Abstract

We characterize the performance of a quantum well infrared photodetector (QWIP), which is fabricated as a photonic crystal slab (PCS) resonator. The strongest resonance of the PCS is designed to coincide with the absorption peak frequency at 7.6 µm of the QWIP. To accurately characterize the detector performance, it is illuminated by using single mode mid-infrared lasers. The strong resonant absorption enhancement yields a detectivity increase of up to 20 times. This enhancement is a combined effect of increased responsivity and noise current reduction. With increasing temperature, we observe a red shift of the PCS-QWIP resonance peak of −0.055 cm−1/K. We attribute this effect to a refractive index change and present a model based on the revised plane wave method.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. F. Levine, “Quantum?well infrared photodetectors,” J. Appl. Phys. 74(8), R1–R81 (1993).
    [CrossRef]
  2. A. Rogalski, “Quantum well photoconductors in infrared detector technology,” J. Appl. Phys. 93(8), 4355 (2003).
    [CrossRef]
  3. H. Schneider and H. C. Liu, Quantum Well Infrared Photodetectors: Physics and Applications (Springer, 2007).
  4. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
    [CrossRef] [PubMed]
  5. M. Razeghi, S. Slivken, Y. B. Bai, B. Gokden, and S. R. Darvish, “High power quantum cascade lasers,” New J. Phys. 11(12), 125017 (2009).
    [CrossRef]
  6. M. Nobile, P. Klang, E. Mujagi?, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, “Quantum cascade laser utilising aluminium-free material system: InGaAs/GaAsSb lattice-matched to InP,” Electron. Lett. 45(20), 1031–1033 (2009).
    [CrossRef]
  7. H. Schneider, M. Walther, C. Schönbein, R. Rehm, J. Fleissner, W. Pletschen, J. Braunstein, K. Koidl, G. Weimann, J. Ziegler, and W. Cabanski, “QWIP FPAs for high-performance thermal imaging,” Physica E 7(1-2), 101–107 (2000).
    [CrossRef]
  8. D. Weidmann, F. K. Tittel, T. Aellen, M. Beck, D. Hofstetter, J. Faist, and S. Blaser, “Mid-infrared trace-gas sensing with a quasi- continuous-wave Peltier-cooled distributed feedback quantum cascade laser,” Appl. Phys. B 79(7), 907–913 (2004).
    [CrossRef]
  9. F. Capasso, R. Paiella, R. Martini, R. Colombelli, C. Gmachl, T. L. Myers, M. S. Taubman, R. M. Williams, C. G. Bethea, K. Unterrainer, H. Y. Hwang, D. L. Sivco, A. Y. Cho, A. M. Sergent, H. C. Liu, and E. A. Whittaker, “Quantum cascade lasers: ultrahigh-speed operation, optical wireless communication, narrow linewidth, and far-infrared emission,” IEEE J. Quantum Electron. 38(6), 511–532 (2002).
    [CrossRef]
  10. B. Gökden, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “Broad area photonic crystal distributed feedback quantum cascade lasers emitting 34 W at ?~4.36 µm,” Appl. Phys. Lett. 97(13), 131112 (2010).
    [CrossRef]
  11. E. Mujagi?, L. K. Hoffmann, S. Schartner, M. Nobile, W. Schrenk, M. P. Semtsiv, M. Wienold, W. T. Masselink, and G. Strasser, “Low divergence single-mode surface emitting quantum cascade ring lasers,” Appl. Phys. Lett. 93(16), 161101 (2008).
    [CrossRef]
  12. Y. Kurosaka, S. Iwahashi, Y. Liang, K. Sakai, E. Miyai, W. Kunishi, D. Ohnishi, and S. Noda, “On-chip beam-steering photonic-crystal lasers,” Nat. Photonics 4(7), 447–450 (2010).
    [CrossRef]
  13. S. I. Ahn, E. Mujagi?, M. Nobile, H. Detz, S. Kalchmair, A. M. Andrews, P. Klang, W. Schrenk, and G. Strasser, “Electrical beam steering of Y-coupled quantum cascade lasers,” Appl. Phys. Lett. 96(14), 141113 (2010).
    [CrossRef]
  14. H. C. Liu and F. Capasso, Intersubband Transitions in Quantum Wells: Physics and Device Applications I (Academic Press, 2000), Chap. 1.
  15. J. Y. Andersson, L. Lundqvist, and Z. F. Paska, “Quantum efficiency enhancement of AlGaAs/GaAs quantum well infrared detectors using a waveguide with a grating coupler,” Appl. Phys. Lett. 58(20), 2264 (1991).
    [CrossRef]
  16. S. D. Gunapala, S. V. Bandara, C. J. Hill, D. Z. Ting, J. K. Liu, S. B. Rafol, E. R. Blazejewski, J. M. Mumolo, S. A. Keo, S. Krishna, Y. C. Chang, and C. A. Shott, “Demonstration of 640 × 512 pixels long-wavelength infrared (LWIR) quantum dot infrared photodetector (QDIP) imaging focal plane array,” Infrared Phys. Technol. 50(2-3), 149–155 (2007).
    [CrossRef]
  17. S. Schartner, S. Golka, C. Pflügl, W. Schrenk, A. M. Andrews, T. Roch, and G. Strasser, “Band structure mapping of photonic crystal intersubband detectors,” Appl. Phys. Lett. 89(15), 151107 (2006).
    [CrossRef]
  18. S. Schartner, S. Kalchmair, A. M. Andrews, P. Klang, W. Schrenk, and G. Strasser, “Post-fabrication fine-tuning of photonic crystal quantum well infrared photodetectors,” Appl. Phys. Lett. 94(23), 231117 (2009).
    [CrossRef]
  19. W. Wu, A. Bonakdar, and H. Mohseni, “Plasmonic enhanced quantum well infrared photodetector with high detectivity,” Appl. Phys. Lett. 96(16), 161107 (2010).
    [CrossRef]
  20. S. J. Lee, Z. Ku, A. Barve, J. Montoya, W. Y. Jang, S. R. J. Brueck, M. Sundaram, A. Reisinger, S. Krishna, and S. K. Noh, “A monolithically integrated plasmonic infrared quantum dot camera,” Nat Commun. 2, 286 (2011).
    [CrossRef] [PubMed]
  21. T. Asano, C. Hu, Y. Zhang, M. Liu, J. C. Campbell, and A. Madhukar, “Design consideration and demonstration of resonant-cavity-enhanced quantum dot infrared photodetectors in mid-infrared wavelength regime (3-5 µm),” IEEE J. Quantum Electron. 46(10), 1484–1491 (2010).
    [CrossRef]
  22. S. Kalchmair, H. Detz, G. D. Cole, A. M. Andrews, P. Klang, M. Nobile, R. Gansch, C. Ostermaier, W. Schrenk, and G. Strasser, “Photonic crystal slab quantum well infrared photodetector,” Appl. Phys. Lett. 98(1), 011105 (2011).
    [CrossRef]
  23. S. Shi, C. Chen, and D. W. Prather, “Revised plane wave method for dispersive material and its application to band structure calculations of photonic crystal slabs,” Appl. Phys. Lett. 86(4), 043104 (2005).
    [CrossRef]
  24. R. Gansch, S. Kalchmair, H. Detz, A. M. Andrews, P. Klang, W. Schrenk, and G. Strasser, “Higher order modes in photonic crystal slabs,” Opt. Express 19(17), 15990–15995 (2011).
    [CrossRef] [PubMed]
  25. D. W. Prather, S. Shi, A. Sharkawy, J. Murakowski, and G. J. Schneider, Photonic Crystals: Theory, Applications and Fabrication (Wiley, 2009).
  26. T. Ochiai and K. Sakoda, “Dispersion relation and optical transmittance of a hexagonal photonic crystal slab,” Phys. Rev. B 63(12), 125107 (2001).
    [CrossRef]
  27. H. Lipsanen, M. Sopanen, M. Taskinen, J. Tulkki, and J. Ahopelto, “Enhanced optical properties of in situ passivated near?surface AlxGa1?xAs/GaAs quantum wells,” Appl. Phys. Lett. 68(16), 2216 (1996).
    [CrossRef]
  28. J. S. Blakemore, “Semiconducting and other major properties of gallium arsenide,” J. Appl. Phys. 53(10), R123–R181 (1982).
    [CrossRef]

2011 (3)

S. J. Lee, Z. Ku, A. Barve, J. Montoya, W. Y. Jang, S. R. J. Brueck, M. Sundaram, A. Reisinger, S. Krishna, and S. K. Noh, “A monolithically integrated plasmonic infrared quantum dot camera,” Nat Commun. 2, 286 (2011).
[CrossRef] [PubMed]

R. Gansch, S. Kalchmair, H. Detz, A. M. Andrews, P. Klang, W. Schrenk, and G. Strasser, “Higher order modes in photonic crystal slabs,” Opt. Express 19(17), 15990–15995 (2011).
[CrossRef] [PubMed]

S. Kalchmair, H. Detz, G. D. Cole, A. M. Andrews, P. Klang, M. Nobile, R. Gansch, C. Ostermaier, W. Schrenk, and G. Strasser, “Photonic crystal slab quantum well infrared photodetector,” Appl. Phys. Lett. 98(1), 011105 (2011).
[CrossRef]

2010 (5)

W. Wu, A. Bonakdar, and H. Mohseni, “Plasmonic enhanced quantum well infrared photodetector with high detectivity,” Appl. Phys. Lett. 96(16), 161107 (2010).
[CrossRef]

T. Asano, C. Hu, Y. Zhang, M. Liu, J. C. Campbell, and A. Madhukar, “Design consideration and demonstration of resonant-cavity-enhanced quantum dot infrared photodetectors in mid-infrared wavelength regime (3-5 µm),” IEEE J. Quantum Electron. 46(10), 1484–1491 (2010).
[CrossRef]

