Abstract

Pairs of cycloidal diffractive waveplates can be used to doubly diffract or collinearly propagate laser radiation of the appropriate wavelength. The use of a dynamic phase retarder placed in between the pair can be utilized to switch between the two optical states. We present results from the implementation of an azo-based retarder whose optical properties can be modulated using light itself. We show fast and efficient switching between the two states for both CW and single nanosecond laser pulses of green radiation. Contrasts greater than 100:1 were achieved. The temporal response as a function of light intensity is presented and the optical switching is shown to be polarization independent.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Kitsinelis, Light sources: technologies and applications (Taylor & Francis, Boca Raton, FL, 2011).
  2. M. Csele, Fundamentals of light sources and lasers (John Wiley & Sons, Hoboken, NJ, 2004).
  3. M. O’Neill and S. M. Kelly, “Ordered materials for organic electronics and photonics,” Adv. Mater. (Deerfield Beach Fla.) 23(5), 566–584 (2011).
    [CrossRef] [PubMed]
  4. T. Smeeton and C. Humphreys, “Perspectives on electronic and optoelectronic materials,” in Springer handbook of electronic and photonic materials, S. O. Kasap and P. Capper, eds. (Springer, New York, NY, 2006).
  5. S. Ossicini, L. Pavesi, and F. Priolo, Light emitting silicon for microphotonics (Springer, Berlin, 2003).
  6. A. Al-Azzawi, Photonics: principles and practices (CRC Press, Boca Raton, FL, 2007).
  7. B. E. A. Saleh and M. C. Teich, Fundamentals of photonics (John Wiley & Sons, Inc., Hoboken, NJ, 2007).
  8. A. Urbas, J. Klosterman, V. Tondiglia, L. Natarajan, R. Sutherland, O. Tsutsumi, T. Ikeda, and T. Bunning, “Optically switchable bragg reflectors,” Adv. Mater. (Deerfield Beach Fla.) 16(16), 1453–1456 (2004).
    [CrossRef]
  9. R. T. Pogue, L. V. Natarajan, S. A. Siwecki, V. P. Tondiglia, R. L. Sutherland, and T. J. Bunning, “Monomer functionality effects in the anisotropic phase separation of liquid crystals,” Polymer (Guildf.) 41(2), 733–741 (2000).
    [CrossRef]
  10. R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, S. Chandra, C. K. Shepherd, D. M. Brandelik, S. A. Siwecki, and T. J. Bunning, “Polarization and switching properties of holographic polymer-dispersed liquid-crystal gratings. II. Experimental investigations,” J. Opt. Soc. Am. B 19(12), 3004–3012 (2002).
    [CrossRef]
  11. J. Klosterman, L. V. Natarajan, V. P. Tondiglia, R. L. Sutherland, T. J. White, C. A. Guymon, and T. J. Bunning, “The influence of surfactant in reflective HPDLC gratings,” Polymer (Guildf.) 45(21), 7213–7218 (2004).
    [CrossRef]
  12. T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci. 30(1), 83–115 (2000).
    [CrossRef]
  13. A. Urbas, V. Tondiglia, L. Natarajan, R. Sutherland, H. Yu, J. H. Li, and T. Bunning, “Optically switchable liquid crystal photonic structures,” J. Am. Chem. Soc. 126(42), 13580–13581 (2004).
    [CrossRef] [PubMed]
  14. M. J. Booth, “Adaptive optics in microscopy,” Philos. Transact. A Math. Phys. Eng. Sci. 365(1861), 2829–2843 (2007).
    [CrossRef] [PubMed]
  15. J. Squier and M. Muller, “High resolution nonlinear microscopy: A review of sources and methods for achieving optimal imaging,” Rev. Sci. Instrum. 72(7), 2855–2867 (2001).
    [CrossRef]
  16. M. C. Wu, O. Solgaard, and J. E. Ford, “Optical MEMS for lightwave communication,” J. Lightwave Technol. 24(12), 4433–4454 (2006).
    [CrossRef]
  17. D. K. Yang and S. T. Wu, Fundamentals of liquid crystal devices (John Wiley, West Sussex, England, 2006).
  18. R. R. Hainich and O. Bimber, Displays: fundamentals & applications (Taylor & Francis Group, Boca Raton, FL, 2011).
  19. S. T. Wu and D. K. Yang, Reflective liquid crystal displays (Wiley, West Sussex, England, 2001).
  20. T. J. White, M. E. McConney, and T. J. Bunning, “Dynamic color in stimuli-responsive cholesteric liquid crystals,” J. Mater. Chem. 20(44), 9832–9847 (2010).
