Ru, and X. Qu, “The effect of postannealing on the electrical properties of well-aligned n-ZnO nanorods/p-Si heterojunction,” J. Appl. Phys. 105(11), 114504 (2009).
[CrossRef]

M. A. Reshchikov and H. Morkoç, “Luminescence properties of defects in GaN,” J. Appl. Phys. 97(6), 061301 (2005).
[CrossRef]

H. Zhao and N. Tansu, “Optical gain characteristics of staggered InGaN quantum wells lasers,” J. Appl. Phys. 107(11), 113110 (2010).
[CrossRef]

J. Kor. Phys. Soc. (1)

J. H. Lee, J. Y. Lee, J. J. Kim, H. S. Kim, N. W. Jang, W. J. Lee, and C. R. Cho, “Dependence of the diode characteristics of n-ZnO/p-Si (111) on the Si substrate doping,” J. Kor. Phys. Soc. 56(1), 429–433 (2010).
[CrossRef]

J. Nanomater. (1)

N. Bano, I. Hussain, O. Nur, M. Willander, and P. Klason, “Study of radiative defects using current-voltage characteristics in ZnO rods catalytically grown on 4H-p-SiC,” J. Nanomater. 2010, 1–5 (2010).
[CrossRef]

J. Phys. D Appl. Phys. (1)

B. Unal and S. C. Bayliss, “Photovoltaic effects from porous Si,” J. Phys. D Appl. Phys. 30(19), 2763–2769 (1997).
[CrossRef]

Opt. Express (1)

Phys. Rev. (1)

A. Rose, “Space-charge-limited currents in solids,” Phys. Rev. 97(6), 1538–1544 (1955).
[CrossRef]

Phys. Rev. B (3)

T. Mattila and R. M. Nieminen, “Point-defect complexes and broadband luminescence in GaN and AlN,” Phys. Rev. B 55(15), 9571–9576 (1997).
[CrossRef]

S. Limpijumnong and C. G. Van de Walle, “Diffusivity of native defects in GaN,” Phys. Rev. B 69(3), 035207 (2004).
[CrossRef]

T. A. Burr, A. A. Seraphin, E. Werwa, and K. D. Kolenbrander, “Carrier transport in thin films of silicon nanoparticles,” Phys. Rev. B 56(8), 4818–4824 (1997).
[CrossRef]

Phys. Status Solidi (a) (1)

A. Krost and A. Dadgar, “GaN-based devices on Si,” Phys. Status Solidi (a) 194(2), 361–375 (2002).
[CrossRef]

Science (2)

H. Morkoç and S. N. Mohammad, “High-luminosity blue and blue-green gallium nitride light-emitting diodes,” Science 267(5194), 51–55 (1995).
[CrossRef] [PubMed]

G. Fasol, “Room-temperature blue gallium nitride laser diode,” Science 272(5269), 1751–1752 (1996).
[CrossRef]

Superlattices Microstruct. (1)

N. H. Alvi, M. Willander, and O. Nur, “The effect of the post-growth annealing on the electroluminescence properties of n-ZnO nanorods/p-GaN light emitting diodes,” Superlattices Microstruct. 47(6), 754–761 (2010).
[CrossRef]

Thin Solid Films (1)

C. I. Park, J. H. Kang, K. C. Kim, K. S. Nahm, E. K. Suh, and K. Y. Lim, “Metal-organic chemical vapor deposition growth of GaN thin film on 3C-SiC/Si(111) substrate using various buffer layers,” Thin Solid Films 401(1–2), 60–66 (2001).
[CrossRef]

Other (3)

B. Hughes, Y. Y. Yoon, D. M. Zehnder, and K. S. Boutros, “A 95% efficient normally-off GaN-on-Si HEMT hybrid-IC boost-converter with 425-W output power at 1 MHz,” presented at the Compound Semiconductor Integrated Circuit Symposium (CSICS), 2011 IEEE, USA, 16–19 Oct. 2011.

B. L. Sharma and R. K. Purohit, Semiconductor heterojunctions. (Pergamon Press, Oxford, 1974).

J. I. Pankove, Electroluminescence (Springer, New York 1977).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Part A: the XRD patterns of as-grown and annealed GaN/Si-NPA; Part B: the comparison of the FWHM variation for all the corresponding XRD peaks before and after annealing treatment. (b) The cross-sectional FESEM image of as-grown GaN/Si-NPA.

Fig. 2
Fig. 2

The room-temperature J-V curves of as-grown and annealed GaN/Si-NPA. Inset: the schematic diagram of the LEDs.

Fig. 3
Fig. 3

The room-temperature log-log plots for the forward J-V of as-grown and annealed GaN/Si-NPA.

Fig. 4
Fig. 4

The room-temperature (a) EL spectra of as-drown and annealed GaN/Si-NPA LEDs operating with a dc voltage of 10 V, and (b) PL spectra of as-grown and annealed GaN/Si-NPA.

Fig. 5
Fig. 5

The mechanism illustration of the yellow EL from as-grown (a) and NIR EL from annealed GaN/Si-NPA LEDs based on the energy band diagram.

Metrics