Y. Kurosaka, S. Iwahashi, Y. Liang, K. Sakai, E. Miyai, W. Kunishi, D. Ohnishi, and S. Noda, “On-chip beam-steering photonic-crystal lasers,” Nat. Photonics 4(7), 447–450 (2010).
[CrossRef]

S. I. Ahn, E. Mujagi?, M. Nobile, H. Detz, S. Kalchmair, A. M. Andrews, P. Klang, W. Schrenk, and G. Strasser, “Electrical beam steering of Y-coupled quantum cascade lasers,” Appl. Phys. Lett. 96(14), 141113 (2010).
[CrossRef]

B. Gökden, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “Broad area photonic crystal distributed feedback quantum cascade lasers emitting 34 W at ?~4.36 µm,” Appl. Phys. Lett. 97(13), 131112 (2010).
[CrossRef]

2009 (3)

M. Razeghi, S. Slivken, Y. B. Bai, B. Gokden, and S. R. Darvish, “High power quantum cascade lasers,” New J. Phys. 11(12), 125017 (2009).
[CrossRef]

M. Nobile, P. Klang, E. Mujagi?, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, “Quantum cascade laser utilising aluminium-free material system: InGaAs/GaAsSb lattice-matched to InP,” Electron. Lett. 45(20), 1031–1033 (2009).
[CrossRef]

S. Schartner, S. Kalchmair, A. M. Andrews, P. Klang, W. Schrenk, and G. Strasser, “Post-fabrication fine-tuning of photonic crystal quantum well infrared photodetectors,” Appl. Phys. Lett. 94(23), 231117 (2009).
[CrossRef]

2008 (1)

E. Mujagi?, L. K. Hoffmann, S. Schartner, M. Nobile, W. Schrenk, M. P. Semtsiv, M. Wienold, W. T. Masselink, and G. Strasser, “Low divergence single-mode surface emitting quantum cascade ring lasers,” Appl. Phys. Lett. 93(16), 161101 (2008).
[CrossRef]

2007 (1)

S. D. Gunapala, S. V. Bandara, C. J. Hill, D. Z. Ting, J. K. Liu, S. B. Rafol, E. R. Blazejewski, J. M. Mumolo, S. A. Keo, S. Krishna, Y. C. Chang, and C. A. Shott, “Demonstration of 640 × 512 pixels long-wavelength infrared (LWIR) quantum dot infrared photodetector (QDIP) imaging focal plane array,” Infrared Phys. Technol. 50(2-3), 149–155 (2007).
[CrossRef]

2006 (1)

S. Schartner, S. Golka, C. Pflügl, W. Schrenk, A. M. Andrews, T. Roch, and G. Strasser, “Band structure mapping of photonic crystal intersubband detectors,” Appl. Phys. Lett. 89(15), 151107 (2006).
[CrossRef]

2005 (1)

S. Shi, C. Chen, and D. W. Prather, “Revised plane wave method for dispersive material and its application to band structure calculations of photonic crystal slabs,” Appl. Phys. Lett. 86(4), 043104 (2005).
[CrossRef]

2004 (1)

D. Weidmann, F. K. Tittel, T. Aellen, M. Beck, D. Hofstetter, J. Faist, and S. Blaser, “Mid-infrared trace-gas sensing with a quasi- continuous-wave Peltier-cooled distributed feedback quantum cascade laser,” Appl. Phys. B 79(7), 907–913 (2004).
[CrossRef]

2003 (1)

A. Rogalski, “Quantum well photoconductors in infrared detector technology,” J. Appl. Phys. 93(8), 4355 (2003).
[CrossRef]

2002 (1)

F. Capasso, R. Paiella, R. Martini, R. Colombelli, C. Gmachl, T. L. Myers, M. S. Taubman, R. M. Williams, C. G. Bethea, K. Unterrainer, H. Y. Hwang, D. L. Sivco, A. Y. Cho, A. M. Sergent, H. C. Liu, and E. A. Whittaker, “Quantum cascade lasers: ultrahigh-speed operation, optical wireless communication, narrow linewidth, and far-infrared emission,” IEEE J. Quantum Electron. 38(6), 511–532 (2002).
[CrossRef]

2001 (1)

T. Ochiai and K. Sakoda, “Dispersion relation and optical transmittance of a hexagonal photonic crystal slab,” Phys. Rev. B 63(12), 125107 (2001).
[CrossRef]

2000 (1)

H. Schneider, M. Walther, C. Schönbein, R. Rehm, J. Fleissner, W. Pletschen, J. Braunstein, K. Koidl, G. Weimann, J. Ziegler, and W. Cabanski, “QWIP FPAs for high-performance thermal imaging,” Physica E 7(1-2), 101–107 (2000).
[CrossRef]

1996 (1)

H. Lipsanen, M. Sopanen, M. Taskinen, J. Tulkki, and J. Ahopelto, “Enhanced optical properties of in situ passivated near?surface AlxGa1?xAs/GaAs quantum wells,” Appl. Phys. Lett. 68(16), 2216 (1996).
[CrossRef]

1994 (1)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[CrossRef] [PubMed]

1993 (1)

B. F. Levine, “Quantum?well infrared photodetectors,” J. Appl. Phys. 74(8), R1–R81 (1993).
[CrossRef]

1991 (1)

J. Y. Andersson, L. Lundqvist, and Z. F. Paska, “Quantum efficiency enhancement of AlGaAs/GaAs quantum well infrared detectors using a waveguide with a grating coupler,” Appl. Phys. Lett. 58(20), 2264 (1991).
[CrossRef]

1982 (1)

J. S. Blakemore, “Semiconducting and other major properties of gallium arsenide,” J. Appl. Phys. 53(10), R123–R181 (1982).
[CrossRef]

Aellen, T.

D. Weidmann, F. K. Tittel, T. Aellen, M. Beck, D. Hofstetter, J. Faist, and S. Blaser, “Mid-infrared trace-gas sensing with a quasi- continuous-wave Peltier-cooled distributed feedback quantum cascade laser,” Appl. Phys. B 79(7), 907–913 (2004).
[CrossRef]

Ahn, S. I.

S. I. Ahn, E. Mujagi?, M. Nobile, H. Detz, S. Kalchmair, A. M. Andrews, P. Klang, W. Schrenk, and G. Strasser, “Electrical beam steering of Y-coupled quantum cascade lasers,” Appl. Phys. Lett. 96(14), 141113 (2010).
[CrossRef]

Ahopelto, J.

H. Lipsanen, M. Sopanen, M. Taskinen, J. Tulkki, and J. Ahopelto, “Enhanced optical properties of in situ passivated near?surface AlxGa1?xAs/GaAs quantum wells,” Appl. Phys. Lett. 68(16), 2216 (1996).
[CrossRef]

Andersson, J. Y.

J. Y. Andersson, L. Lundqvist, and Z. F. Paska, “Quantum efficiency enhancement of AlGaAs/GaAs quantum well infrared detectors using a waveguide with a grating coupler,” Appl. Phys. Lett. 58(20), 2264 (1991).
[CrossRef]

Andrews, A. M.

S. Kalchmair, H. Detz, G. D. Cole, A. M. Andrews, P. Klang, M. Nobile, R. Gansch, C. Ostermaier, W. Schrenk, and G. Strasser, “Photonic crystal slab quantum well infrared photodetector,” Appl. Phys. Lett. 98(1), 011105 (2011).
[CrossRef]

R. Gansch, S. Kalchmair, H. Detz, A. M. Andrews, P. Klang, W. Schrenk, and G. Strasser, “Higher order modes in photonic crystal slabs,” Opt. Express 19(17), 15990–15995 (2011).
[CrossRef] [PubMed]

S. I. Ahn, E. Mujagi?, M. Nobile, H. Detz, S. Kalchmair, A. M. Andrews, P. Klang, W. Schrenk, and G. Strasser, “Electrical beam steering of Y-coupled quantum cascade lasers,” Appl. Phys. Lett. 96(14), 141113 (2010).
[CrossRef]

S. Schartner, S. Kalchmair, A. M. Andrews, P. Klang, W. Schrenk, and G. Strasser, “Post-fabrication fine-tuning of photonic crystal quantum well infrared photodetectors,” Appl. Phys. Lett. 94(23), 231117 (2009).
[CrossRef]

M. Nobile, P. Klang, E. Mujagi?, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, “Quantum cascade laser utilising aluminium-free material system: InGaAs/GaAsSb lattice-matched to InP,” Electron. Lett. 45(20), 1031–1033 (2009).
[CrossRef]

S. Schartner, S. Golka, C. Pflügl, W. Schrenk, A. M. Andrews, T. Roch, and G. Strasser, “Band structure mapping of photonic crystal intersubband detectors,” Appl. Phys. Lett. 89(15), 151107 (2006).
[CrossRef]

Asano, T.

T. Asano, C. Hu, Y. Zhang, M. Liu, J. C. Campbell, and A. Madhukar, “Design consideration and demonstration of resonant-cavity-enhanced quantum dot infrared photodetectors in mid-infrared wavelength regime (3-5 µm),” IEEE J. Quantum Electron. 46(10), 1484–1491 (2010).
[CrossRef]

Bai, Y.

B. Gökden, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “Broad area photonic crystal distributed feedback quantum cascade lasers emitting 34 W at ?~4.36 µm,” Appl. Phys. Lett. 97(13), 131112 (2010).
[CrossRef]

Bai, Y. B.

M. Razeghi, S. Slivken, Y. B. Bai, B. Gokden, and S. R. Darvish, “High power quantum cascade lasers,” New J. Phys. 11(12), 125017 (2009).
[CrossRef]

Bandara, S. V.

S. D. Gunapala, S. V. Bandara, C. J. Hill, D. Z. Ting, J. K. Liu, S. B. Rafol, E. R. Blazejewski, J. M. Mumolo, S. A. Keo, S. Krishna, Y. C. Chang, and C. A. Shott, “Demonstration of 640 × 512 pixels long-wavelength infrared (LWIR) quantum dot infrared photodetector (QDIP) imaging focal plane array,” Infrared Phys. Technol. 50(2-3), 149–155 (2007).
[CrossRef]

Bandyopadhyay, N.