    [CrossRef]
  21. D. Brennan, J. Justice, B. Corbett, T. McCarthy, and P. Galvin, “Emerging optofluidic technologies for point-of-care genetic analysis systems: a review,” Anal. Bioanal. Chem. 395(3), 621–636 (2009).
    [CrossRef] [PubMed]
  22. G. Sinclair, P. Jordan, J. Leach, M. J. Padgett, and J. Cooper, “Defining the trapping limits of holographical optical tweezers,” J. Mod. Opt. 51(3), 409–414 (2004).
    [CrossRef]
  23. W. R. Jamroz, R. V. Kruzelecky, and E. I. Haddad, Applied microphotonics (CRC Taylor & Francis, Boca Raton, FL, 2006).
  24. W. T. Welford, Aberrations of optical systems (Taylor and Francis, New York, NY, 1986).
  25. W. Cai and V. Shalaev, Optical metamaterials (Springer, New York, NY, 2010).
  26. O. D. Lavrentovich, “Liquid crystals, photonic crystals, metamaterials, and transformation optics,” Proc. Natl. Acad. Sci. U.S.A. 108(13), 5143–5144 (2011).
    [CrossRef] [PubMed]
  27. Y. Yu and T. Ikeda, “Alignment modulation of azobenzene-containing liquid crystal systems by photochemical reactions,” J. Photochem. Photobiol. Chem. 5(3), 247–265 (2004).
    [CrossRef]
  28. S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “The promise of diffractive waveplates,” Opt. Photon. News 21(3), 40–45 (2010).
    [CrossRef]
  29. N. V. Tabiryan, S. R. Nersisyan, T. J. White, T. J. Bunning, D. M. Steeves, and B. R. Kimball, “Transparent thin film polarizing and optical control systems,” AIP Advances 1(2), 022153 (2011).
    [CrossRef]
  30. S. R. Nersisyan, N. V. Tabiryan, L. Hoke, D. M. Steeves, and B. R. Kimball, “Polarization insensitive imaging through polarization gratings,” Opt. Express 17(3), 1817–1830 (2009).
    [CrossRef] [PubMed]
  31. U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, L. Hoke, D. M. Steeves, B. Kimball, and G. Kedziora, “Systematic study of absorption spectra of donor–acceptor azobenzene mesogenic structures,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 489(1), 257–272 (2008).
    [CrossRef]
  32. U. Hrozhyk, S. Serak, N. Tabiryan, D. M. Steeves, L. Hoke, and B. R. Kimball, “Azobenzene liquid crystals for fast reversible optical switching and enhanced sensitivity for visible wavelengths,” Proc. SPIE 7414, 74140L (2009).
    [CrossRef]
  33. U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, L. Hoke, D. M. Steeves, and B. R. Kimball, “Azobenzene liquid crystalline materials for efficient optical switching with pulsed and/or continuous wave laser beams,” Opt. Express 18(8), 8697–8704 (2010).
    [CrossRef] [PubMed]
  34. U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, T. J. White, and T. J. Bunning, “Optically switchable, rapidly relaxing cholesteric liquid crystal reflectors,” Opt. Express 18(9), 9651–9657 (2010).
    [CrossRef] [PubMed]
  35. O. Tsutsumi, A. Kanazawa, T. Shiono, T. Ikeda, and L.-S. Park, “Photoinduced phase transition of nematic liquid crystals with donor-acceptor azobenzenes: mechanism of the thermal recovery of the nematic phase,” Phys. Chem. Chem. Phys. 1(18), 4219–4224 (1999).
    [CrossRef]
  36. I. C. Khoo, M. Wood, M. Y. Shih, and P. Chen, “Extremely nonlinear photosensitive liquid crystals for image sensing and sensor protection,” Opt. Express 4(11), 432–442 (1999).
    [CrossRef] [PubMed]
  37. I. C. Khoo, M. Y. Shih, and A. Shishido, “Supra optical nonlinearities of potosensitive nematic liquid crystals,” Mol. Cryst. Liq. Crys. A 364(1), 141–149 (2001).
    [CrossRef]
  38. L. Deng and H.-K. Liu, “Nonlinear optical limiting of the azo dye methyl-red doped nematic liquid crystalline films,” Opt. Eng. 42(10), 2936–2941 (2003).
    [CrossRef]
  39. T.-H. Lin and A. Y.-G. Fuh, “Transflective spatial filter based on azo-dye-doped cholesteric liquid crystal films,” Appl. Phys. Lett. 87(1), 011106 (2005).
    [CrossRef]
  40. L. Nikolova and S. Ramanujam, Polarization holography (Cambridge University Press, 2009).