B. Gökden, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “Broad area photonic crystal distributed feedback quantum cascade lasers emitting 34 W at ?~4.36 µm,” Appl. Phys. Lett. 97(13), 131112 (2010).
[CrossRef]

Barve, A.

S. J. Lee, Z. Ku, A. Barve, J. Montoya, W. Y. Jang, S. R. J. Brueck, M. Sundaram, A. Reisinger, S. Krishna, and S. K. Noh, “A monolithically integrated plasmonic infrared quantum dot camera,” Nat Commun. 2, 286 (2011).
[CrossRef] [PubMed]

Beck, M.

D. Weidmann, F. K. Tittel, T. Aellen, M. Beck, D. Hofstetter, J. Faist, and S. Blaser, “Mid-infrared trace-gas sensing with a quasi- continuous-wave Peltier-cooled distributed feedback quantum cascade laser,” Appl. Phys. B 79(7), 907–913 (2004).
[CrossRef]

Bethea, C. G.

F. Capasso, R. Paiella, R. Martini, R. Colombelli, C. Gmachl, T. L. Myers, M. S. Taubman, R. M. Williams, C. G. Bethea, K. Unterrainer, H. Y. Hwang, D. L. Sivco, A. Y. Cho, A. M. Sergent, H. C. Liu, and E. A. Whittaker, “Quantum cascade lasers: ultrahigh-speed operation, optical wireless communication, narrow linewidth, and far-infrared emission,” IEEE J. Quantum Electron. 38(6), 511–532 (2002).
[CrossRef]

Blakemore, J. S.

J. S. Blakemore, “Semiconducting and other major properties of gallium arsenide,” J. Appl. Phys. 53(10), R123–R181 (1982).
[CrossRef]

Blaser, S.

D. Weidmann, F. K. Tittel, T. Aellen, M. Beck, D. Hofstetter, J. Faist, and S. Blaser, “Mid-infrared trace-gas sensing with a quasi- continuous-wave Peltier-cooled distributed feedback quantum cascade laser,” Appl. Phys. B 79(7), 907–913 (2004).
[CrossRef]

Blazejewski, E. R.

S. D. Gunapala, S. V. Bandara, C. J. Hill, D. Z. Ting, J. K. Liu, S. B. Rafol, E. R. Blazejewski, J. M. Mumolo, S. A. Keo, S. Krishna, Y. C. Chang, and C. A. Shott, “Demonstration of 640 × 512 pixels long-wavelength infrared (LWIR) quantum dot infrared photodetector (QDIP) imaging focal plane array,” Infrared Phys. Technol. 50(2-3), 149–155 (2007).
[CrossRef]

Bonakdar, A.

W. Wu, A. Bonakdar, and H. Mohseni, “Plasmonic enhanced quantum well infrared photodetector with high detectivity,” Appl. Phys. Lett. 96(16), 161107 (2010).
[CrossRef]

Braunstein, J.

H. Schneider, M. Walther, C. Schönbein, R. Rehm, J. Fleissner, W. Pletschen, J. Braunstein, K. Koidl, G. Weimann, J. Ziegler, and W. Cabanski, “QWIP FPAs for high-performance thermal imaging,” Physica E 7(1-2), 101–107 (2000).
[CrossRef]

Brueck, S. R. J.

S. J. Lee, Z. Ku, A. Barve, J. Montoya, W. Y. Jang, S. R. J. Brueck, M. Sundaram, A. Reisinger, S. Krishna, and S. K. Noh, “A monolithically integrated plasmonic infrared quantum dot camera,” Nat Commun. 2, 286 (2011).
[CrossRef] [PubMed]

Cabanski, W.

H. Schneider, M. Walther, C. Schönbein, R. Rehm, J. Fleissner, W. Pletschen, J. Braunstein, K. Koidl, G. Weimann, J. Ziegler, and W. Cabanski, “QWIP FPAs for high-performance thermal imaging,” Physica E 7(1-2), 101–107 (2000).
[CrossRef]

Campbell, J. C.

T. Asano, C. Hu, Y. Zhang, M. Liu, J. C. Campbell, and A. Madhukar, “Design consideration and demonstration of resonant-cavity-enhanced quantum dot infrared photodetectors in mid-infrared wavelength regime (3-5 µm),” IEEE J. Quantum Electron. 46(10), 1484–1491 (2010).
[CrossRef]

Capasso, F.

F. Capasso, R. Paiella, R. Martini, R. Colombelli, C. Gmachl, T. L. Myers, M. S. Taubman, R. M. Williams, C. G. Bethea, K. Unterrainer, H. Y. Hwang, D. L. Sivco, A. Y. Cho, A. M. Sergent, H. C. Liu, and E. A. Whittaker, “Quantum cascade lasers: ultrahigh-speed operation, optical wireless communication, narrow linewidth, and far-infrared emission,” IEEE J. Quantum Electron. 38(6), 511–532 (2002).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Chang, Y. C.

S. D. Gunapala, S. V. Bandara, C. J. Hill, D. Z. Ting, J. K. Liu, S. B. Rafol, E. R. Blazejewski, J. M. Mumolo, S. A. Keo, S. Krishna, Y. C. Chang, and C. A. Shott, “Demonstration of 640 × 512 pixels long-wavelength infrared (LWIR) quantum dot infrared photodetector (QDIP) imaging focal plane array,” Infrared Phys. Technol. 50(2-3), 149–155 (2007).
[CrossRef]

Chen, C.

S. Shi, C. Chen, and D. W. Prather, “Revised plane wave method for dispersive material and its application to band structure calculations of photonic crystal slabs,” Appl. Phys. Lett. 86(4), 043104 (2005).
[CrossRef]

Cho, A. Y.

F. Capasso, R. Paiella, R. Martini, R. Colombelli, C. Gmachl, T. L. Myers, M. S. Taubman, R. M. Williams, C. G. Bethea, K. Unterrainer, H. Y. Hwang, D. L. Sivco, A. Y. Cho, A. M. Sergent, H. C. Liu, and E. A. Whittaker, “Quantum cascade lasers: ultrahigh-speed operation, optical wireless communication, narrow linewidth, and far-infrared emission,” IEEE J. Quantum Electron. 38(6), 511–532 (2002).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Cole, G. D.

S. Kalchmair, H. Detz, G. D. Cole, A. M. Andrews, P. Klang, M. Nobile, R. Gansch, C. Ostermaier, W. Schrenk, and G. Strasser, “Photonic crystal slab quantum well infrared photodetector,” Appl. Phys. Lett. 98(1), 011105 (2011).
[CrossRef]

Colombelli, R.

F. Capasso, R. Paiella, R. Martini, R. Colombelli, C. Gmachl, T. L. Myers, M. S. Taubman, R. M. Williams, C. G. Bethea, K. Unterrainer, H. Y. Hwang, D. L. Sivco, A. Y. Cho, A. M. Sergent, H. C. Liu, and E. A. Whittaker, “Quantum cascade lasers: ultrahigh-speed operation, optical wireless communication, narrow linewidth, and far-infrared emission,” IEEE J. Quantum Electron. 38(6), 511–532 (2002).
[CrossRef]

Darvish, S. R.

M. Razeghi, S. Slivken, Y. B. Bai, B. Gokden, and S. R. Darvish, “High power quantum cascade lasers,” New J. Phys. 11(12), 125017 (2009).
[CrossRef]

Detz, H.

S. Kalchmair, H. Detz, G. D. Cole, A. M. Andrews, P. Klang, M. Nobile, R. Gansch, C. Ostermaier, W. Schrenk, and G. Strasser, “Photonic crystal slab quantum well infrared photodetector,” Appl. Phys. Lett. 98(1), 011105 (2011).
[CrossRef]

R. Gansch, S. Kalchmair, H. Detz, A. M. Andrews, P. Klang, W. Schrenk, and G. Strasser, “Higher order modes in photonic crystal slabs,” Opt. Express 19(17), 15990–15995 (2011).
[CrossRef] [PubMed]

S. I. Ahn, E. Mujagi?, M. Nobile, H. Detz, S. Kalchmair, A. M. Andrews, P. Klang, W. Schrenk, and G. Strasser, “Electrical beam steering of Y-coupled quantum cascade lasers,” Appl. Phys. Lett. 96(14), 141113 (2010).
[CrossRef]

M. Nobile, P. Klang, E. Mujagi?, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, “Quantum cascade laser utilising aluminium-free material system: InGaAs/GaAsSb lattice-matched to InP,” Electron. Lett. 45(20), 1031–1033 (2009).
[CrossRef]

Faist, J.

D. Weidmann, F. K. Tittel, T. Aellen, M. Beck, D. Hofstetter, J. Faist, and S. Blaser, “Mid-infrared trace-gas sensing with a quasi- continuous-wave Peltier-cooled distributed feedback quantum cascade laser,” Appl. Phys. B 79(7), 907–913 (2004).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Fleissner, J.

H. Schneider, M. Walther, C. Schönbein, R. Rehm, J. Fleissner, W. Pletschen, J. Braunstein, K. Koidl, G. Weimann, J. Ziegler, and W. Cabanski, “QWIP FPAs for high-performance thermal imaging,” Physica E 7(1-2), 101–107 (2000).
[CrossRef]

Gansch, R.

S. Kalchmair, H. Detz, G. D. Cole, A. M. Andrews, P. Klang, M. Nobile, R. Gansch, C. Ostermaier, W. Schrenk, and G. Strasser, “Photonic crystal slab quantum well infrared photodetector,” Appl. Phys. Lett. 98(1), 011105 (2011).
[CrossRef]

R. Gansch, S. Kalchmair, H. Detz, A. M. Andrews, P. Klang, W. Schrenk, and G. Strasser, “Higher order modes in photonic crystal slabs,” Opt. Express 19(17), 15990–15995 (2011).
[CrossRef] [PubMed]

Gmachl, C.

F. Capasso, R. Paiella, R. Martini, R. Colombelli, C. Gmachl, T. L. Myers, M. S. Taubman, R. M. Williams, C. G. Bethea, K. Unterrainer, H. Y. Hwang, D. L. Sivco, A. Y. Cho, A. M. Sergent, H. C. Liu, and E. A. Whittaker, “Quantum cascade lasers: ultrahigh-speed operation, optical wireless communication, narrow linewidth, and far-infrared emission,” IEEE J. Quantum Electron. 38(6), 511–532 (2002).
[CrossRef]

Gokden, B.

M. Razeghi, S. Slivken, Y. B. Bai, B. Gokden, and S. R. Darvish, “High power quantum cascade lasers,” New J. Phys. 11(12), 125017 (2009).
[CrossRef]

Gökden, B.

B. Gökden, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “Broad area photonic crystal distributed feedback quantum cascade lasers emitting 34 W at ?~4.36 µm,” Appl. Phys. Lett. 97(13), 131112 (2010).
[CrossRef]

Golka, S.

S. Schartner, S. Golka, C. Pflügl, W. Schrenk, A. M. Andrews, T. Roch, and G. Strasser, “Band structure mapping of photonic crystal intersubband detectors,” Appl. Phys. Lett. 89(15), 151107 (2006).
[CrossRef]

Gunapala, S. D.

S. D. Gunapala, S. V. Bandara, C. J. Hill, D. Z. Ting, J. K. Liu, S. B. Rafol, E. R. Blazejewski, J. M. Mumolo, S. A. Keo, S. Krishna, Y. C. Chang, and C. A. Shott, “Demonstration of 640 × 512 pixels long-wavelength infrared (LWIR) quantum dot infrared photodetector (QDIP) imaging focal plane array,” Infrared Phys. Technol. 50(2-3), 149–155 (2007).
[CrossRef]

Hill, C. J.

S. D. Gunapala, S. V. Bandara, C. J. Hill, D. Z. Ting, J. K. Liu, S. B. Rafol, E. R. Blazejewski, J. M. Mumolo, S. A. Keo, S. Krishna, Y. C. Chang, and C. A. Shott, “Demonstration of 640 × 512 pixels long-wavelength infrared (LWIR) quantum dot infrared photodetector (QDIP) imaging focal plane array,” Infrared Phys. Technol. 50(2-3), 149–155 (2007).
[CrossRef]

Hoffmann, L. K.

E. Mujagi?, L. K. Hoffmann, S. Schartner, M. Nobile, W. Schrenk, M. P. Semtsiv, M. Wienold, W. T. Masselink, and G. Strasser, “Low divergence single-mode surface emitting quantum cascade ring lasers,” Appl. Phys. Lett. 93(16), 161101 (2008).
[CrossRef]

Hofstetter, D.

D. Weidmann, F. K. Tittel, T. Aellen, M. Beck, D. Hofstetter, J. Faist, and S. Blaser, “Mid-infrared trace-gas sensing with a quasi- continuous-wave Peltier-cooled distributed feedback quantum cascade laser,” Appl. Phys. B 79(7), 907–913 (2004).
[CrossRef]

Hu, C.

T. Asano, C. Hu, Y. Zhang, M. Liu, J. C. Campbell, and A. Madhukar, “Design consideration and demonstration of resonant-cavity-enhanced quantum dot infrared photodetectors in mid-infrared wavelength regime (3-5 µm),” IEEE J. Quantum Electron. 46(10), 1484–1491 (2010).
[CrossRef]

Hutchinson, A. L.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Hwang, H. Y.

F. Capasso, R. Paiella, R. Martini, R. Colombelli, C. Gmachl, T. L. Myers, M. S. Taubman, R. M. Williams, C. G. Bethea, K. Unterrainer, H. Y. Hwang, D. L. Sivco, A. Y. Cho, A. M. Sergent, H. C. Liu, and E. A. Whittaker, “Quantum cascade lasers: ultrahigh-speed operation, optical wireless communication, narrow linewidth, and far-infrared emission,” IEEE J. Quantum Electron. 38(6), 511–532 (2002).
[CrossRef]

Iwahashi, S.

Y. Kurosaka, S. Iwahashi, Y. Liang, K. Sakai, E. Miyai, W. Kunishi, D. Ohnishi, and S. Noda, “On-chip beam-steering photonic-crystal lasers,” Nat. Photonics 4(7), 447–450 (2010).
[CrossRef]

Jang, W. Y.

S. J. Lee, Z. Ku, A. Barve, J. Montoya, W. Y. Jang, S. R. J. Brueck, M. Sundaram, A. Reisinger, S. Krishna, and S. K. Noh, “A monolithically integrated plasmonic infrared quantum dot camera,” Nat Commun. 2, 286 (2011).
[CrossRef] [PubMed]

Kalchmair, S.

S. Kalchmair, H. Detz, G. D. Cole, A. M. Andrews, P. Klang, M. Nobile, R. Gansch, C. Ostermaier, W. Schrenk, and G. Strasser, “Photonic crystal slab quantum well infrared photodetector,” Appl. Phys. Lett. 98(1), 011105 (2011).
[CrossRef]

R. Gansch, S. Kalchmair, H. Detz, A. M. Andrews, P. Klang, W. Schrenk, and G. Strasser, “Higher order modes in photonic crystal slabs,” Opt. Express 19(17), 15990–15995 (2011).
[CrossRef] [PubMed]

S. I. Ahn, E. Mujagi?, M. Nobile, H. Detz, S. Kalchmair, A. M. Andrews, P. Klang, W. Schrenk, and G. Strasser, “Electrical beam steering of Y-coupled quantum cascade lasers,” Appl. Phys. Lett. 96(14), 141113 (2010).
[CrossRef]

S. Schartner, S. Kalchmair, A. M. Andrews, P. Klang, W. Schrenk, and G. Strasser, “Post-fabrication fine-tuning of photonic crystal quantum well infrared photodetectors,” Appl. Phys. Lett. 94(23), 231117 (2009).
[CrossRef]

Keo, S. A.

S. D. Gunapala, S. V. Bandara, C. J. Hill, D. Z. Ting, J. K. Liu, S. B. Rafol, E. R. Blazejewski, J. M. Mumolo, S. A. Keo, S. Krishna, Y. C. Chang, and C. A. Shott, “Demonstration of 640 × 512 pixels long-wavelength infrared (LWIR) quantum dot infrared photodetector (QDIP) imaging focal plane array,” Infrared Phys. Technol. 50(2-3), 149–155 (2007).
[CrossRef]

Klang, P.

S. Kalchmair, H. Detz, G. D. Cole, A. M. Andrews, P. Klang, M. Nobile, R. Gansch, C. Ostermaier, W. Schrenk, and G. Strasser, “Photonic crystal slab quantum well infrared photodetector,” Appl. Phys. Lett. 98(1), 011105 (2011).
[CrossRef]

R. Gansch, S. Kalchmair, H. Detz, A. M. Andrews, P. Klang, W. Schrenk, and G. Strasser, “Higher order modes in photonic crystal slabs,” Opt. Express 19(17), 15990–15995 (2011).
[CrossRef] [PubMed]

S. I. Ahn, E. Mujagi?, M. Nobile, H. Detz, S. Kalchmair, A. M. Andrews, P. Klang, W. Schrenk, and G. Strasser, “Electrical beam steering of Y-coupled quantum cascade lasers,” Appl. Phys. Lett. 96(14), 141113 (2010).
[CrossRef]

S. Schartner, S. Kalchmair, A. M. Andrews, P. Klang, W. Schrenk, and G. Strasser, “Post-fabrication fine-tuning of photonic crystal quantum well infrared photodetectors,” Appl. Phys. Lett. 94(23), 231117 (2009).
[CrossRef]

M. Nobile, P. Klang, E. Mujagi?, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, “Quantum cascade laser utilising aluminium-free material system: InGaAs/GaAsSb lattice-matched to InP,” Electron. Lett. 45(20), 1031–1033 (2009).
[CrossRef]

Koidl, K.

H. Schneider, M. Walther, C. Schönbein, R. Rehm, J. Fleissner, W. Pletschen, J. Braunstein, K. Koidl, G. Weimann, J. Ziegler, and W. Cabanski, “QWIP FPAs for high-performance thermal imaging,” Physica E 7(1-2), 101–107 (2000).
[CrossRef]

Krishna, S.

S. J. Lee, Z. Ku, A. Barve, J. Montoya, W. Y. Jang, S. R. J. Brueck, M. Sundaram, A. Reisinger, S. Krishna, and S. K. Noh, “A monolithically integrated plasmonic infrared quantum dot camera,” Nat Commun. 2, 286 (2011).
[CrossRef] [PubMed]

S. D. Gunapala, S. V. Bandara, C. J. Hill, D. Z. Ting, J. K. Liu, S. B. Rafol, E. R. Blazejewski, J. M. Mumolo, S. A. Keo, S. Krishna, Y. C. Chang, and C. A. Shott, “Demonstration of 640 × 512 pixels long-wavelength infrared (LWIR) quantum dot infrared photodetector (QDIP) imaging focal plane array,” Infrared Phys. Technol. 50(2-3), 149–155 (2007).
[CrossRef]

Ku, Z.

S. J. Lee, Z. Ku, A. Barve, J. Montoya, W. Y. Jang, S. R. J. Brueck, M. Sundaram, A. Reisinger, S. Krishna, and S. K. Noh, “A monolithically integrated plasmonic infrared quantum dot camera,” Nat Commun. 2, 286 (2011).
[CrossRef] [PubMed]

Kunishi, W.

Y. Kurosaka, S. Iwahashi, Y. Liang, K. Sakai, E. Miyai, W. Kunishi, D. Ohnishi, and S. Noda, “On-chip beam-steering photonic-crystal lasers,” Nat. Photonics 4(7), 447–450 (2010).
[CrossRef]

Kurosaka, Y.