2011

M. O’Neill and S. M. Kelly, “Ordered materials for organic electronics and photonics,” Adv. Mater. (Deerfield Beach Fla.) 23(5), 566–584 (2011).
[CrossRef] [PubMed]

O. D. Lavrentovich, “Liquid crystals, photonic crystals, metamaterials, and transformation optics,” Proc. Natl. Acad. Sci. U.S.A. 108(13), 5143–5144 (2011).
[CrossRef] [PubMed]

N. V. Tabiryan, S. R. Nersisyan, T. J. White, T. J. Bunning, D. M. Steeves, and B. R. Kimball, “Transparent thin film polarizing and optical control systems,” AIP Advances 1(2), 022153 (2011).
[CrossRef]

2010

2009

U. Hrozhyk, S. Serak, N. Tabiryan, D. M. Steeves, L. Hoke, and B. R. Kimball, “Azobenzene liquid crystals for fast reversible optical switching and enhanced sensitivity for visible wavelengths,” Proc. SPIE 7414, 74140L (2009).
[CrossRef]

D. Brennan, J. Justice, B. Corbett, T. McCarthy, and P. Galvin, “Emerging optofluidic technologies for point-of-care genetic analysis systems: a review,” Anal. Bioanal. Chem. 395(3), 621–636 (2009).
[CrossRef] [PubMed]

S. R. Nersisyan, N. V. Tabiryan, L. Hoke, D. M. Steeves, and B. R. Kimball, “Polarization insensitive imaging through polarization gratings,” Opt. Express 17(3), 1817–1830 (2009).
[CrossRef] [PubMed]

2008

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, L. Hoke, D. M. Steeves, B. Kimball, and G. Kedziora, “Systematic study of absorption spectra of donor–acceptor azobenzene mesogenic structures,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 489(1), 257–272 (2008).
[CrossRef]

2007

M. J. Booth, “Adaptive optics in microscopy,” Philos. Transact. A Math. Phys. Eng. Sci. 365(1861), 2829–2843 (2007).
[CrossRef] [PubMed]

2006

2005

T.-H. Lin and A. Y.-G. Fuh, “Transflective spatial filter based on azo-dye-doped cholesteric liquid crystal films,” Appl. Phys. Lett. 87(1), 011106 (2005).
[CrossRef]

2004

G. Sinclair, P. Jordan, J. Leach, M. J. Padgett, and J. Cooper, “Defining the trapping limits of holographical optical tweezers,” J. Mod. Opt. 51(3), 409–414 (2004).
[CrossRef]

Y. Yu and T. Ikeda, “Alignment modulation of azobenzene-containing liquid crystal systems by photochemical reactions,” J. Photochem. Photobiol. Chem. 5(3), 247–265 (2004).
[CrossRef]

A. Urbas, V. Tondiglia, L. Natarajan, R. Sutherland, H. Yu, J. H. Li, and T. Bunning, “Optically switchable liquid crystal photonic structures,” J. Am. Chem. Soc. 126(42), 13580–13581 (2004).
[CrossRef] [PubMed]

A. Urbas, J. Klosterman, V. Tondiglia, L. Natarajan, R. Sutherland, O. Tsutsumi, T. Ikeda, and T. Bunning, “Optically switchable bragg reflectors,” Adv. Mater. (Deerfield Beach Fla.) 16(16), 1453–1456 (2004).
[CrossRef]

J. Klosterman, L. V. Natarajan, V. P. Tondiglia, R. L. Sutherland, T. J. White, C. A. Guymon, and T. J. Bunning, “The influence of surfactant in reflective HPDLC gratings,” Polymer (Guildf.) 45(21), 7213–7218 (2004).
[CrossRef]

2003

L. Deng and H.-K. Liu, “Nonlinear optical limiting of the azo dye methyl-red doped nematic liquid crystalline films,” Opt. Eng. 42(10), 2936–2941 (2003).
[CrossRef]

2002

2001

J. Squier and M. Muller, “High resolution nonlinear microscopy: A review of sources and methods for achieving optimal imaging,” Rev. Sci. Instrum. 72(7), 2855–2867 (2001).
[CrossRef]

I. C. Khoo, M. Y. Shih, and A. Shishido, “Supra optical nonlinearities of potosensitive nematic liquid crystals,” Mol. Cryst. Liq. Crys. A 364(1), 141–149 (2001).
[CrossRef]

2000

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci. 30(1), 83–115 (2000).
[CrossRef]