Y. Kurosaka, S. Iwahashi, Y. Liang, K. Sakai, E. Miyai, W. Kunishi, D. Ohnishi, and S. Noda, “On-chip beam-steering photonic-crystal lasers,” Nat. Photonics 4(7), 447–450 (2010).
[CrossRef]

Lee, S. J.

S. J. Lee, Z. Ku, A. Barve, J. Montoya, W. Y. Jang, S. R. J. Brueck, M. Sundaram, A. Reisinger, S. Krishna, and S. K. Noh, “A monolithically integrated plasmonic infrared quantum dot camera,” Nat Commun. 2, 286 (2011).
[CrossRef] [PubMed]

Levine, B. F.

B. F. Levine, “Quantum?well infrared photodetectors,” J. Appl. Phys. 74(8), R1–R81 (1993).
[CrossRef]

Liang, Y.

Y. Kurosaka, S. Iwahashi, Y. Liang, K. Sakai, E. Miyai, W. Kunishi, D. Ohnishi, and S. Noda, “On-chip beam-steering photonic-crystal lasers,” Nat. Photonics 4(7), 447–450 (2010).
[CrossRef]

Lipsanen, H.

H. Lipsanen, M. Sopanen, M. Taskinen, J. Tulkki, and J. Ahopelto, “Enhanced optical properties of in situ passivated near?surface AlxGa1?xAs/GaAs quantum wells,” Appl. Phys. Lett. 68(16), 2216 (1996).
[CrossRef]

Liu, H. C.

F. Capasso, R. Paiella, R. Martini, R. Colombelli, C. Gmachl, T. L. Myers, M. S. Taubman, R. M. Williams, C. G. Bethea, K. Unterrainer, H. Y. Hwang, D. L. Sivco, A. Y. Cho, A. M. Sergent, H. C. Liu, and E. A. Whittaker, “Quantum cascade lasers: ultrahigh-speed operation, optical wireless communication, narrow linewidth, and far-infrared emission,” IEEE J. Quantum Electron. 38(6), 511–532 (2002).
[CrossRef]

Liu, J. K.

S. D. Gunapala, S. V. Bandara, C. J. Hill, D. Z. Ting, J. K. Liu, S. B. Rafol, E. R. Blazejewski, J. M. Mumolo, S. A. Keo, S. Krishna, Y. C. Chang, and C. A. Shott, “Demonstration of 640 × 512 pixels long-wavelength infrared (LWIR) quantum dot infrared photodetector (QDIP) imaging focal plane array,” Infrared Phys. Technol. 50(2-3), 149–155 (2007).
[CrossRef]

Liu, M.

T. Asano, C. Hu, Y. Zhang, M. Liu, J. C. Campbell, and A. Madhukar, “Design consideration and demonstration of resonant-cavity-enhanced quantum dot infrared photodetectors in mid-infrared wavelength regime (3-5 µm),” IEEE J. Quantum Electron. 46(10), 1484–1491 (2010).
[CrossRef]

Lundqvist, L.

J. Y. Andersson, L. Lundqvist, and Z. F. Paska, “Quantum efficiency enhancement of AlGaAs/GaAs quantum well infrared detectors using a waveguide with a grating coupler,” Appl. Phys. Lett. 58(20), 2264 (1991).
[CrossRef]

Madhukar, A.

T. Asano, C. Hu, Y. Zhang, M. Liu, J. C. Campbell, and A. Madhukar, “Design consideration and demonstration of resonant-cavity-enhanced quantum dot infrared photodetectors in mid-infrared wavelength regime (3-5 µm),” IEEE J. Quantum Electron. 46(10), 1484–1491 (2010).
[CrossRef]

Martini, R.

F. Capasso, R. Paiella, R. Martini, R. Colombelli, C. Gmachl, T. L. Myers, M. S. Taubman, R. M. Williams, C. G. Bethea, K. Unterrainer, H. Y. Hwang, D. L. Sivco, A. Y. Cho, A. M. Sergent, H. C. Liu, and E. A. Whittaker, “Quantum cascade lasers: ultrahigh-speed operation, optical wireless communication, narrow linewidth, and far-infrared emission,” IEEE J. Quantum Electron. 38(6), 511–532 (2002).
[CrossRef]

Masselink, W. T.

E. Mujagi?, L. K. Hoffmann, S. Schartner, M. Nobile, W. Schrenk, M. P. Semtsiv, M. Wienold, W. T. Masselink, and G. Strasser, “Low divergence single-mode surface emitting quantum cascade ring lasers,” Appl. Phys. Lett. 93(16), 161101 (2008).
[CrossRef]

Miyai, E.

Y. Kurosaka, S. Iwahashi, Y. Liang, K. Sakai, E. Miyai, W. Kunishi, D. Ohnishi, and S. Noda, “On-chip beam-steering photonic-crystal lasers,” Nat. Photonics 4(7), 447–450 (2010).
[CrossRef]

Mohseni, H.

W. Wu, A. Bonakdar, and H. Mohseni, “Plasmonic enhanced quantum well infrared photodetector with high detectivity,” Appl. Phys. Lett. 96(16), 161107 (2010).
[CrossRef]

Montoya, J.

S. J. Lee, Z. Ku, A. Barve, J. Montoya, W. Y. Jang, S. R. J. Brueck, M. Sundaram, A. Reisinger, S. Krishna, and S. K. Noh, “A monolithically integrated plasmonic infrared quantum dot camera,” Nat Commun. 2, 286 (2011).
[CrossRef] [PubMed]

Mujagic, E.

S. I. Ahn, E. Mujagi?, M. Nobile, H. Detz, S. Kalchmair, A. M. Andrews, P. Klang, W. Schrenk, and G. Strasser, “Electrical beam steering of Y-coupled quantum cascade lasers,” Appl. Phys. Lett. 96(14), 141113 (2010).
[CrossRef]

M. Nobile, P. Klang, E. Mujagi?, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, “Quantum cascade laser utilising aluminium-free material system: InGaAs/GaAsSb lattice-matched to InP,” Electron. Lett. 45(20), 1031–1033 (2009).
[CrossRef]

E. Mujagi?, L. K. Hoffmann, S. Schartner, M. Nobile, W. Schrenk, M. P. Semtsiv, M. Wienold, W. T. Masselink, and G. Strasser, “Low divergence single-mode surface emitting quantum cascade ring lasers,” Appl. Phys. Lett. 93(16), 161101 (2008).
[CrossRef]

Mumolo, J. M.

S. D. Gunapala, S. V. Bandara, C. J. Hill, D. Z. Ting, J. K. Liu, S. B. Rafol, E. R. Blazejewski, J. M. Mumolo, S. A. Keo, S. Krishna, Y. C. Chang, and C. A. Shott, “Demonstration of 640 × 512 pixels long-wavelength infrared (LWIR) quantum dot infrared photodetector (QDIP) imaging focal plane array,” Infrared Phys. Technol. 50(2-3), 149–155 (2007).
[CrossRef]

Myers, T. L.

F. Capasso, R. Paiella, R. Martini, R. Colombelli, C. Gmachl, T. L. Myers, M. S. Taubman, R. M. Williams, C. G. Bethea, K. Unterrainer, H. Y. Hwang, D. L. Sivco, A. Y. Cho, A. M. Sergent, H. C. Liu, and E. A. Whittaker, “Quantum cascade lasers: ultrahigh-speed operation, optical wireless communication, narrow linewidth, and far-infrared emission,” IEEE J. Quantum Electron. 38(6), 511–532 (2002).
[CrossRef]

Nobile, M.

S. Kalchmair, H. Detz, G. D. Cole, A. M. Andrews, P. Klang, M. Nobile, R. Gansch, C. Ostermaier, W. Schrenk, and G. Strasser, “Photonic crystal slab quantum well infrared photodetector,” Appl. Phys. Lett. 98(1), 011105 (2011).
[CrossRef]

S. I. Ahn, E. Mujagi?, M. Nobile, H. Detz, S. Kalchmair, A. M. Andrews, P. Klang, W. Schrenk, and G. Strasser, “Electrical beam steering of Y-coupled quantum cascade lasers,” Appl. Phys. Lett. 96(14), 141113 (2010).
[CrossRef]

M. Nobile, P. Klang, E. Mujagi?, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, “Quantum cascade laser utilising aluminium-free material system: InGaAs/GaAsSb lattice-matched to InP,” Electron. Lett. 45(20), 1031–1033 (2009).
[CrossRef]

E. Mujagi?, L. K. Hoffmann, S. Schartner, M. Nobile, W. Schrenk, M. P. Semtsiv, M. Wienold, W. T. Masselink, and G. Strasser, “Low divergence single-mode surface emitting quantum cascade ring lasers,” Appl. Phys. Lett. 93(16), 161101 (2008).
[CrossRef]

Noda, S.

Y. Kurosaka, S. Iwahashi, Y. Liang, K. Sakai, E. Miyai, W. Kunishi, D. Ohnishi, and S. Noda, “On-chip beam-steering photonic-crystal lasers,” Nat. Photonics 4(7), 447–450 (2010).
[CrossRef]

Noh, S. K.

S. J. Lee, Z. Ku, A. Barve, J. Montoya, W. Y. Jang, S. R. J. Brueck, M. Sundaram, A. Reisinger, S. Krishna, and S. K. Noh, “A monolithically integrated plasmonic infrared quantum dot camera,” Nat Commun. 2, 286 (2011).
[CrossRef] [PubMed]

Ochiai, T.

T. Ochiai and K. Sakoda, “Dispersion relation and optical transmittance of a hexagonal photonic crystal slab,” Phys. Rev. B 63(12), 125107 (2001).
[CrossRef]

Ohnishi, D.

Y. Kurosaka, S. Iwahashi, Y. Liang, K. Sakai, E. Miyai, W. Kunishi, D. Ohnishi, and S. Noda, “On-chip beam-steering photonic-crystal lasers,” Nat. Photonics 4(7), 447–450 (2010).
[CrossRef]

Ostermaier, C.

S. Kalchmair, H. Detz, G. D. Cole, A. M. Andrews, P. Klang, M. Nobile, R. Gansch, C. Ostermaier, W. Schrenk, and G. Strasser, “Photonic crystal slab quantum well infrared photodetector,” Appl. Phys. Lett. 98(1), 011105 (2011).
[CrossRef]

Paiella, R.

F. Capasso, R. Paiella, R. Martini, R. Colombelli, C. Gmachl, T. L. Myers, M. S. Taubman, R. M. Williams, C. G. Bethea, K. Unterrainer, H. Y. Hwang, D. L. Sivco, A. Y. Cho, A. M. Sergent, H. C. Liu, and E. A. Whittaker, “Quantum cascade lasers: ultrahigh-speed operation, optical wireless communication, narrow linewidth, and far-infrared emission,” IEEE J. Quantum Electron. 38(6), 511–532 (2002).
[CrossRef]

Paska, Z. F.

J. Y. Andersson, L. Lundqvist, and Z. F. Paska, “Quantum efficiency enhancement of AlGaAs/GaAs quantum well infrared detectors using a waveguide with a grating coupler,” Appl. Phys. Lett. 58(20), 2264 (1991).
[CrossRef]

Pflügl, C.

S. Schartner, S. Golka, C. Pflügl, W. Schrenk, A. M. Andrews, T. Roch, and G. Strasser, “Band structure mapping of photonic crystal intersubband detectors,” Appl. Phys. Lett. 89(15), 151107 (2006).
[CrossRef]

Pletschen, W.

H. Schneider, M. Walther, C. Schönbein, R. Rehm, J. Fleissner, W. Pletschen, J. Braunstein, K. Koidl, G. Weimann, J. Ziegler, and W. Cabanski, “QWIP FPAs for high-performance thermal imaging,” Physica E 7(1-2), 101–107 (2000).
[CrossRef]

Prather, D. W.

S. Shi, C. Chen, and D. W. Prather, “Revised plane wave method for dispersive material and its application to band structure calculations of photonic crystal slabs,” Appl. Phys. Lett. 86(4), 043104 (2005).
[CrossRef]

Rafol, S. B.

S. D. Gunapala, S. V. Bandara, C. J. Hill, D. Z. Ting, J. K. Liu, S. B. Rafol, E. R. Blazejewski, J. M. Mumolo, S. A. Keo, S. Krishna, Y. C. Chang, and C. A. Shott, “Demonstration of 640 × 512 pixels long-wavelength infrared (LWIR) quantum dot infrared photodetector (QDIP) imaging focal plane array,” Infrared Phys. Technol. 50(2-3), 149–155 (2007).
[CrossRef]

Razeghi, M.

B. Gökden, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “Broad area photonic crystal distributed feedback quantum cascade lasers emitting 34 W at ?~4.36 µm,” Appl. Phys. Lett. 97(13), 131112 (2010).
[CrossRef]

M. Razeghi, S. Slivken, Y. B. Bai, B. Gokden, and S. R. Darvish, “High power quantum cascade lasers,” New J. Phys. 11(12), 125017 (2009).
[CrossRef]

Rehm, R.

H. Schneider, M. Walther, C. Schönbein, R. Rehm, J. Fleissner, W. Pletschen, J. Braunstein, K. Koidl, G. Weimann, J. Ziegler, and W. Cabanski, “QWIP FPAs for high-performance thermal imaging,” Physica E 7(1-2), 101–107 (2000).
[CrossRef]

Reisinger, A.

S. J. Lee, Z. Ku, A. Barve, J. Montoya, W. Y. Jang, S. R. J. Brueck, M. Sundaram, A. Reisinger, S. Krishna, and S. K. Noh, “A monolithically integrated plasmonic infrared quantum dot camera,” Nat Commun. 2, 286 (2011).
[CrossRef] [PubMed]

Roch, T.

S. Schartner, S. Golka, C. Pflügl, W. Schrenk, A. M. Andrews, T. Roch, and G. Strasser, “Band structure mapping of photonic crystal intersubband detectors,” Appl. Phys. Lett. 89(15), 151107 (2006).
[CrossRef]

Rogalski, A.

A. Rogalski, “Quantum well photoconductors in infrared detector technology,” J. Appl. Phys. 93(8), 4355 (2003).
[CrossRef]

Sakai, K.

Y. Kurosaka, S. Iwahashi, Y. Liang, K. Sakai, E. Miyai, W. Kunishi, D. Ohnishi, and S. Noda, “On-chip beam-steering photonic-crystal lasers,” Nat. Photonics 4(7), 447–450 (2010).
[CrossRef]

Sakoda, K.

T. Ochiai and K. Sakoda, “Dispersion relation and optical transmittance of a hexagonal photonic crystal slab,” Phys. Rev. B 63(12), 125107 (2001).
[CrossRef]

Schartner, S.

S. Schartner, S. Kalchmair, A. M. Andrews, P. Klang, W. Schrenk, and G. Strasser, “Post-fabrication fine-tuning of photonic crystal quantum well infrared photodetectors,” Appl. Phys. Lett. 94(23), 231117 (2009).
[CrossRef]

E. Mujagi?, L. K. Hoffmann, S. Schartner, M. Nobile, W. Schrenk, M. P. Semtsiv, M. Wienold, W. T. Masselink, and G. Strasser, “Low divergence single-mode surface emitting quantum cascade ring lasers,” Appl. Phys. Lett. 93(16), 161101 (2008).
[CrossRef]

S. Schartner, S. Golka, C. Pflügl, W. Schrenk, A. M. Andrews, T. Roch, and G. Strasser, “Band structure mapping of photonic crystal intersubband detectors,” Appl. Phys. Lett. 89(15), 151107 (2006).
[CrossRef]

Schneider, H.

H. Schneider, M. Walther, C. Schönbein, R. Rehm, J. Fleissner, W. Pletschen, J. Braunstein, K. Koidl, G. Weimann, J. Ziegler, and W. Cabanski, “QWIP FPAs for high-performance thermal imaging,” Physica E 7(1-2), 101–107 (2000).
[CrossRef]

Schönbein, C.

H. Schneider, M. Walther, C. Schönbein, R. Rehm, J. Fleissner, W. Pletschen, J. Braunstein, K. Koidl, G. Weimann, J. Ziegler, and W. Cabanski, “QWIP FPAs for high-performance thermal imaging,” Physica E 7(1-2), 101–107 (2000).
[CrossRef]

Schrenk, W.

S. Kalchmair, H. Detz, G. D. Cole, A. M. Andrews, P. Klang, M. Nobile, R. Gansch, C. Ostermaier, W. Schrenk, and G. Strasser, “Photonic crystal slab quantum well infrared photodetector,” Appl. Phys. Lett. 98(1), 011105 (2011).
[CrossRef]

R. Gansch, S. Kalchmair, H. Detz, A. M. Andrews, P. Klang, W. Schrenk, and G. Strasser, “Higher order modes in photonic crystal slabs,” Opt. Express 19(17), 15990–15995 (2011).
[CrossRef] [PubMed]

S. I. Ahn, E. Mujagi?, M. Nobile, H. Detz, S. Kalchmair, A. M. Andrews, P. Klang, W. Schrenk, and G. Strasser, “Electrical beam steering of Y-coupled quantum cascade lasers,” Appl. Phys. Lett. 96(14), 141113 (2010).
[CrossRef]

S. Schartner, S. Kalchmair, A. M. Andrews, P. Klang, W. Schrenk, and G. Strasser, “Post-fabrication fine-tuning of photonic crystal quantum well infrared photodetectors,” Appl. Phys. Lett. 94(23), 231117 (2009).
[CrossRef]

M. Nobile, P. Klang, E. Mujagi?, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, “Quantum cascade laser utilising aluminium-free material system: InGaAs/GaAsSb lattice-matched to InP,” Electron. Lett. 45(20), 1031–1033 (2009).
[CrossRef]

E. Mujagi?, L. K. Hoffmann, S. Schartner, M. Nobile, W. Schrenk, M. P. Semtsiv, M. Wienold, W. T. Masselink, and G. Strasser, “Low divergence single-mode surface emitting quantum cascade ring lasers,” Appl. Phys. Lett. 93(16), 161101 (2008).
[CrossRef]

S. Schartner, S. Golka, C. Pflügl, W. Schrenk, A. M. Andrews, T. Roch, and G. Strasser, “Band structure mapping of photonic crystal intersubband detectors,” Appl. Phys. Lett. 89(15), 151107 (2006).
[CrossRef]

Semtsiv, M. P.

E. Mujagi?, L. K. Hoffmann, S. Schartner, M. Nobile, W. Schrenk, M. P. Semtsiv, M. Wienold, W. T. Masselink, and G. Strasser, “Low divergence single-mode surface emitting quantum cascade ring lasers,” Appl. Phys. Lett. 93(16), 161101 (2008).
[CrossRef]

Sergent, A. M.

F. Capasso, R. Paiella, R. Martini, R. Colombelli, C. Gmachl, T. L. Myers, M. S. Taubman, R. M. Williams, C. G. Bethea, K. Unterrainer, H. Y. Hwang, D. L. Sivco, A. Y. Cho, A. M. Sergent, H. C. Liu, and E. A. Whittaker, “Quantum cascade lasers: ultrahigh-speed operation, optical wireless communication, narrow linewidth, and far-infrared emission,” IEEE J. Quantum Electron. 38(6), 511–532 (2002).
[CrossRef]

Shi, S.

S. Shi, C. Chen, and D. W. Prather, “Revised plane wave method for dispersive material and its application to band structure calculations of photonic crystal slabs,” Appl. Phys. Lett. 86(4), 043104 (2005).
[CrossRef]

Shott, C. A.

S. D. Gunapala, S. V. Bandara, C. J. Hill, D. Z. Ting, J. K. Liu, S. B. Rafol, E. R. Blazejewski, J. M. Mumolo, S. A. Keo, S. Krishna, Y. C. Chang, and C. A. Shott, “Demonstration of 640 × 512 pixels long-wavelength infrared (LWIR) quantum dot infrared photodetector (QDIP) imaging focal plane array,” Infrared Phys. Technol. 50(2-3), 149–155 (2007).
[CrossRef]

Sirtori, C.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Sivco, D. L.

F. Capasso, R. Paiella, R. Martini, R. Colombelli, C. Gmachl, T. L. Myers, M. S. Taubman, R. M. Williams, C. G. Bethea, K. Unterrainer, H. Y. Hwang, D. L. Sivco, A. Y. Cho, A. M. Sergent, H. C. Liu, and E. A. Whittaker, “Quantum cascade lasers: ultrahigh-speed operation, optical wireless communication, narrow linewidth, and far-infrared emission,” IEEE J. Quantum Electron. 38(6), 511–532 (2002).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Slivken, S.

B. Gökden, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “Broad area photonic crystal distributed feedback quantum cascade lasers emitting 34 W at ?~4.36 µm,” Appl. Phys. Lett. 97(13), 131112 (2010).
[CrossRef]

M. Razeghi, S. Slivken, Y. B. Bai, B. Gokden, and S. R. Darvish, “High power quantum cascade lasers,” New J. Phys. 11(12), 125017 (2009).
[CrossRef]

Sopanen, M.

H. Lipsanen, M. Sopanen, M. Taskinen, J. Tulkki, and J. Ahopelto, “Enhanced optical properties of in situ passivated near?surface AlxGa1?xAs/GaAs quantum wells,” Appl. Phys. Lett. 68(16), 2216 (1996).
[CrossRef]

Strasser, G.

R. Gansch, S. Kalchmair, H. Detz, A. M. Andrews, P. Klang, W. Schrenk, and G. Strasser, “Higher order modes in photonic crystal slabs,” Opt. Express 19(17), 15990–15995 (2011).
[CrossRef] [PubMed]

S. Kalchmair, H. Detz, G. D. Cole, A. M. Andrews, P. Klang, M. Nobile, R. Gansch, C. Ostermaier, W. Schrenk, and G. Strasser, “Photonic crystal slab quantum well infrared photodetector,” Appl. Phys. Lett. 98(1), 011105 (2011).
[CrossRef]

S. I. Ahn, E. Mujagi?, M. Nobile, H. Detz, S. Kalchmair, A. M. Andrews, P. Klang, W. Schrenk, and G. Strasser, “Electrical beam steering of Y-coupled quantum cascade lasers,” Appl. Phys. Lett. 96(14), 141113 (2010).
[CrossRef]

S. Schartner, S. Kalchmair, A. M. Andrews, P. Klang, W. Schrenk, and G. Strasser, “Post-fabrication fine-tuning of photonic crystal quantum well infrared photodetectors,” Appl. Phys. Lett. 94(23), 231117 (2009).
[CrossRef]

M. Nobile, P. Klang, E. Mujagi?, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, “Quantum cascade laser utilising aluminium-free material system: InGaAs/GaAsSb lattice-matched to InP,” Electron. Lett. 45(20), 1031–1033 (2009).
[CrossRef]

E. Mujagi?, L. K. Hoffmann, S. Schartner, M. Nobile, W. Schrenk, M. P. Semtsiv, M. Wienold, W. T. Masselink, and G. Strasser, “Low divergence single-mode surface emitting quantum cascade ring lasers,” Appl. Phys. Lett. 93(16), 161101 (2008).
[CrossRef]

S. Schartner, S. Golka, C. Pflügl, W. Schrenk, A. M. Andrews, T. Roch, and G. Strasser, “Band structure mapping of photonic crystal intersubband detectors,” Appl. Phys. Lett. 89(15), 151107 (2006).
[CrossRef]

Sundaram, M.

S. J. Lee, Z. Ku, A. Barve, J. Montoya, W. Y. Jang, S. R. J. Brueck, M. Sundaram, A. Reisinger, S. Krishna, and S. K. Noh, “A monolithically integrated plasmonic infrared quantum dot camera,” Nat Commun. 2, 286 (2011).
[CrossRef] [PubMed]

Taskinen, M.

H. Lipsanen, M. Sopanen, M. Taskinen, J. Tulkki, and J. Ahopelto, “Enhanced optical properties of in situ passivated near?surface AlxGa1?xAs/GaAs quantum wells,” Appl. Phys. Lett. 68(16), 2216 (1996).
[CrossRef]

Taubman, M. S.

F. Capasso, R. Paiella, R. Martini, R. Colombelli, C. Gmachl, T. L. Myers, M. S. Taubman, R. M. Williams, C. G. Bethea, K. Unterrainer, H. Y. Hwang, D. L. Sivco, A. Y. Cho, A. M. Sergent, H. C. Liu, and E. A. Whittaker, “Quantum cascade lasers: ultrahigh-speed operation, optical wireless communication, narrow linewidth, and far-infrared emission,” IEEE J. Quantum Electron. 38(6), 511–532 (2002).
[CrossRef]

Ting, D. Z.

S. D. Gunapala, S. V. Bandara, C. J. Hill, D. Z. Ting, J. K. Liu, S. B. Rafol, E. R. Blazejewski, J. M. Mumolo, S. A. Keo, S. Krishna, Y. C. Chang, and C. A. Shott, “Demonstration of 640 × 512 pixels long-wavelength infrared (LWIR) quantum dot infrared photodetector (QDIP) imaging focal plane array,” Infrared Phys. Technol. 50(2-3), 149–155 (2007).
[CrossRef]

Tittel, F. K.

D. Weidmann, F. K. Tittel, T. Aellen, M. Beck, D. Hofstetter, J. Faist, and S. Blaser, “Mid-infrared trace-gas sensing with a quasi- continuous-wave Peltier-cooled distributed feedback quantum cascade laser,” Appl. Phys. B 79(7), 907–913 (2004).
[CrossRef]

Tulkki, J.

H. Lipsanen, M. Sopanen, M. Taskinen, J. Tulkki, and J. Ahopelto, “Enhanced optical properties of in situ passivated near?surface AlxGa1?xAs/GaAs quantum wells,” Appl. Phys. Lett. 68(16), 2216 (1996).
[CrossRef]

Unterrainer, K.

F. Capasso, R. Paiella, R. Martini, R. Colombelli, C. Gmachl, T. L. Myers, M. S. Taubman, R. M. Williams, C. G. Bethea, K. Unterrainer, H. Y. Hwang, D. L. Sivco, A. Y. Cho, A. M. Sergent, H. C. Liu, and E. A. Whittaker, “Quantum cascade lasers: ultrahigh-speed operation, optical wireless communication, narrow linewidth, and far-infrared emission,” IEEE J. Quantum Electron. 38(6), 511–532 (2002).
[CrossRef]

Walther, M.

H. Schneider, M. Walther, C. Schönbein, R. Rehm, J. Fleissner, W. Pletschen, J. Braunstein, K. Koidl, G. Weimann, J. Ziegler, and W. Cabanski, “QWIP FPAs for high-performance thermal imaging,” Physica E 7(1-2), 101–107 (2000).
[CrossRef]

Weidmann, D.

D. Weidmann, F. K. Tittel, T. Aellen, M. Beck, D. Hofstetter, J. Faist, and S. Blaser, “Mid-infrared trace-gas sensing with a quasi- continuous-wave Peltier-cooled distributed feedback quantum cascade laser,” Appl. Phys. B 79(7), 907–913 (2004).
[CrossRef]

Weimann, G.

H. Schneider, M. Walther, C. Schönbein, R. Rehm, J. Fleissner, W. Pletschen, J. Braunstein, K. Koidl, G. Weimann, J. Ziegler, and W. Cabanski, “QWIP FPAs for high-performance thermal imaging,” Physica E 7(1-2), 101–107 (2000).
[CrossRef]

Whittaker, E. A.

F. Capasso, R. Paiella, R. Martini, R. Colombelli, C. Gmachl, T. L. Myers, M. S. Taubman, R. M. Williams, C. G. Bethea, K. Unterrainer, H. Y. Hwang, D. L. Sivco, A. Y. Cho, A. M. Sergent, H. C. Liu, and E. A. Whittaker, “Quantum cascade lasers: ultrahigh-speed operation, optical wireless communication, narrow linewidth, and far-infrared emission,” IEEE J. Quantum Electron. 38(6), 511–532 (2002).
[CrossRef]

Wienold, M.

E. Mujagi?, L. K. Hoffmann, S. Schartner, M. Nobile, W. Schrenk, M. P. Semtsiv, M. Wienold, W. T. Masselink, and G. Strasser, “Low divergence single-mode surface emitting quantum cascade ring lasers,” Appl. Phys. Lett. 93(16), 161101 (2008).
[CrossRef]

Williams, R. M.

F. Capasso, R. Paiella, R. Martini, R. Colombelli, C. Gmachl, T. L. Myers, M. S. Taubman, R. M. Williams, C. G. Bethea, K. Unterrainer, H. Y. Hwang, D. L. Sivco, A. Y. Cho, A. M. Sergent, H. C. Liu, and E. A. Whittaker, “Quantum cascade lasers: ultrahigh-speed operation, optical wireless communication, narrow linewidth, and far-infrared emission,” IEEE J. Quantum Electron. 38(6), 511–532 (2002).
[CrossRef]

Wu, W.

W. Wu, A. Bonakdar, and H. Mohseni, “Plasmonic enhanced quantum well infrared photodetector with high detectivity,” Appl. Phys. Lett. 96(16), 161107 (2010).
[CrossRef]

Zhang, Y.

T. Asano, C. Hu, Y. Zhang, M. Liu, J. C. Campbell, and A. Madhukar, “Design consideration and demonstration of resonant-cavity-enhanced quantum dot infrared photodetectors in mid-infrared wavelength regime (3-5 µm),” IEEE J. Quantum Electron. 46(10), 1484–1491 (2010).
[CrossRef]

Ziegler, J.

H. Schneider, M. Walther, C. Schönbein, R. Rehm, J. Fleissner, W. Pletschen, J. Braunstein, K. Koidl, G. Weimann, J. Ziegler, and W. Cabanski, “QWIP FPAs for high-performance thermal imaging,” Physica E 7(1-2), 101–107 (2000).
[CrossRef]

Appl. Phys. B (1)

D. Weidmann, F. K. Tittel, T. Aellen, M. Beck, D. Hofstetter, J. Faist, and S. Blaser, “Mid-infrared trace-gas sensing with a quasi- continuous-wave Peltier-cooled distributed feedback quantum cascade laser,” Appl. Phys. B 79(7), 907–913 (2004).
[CrossRef]

Appl. Phys. Lett. (10)

B. Gökden, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “Broad area photonic crystal distributed feedback quantum cascade lasers emitting 34 W at ?~4.36 µm,” Appl. Phys. Lett. 97(13), 131112 (2010).
[CrossRef]

E. Mujagi?, L. K. Hoffmann, S. Schartner, M. Nobile, W. Schrenk, M. P. Semtsiv, M. Wienold, W. T. Masselink, and G. Strasser, “Low divergence single-mode surface emitting quantum cascade ring lasers,” Appl. Phys. Lett. 93(16), 161101 (2008).
[CrossRef]

S. I. Ahn, E. Mujagi?, M. Nobile, H. Detz, S. Kalchmair, A. M. Andrews, P. Klang, W. Schrenk, and G. Strasser, “Electrical beam steering of Y-coupled quantum cascade lasers,” Appl. Phys. Lett. 96(14), 141113 (2010).
[CrossRef]

S. Schartner, S. Golka, C. Pflügl, W. Schrenk, A. M. Andrews, T. Roch, and G. Strasser, “Band structure mapping of photonic crystal intersubband detectors,” Appl. Phys. Lett. 89(15), 151107 (2006).
[CrossRef]

S. Schartner, S. Kalchmair, A. M. Andrews, P. Klang, W. Schrenk, and G. Strasser, “Post-fabrication fine-tuning of photonic crystal quantum well infrared photodetectors,” Appl. Phys. Lett. 94(23), 231117 (2009).
[CrossRef]

W. Wu, A. Bonakdar, and H. Mohseni, “Plasmonic enhanced quantum well infrared photodetector with high detectivity,” Appl. Phys. Lett. 96(16), 161107 (2010).
[CrossRef]

S. Kalchmair, H. Detz, G. D. Cole, A. M. Andrews, P. Klang, M. Nobile, R. Gansch, C. Ostermaier, W. Schrenk, and G. Strasser, “Photonic crystal slab quantum well infrared photodetector,” Appl. Phys. Lett. 98(1), 011105 (2011).
[CrossRef]

S. Shi, C. Chen, and D. W. Prather, “Revised plane wave method for dispersive material and its application to band structure calculations of photonic crystal slabs,” Appl. Phys. Lett. 86(4), 043104 (2005).
[CrossRef]

J. Y. Andersson, L. Lundqvist, and Z. F. Paska, “Quantum efficiency enhancement of AlGaAs/GaAs quantum well infrared detectors using a waveguide with a grating coupler,” Appl. Phys. Lett. 58(20), 2264 (1991).
[CrossRef]

H. Lipsanen, M. Sopanen, M. Taskinen, J. Tulkki, and J. Ahopelto, “Enhanced optical properties of in situ passivated near?surface AlxGa1?xAs/GaAs quantum wells,” Appl. Phys. Lett. 68(16), 2216 (1996).
[CrossRef]

Electron. Lett. (1)

M. Nobile, P. Klang, E. Mujagi?, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, “Quantum cascade laser utilising aluminium-free material system: InGaAs/GaAsSb lattice-matched to InP,” Electron. Lett. 45(20), 1031–1033 (2009).
[CrossRef]

IEEE J. Quantum Electron. (2)

F. Capasso, R. Paiella, R. Martini, R. Colombelli, C. Gmachl, T. L. Myers, M. S. Taubman, R. M. Williams, C. G. Bethea, K. Unterrainer, H. Y. Hwang, D. L. Sivco, A. Y. Cho, A. M. Sergent, H. C. Liu, and E. A. Whittaker, “Quantum cascade lasers: ultrahigh-speed operation, optical wireless communication, narrow linewidth, and far-infrared emission,” IEEE J. Quantum Electron. 38(6), 511–532 (2002).
[CrossRef]

T. Asano, C. Hu, Y. Zhang, M. Liu, J. C. Campbell, and A. Madhukar, “Design consideration and demonstration of resonant-cavity-enhanced quantum dot infrared photodetectors in mid-infrared wavelength regime (3-5 µm),” IEEE J. Quantum Electron. 46(10), 1484–1491 (2010).
[CrossRef]

Infrared Phys. Technol. (1)

S. D. Gunapala, S. V. Bandara, C. J. Hill, D. Z. Ting, J. K. Liu, S. B. Rafol, E. R. Blazejewski, J. M. Mumolo, S. A. Keo, S. Krishna, Y. C. Chang, and C. A. Shott, “Demonstration of 640 × 512 pixels long-wavelength infrared (LWIR) quantum dot infrared photodetector (QDIP) imaging focal plane array,” Infrared Phys. Technol. 50(2-3), 149–155 (2007).
[CrossRef]

J. Appl. Phys. (3)

J. S. Blakemore, “Semiconducting and other major properties of gallium arsenide,” J. Appl. Phys. 53(10), R123–R181 (1982).
[CrossRef]

B. F. Levine, “Quantum?well infrared photodetectors,” J. Appl. Phys. 74(8), R1–R81 (1993).
[CrossRef]

A. Rogalski, “Quantum well photoconductors in infrared detector technology,” J. Appl. Phys. 93(8), 4355 (2003).
[CrossRef]

Nat Commun. (1)

S. J. Lee, Z. Ku, A. Barve, J. Montoya, W. Y. Jang, S. R. J. Brueck, M. Sundaram, A. Reisinger, S. Krishna, and S. K. Noh, “A monolithically integrated plasmonic infrared quantum dot camera,” Nat Commun. 2, 286 (2011).
[CrossRef] [PubMed]

Nat. Photonics (1)

Y. Kurosaka, S. Iwahashi, Y. Liang, K. Sakai, E. Miyai, W. Kunishi, D. Ohnishi, and S. Noda, “On-chip beam-steering photonic-crystal lasers,” Nat. Photonics 4(7), 447–450 (2010).
[CrossRef]

New J. Phys. (1)

M. Razeghi, S. Slivken, Y. B. Bai, B. Gokden, and S. R. Darvish, “High power quantum cascade lasers,” New J. Phys. 11(12), 125017 (2009).
[CrossRef]

Opt. Express (1)

Phys. Rev. B (1)

T. Ochiai and K. Sakoda, “Dispersion relation and optical transmittance of a hexagonal photonic crystal slab,” Phys. Rev. B 63(12), 125107 (2001).
[CrossRef]

Physica E (1)

H. Schneider, M. Walther, C. Schönbein, R. Rehm, J. Fleissner, W. Pletschen, J. Braunstein, K. Koidl, G. Weimann, J. Ziegler, and W. Cabanski, “QWIP FPAs for high-performance thermal imaging,” Physica E 7(1-2), 101–107 (2000).
[CrossRef]

Science (1)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Other (3)

H. Schneider and H. C. Liu, Quantum Well Infrared Photodetectors: Physics and Applications (Springer, 2007).

H. C. Liu and F. Capasso, Intersubband Transitions in Quantum Wells: Physics and Device Applications I (Academic Press, 2000), Chap. 1.

D. W. Prather, S. Shi, A. Sharkawy, J. Murakowski, and G. J. Schneider, Photonic Crystals: Theory, Applications and Fabrication (Wiley, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

PCS-QWIP design. (a) Cross section through the PCS-QWIP structure. (b) SEM image of the PCS overlaid with the zeroth and first order TM-like slab mode profiles.

Fig. 2
Fig. 2

Photocurrent response of a PCS-QWIP (solid line) and a standard QWIP (dashed line). The normal incidence light is coupled into a PCS mode and absorbed by the QWIP. The increased photon lifetime at the PCS resonance frequency causes a pronounced photocurrent peak. Inset: The same spectra in log scale. At the peak center at 20 K the responsivity is more than 10x enhanced.

Fig. 3
Fig. 3

Temperature dependent responsivity, dark current and noise. (a) The PCS-QWIP peak responsivity is increased compared to a standard mesa QWIP by resonant absorption enhancement. (b) The dark current of the PCS-QWIP (solid lines) is lower than of the standard QWIP (dashed lines) (c) Correspondingly, the noise current spectral density Sn of the PCS-QWIP is lower than Sn of the standard QWIP.

Fig. 4
Fig. 4

Comparison of the specific detectivity D*. (a) Measured detectivities of a PCS-QWIP (solid symbols) and a standard QWIP (open symbols). The increased responsivity and the reduced dark current noise of the PCS-QWIP together cause a significantly larger detectivity D*. At 200 K and 3V bias the PCS-QWIP detectivity shows a kink, which corresponds to a measurement range switch of the preamplifier. The dark current noise is then dominated by the preamplifier and not by the QWIP. (b) The detectivity enhancement is calculated from the PCS-QWIP detectivity normalized by the standard QWIP detectivity. (c) Comparison of the resonant signal enhancement. The detectivity enhancement (black squares) is equal to the responsivity enhancement (open triangles) in the range below 70 K, where detector noise is dominated by background black body radiation. Above 70 K the dark current is dominated by thermal carrier excitation, which is lower in a PCS-QWIP, and the detectivity enhancement becomes larger than the responsivity enhancement.

Fig. 5
Fig. 5

Temperature dependent PCS resonance shift. (a) Lorentzian fitted photocurrent spectra measured at temperatures from 20 to 200 K. The resonance peak shifts over a range of 9 cm−1. For accurate characterization the PCS-QWIPs are illuminated with QCLs (Laser 1-3). (b) The spectral resonance shift is modeled with the revised plane wave expansion method.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

D*= R A S n

Metrics