R. T. Pogue, L. V. Natarajan, S. A. Siwecki, V. P. Tondiglia, R. L. Sutherland, and T. J. Bunning, “Monomer functionality effects in the anisotropic phase separation of liquid crystals,” Polymer (Guildf.) 41(2), 733–741 (2000).
[CrossRef]

1999

O. Tsutsumi, A. Kanazawa, T. Shiono, T. Ikeda, and L.-S. Park, “Photoinduced phase transition of nematic liquid crystals with donor-acceptor azobenzenes: mechanism of the thermal recovery of the nematic phase,” Phys. Chem. Chem. Phys. 1(18), 4219–4224 (1999).
[CrossRef]

I. C. Khoo, M. Wood, M. Y. Shih, and P. Chen, “Extremely nonlinear photosensitive liquid crystals for image sensing and sensor protection,” Opt. Express 4(11), 432–442 (1999).
[CrossRef] [PubMed]

Booth, M. J.

M. J. Booth, “Adaptive optics in microscopy,” Philos. Transact. A Math. Phys. Eng. Sci. 365(1861), 2829–2843 (2007).
[CrossRef] [PubMed]

Brandelik, D. M.

Brennan, D.

D. Brennan, J. Justice, B. Corbett, T. McCarthy, and P. Galvin, “Emerging optofluidic technologies for point-of-care genetic analysis systems: a review,” Anal. Bioanal. Chem. 395(3), 621–636 (2009).
[CrossRef] [PubMed]

Bunning, T.

A. Urbas, V. Tondiglia, L. Natarajan, R. Sutherland, H. Yu, J. H. Li, and T. Bunning, “Optically switchable liquid crystal photonic structures,” J. Am. Chem. Soc. 126(42), 13580–13581 (2004).
[CrossRef] [PubMed]

A. Urbas, J. Klosterman, V. Tondiglia, L. Natarajan, R. Sutherland, O. Tsutsumi, T. Ikeda, and T. Bunning, “Optically switchable bragg reflectors,” Adv. Mater. (Deerfield Beach Fla.) 16(16), 1453–1456 (2004).
[CrossRef]

Bunning, T. J.

N. V. Tabiryan, S. R. Nersisyan, T. J. White, T. J. Bunning, D. M. Steeves, and B. R. Kimball, “Transparent thin film polarizing and optical control systems,” AIP Advances 1(2), 022153 (2011).
[CrossRef]

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, T. J. White, and T. J. Bunning, “Optically switchable, rapidly relaxing cholesteric liquid crystal reflectors,” Opt. Express 18(9), 9651–9657 (2010).
[CrossRef] [PubMed]

T. J. White, M. E. McConney, and T. J. Bunning, “Dynamic color in stimuli-responsive cholesteric liquid crystals,” J. Mater. Chem. 20(44), 9832–9847 (2010).
[CrossRef]

J. Klosterman, L. V. Natarajan, V. P. Tondiglia, R. L. Sutherland, T. J. White, C. A. Guymon, and T. J. Bunning, “The influence of surfactant in reflective HPDLC gratings,” Polymer (Guildf.) 45(21), 7213–7218 (2004).
[CrossRef]

R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, S. Chandra, C. K. Shepherd, D. M. Brandelik, S. A. Siwecki, and T. J. Bunning, “Polarization and switching properties of holographic polymer-dispersed liquid-crystal gratings. II. Experimental investigations,” J. Opt. Soc. Am. B 19(12), 3004–3012 (2002).
[CrossRef]

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci. 30(1), 83–115 (2000).
[CrossRef]

R. T. Pogue, L. V. Natarajan, S. A. Siwecki, V. P. Tondiglia, R. L. Sutherland, and T. J. Bunning, “Monomer functionality effects in the anisotropic phase separation of liquid crystals,” Polymer (Guildf.) 41(2), 733–741 (2000).
[CrossRef]

Chandra, S.

Chen, P.

Cooper, J.

G. Sinclair, P. Jordan, J. Leach, M. J. Padgett, and J. Cooper, “Defining the trapping limits of holographical optical tweezers,” J. Mod. Opt. 51(3), 409–414 (2004).
[CrossRef]

Corbett, B.

D. Brennan, J. Justice, B. Corbett, T. McCarthy, and P. Galvin, “Emerging optofluidic technologies for point-of-care genetic analysis systems: a review,” Anal. Bioanal. Chem. 395(3), 621–636 (2009).
[CrossRef] [PubMed]

Deng, L.

L. Deng and H.-K. Liu, “Nonlinear optical limiting of the azo dye methyl-red doped nematic liquid crystalline films,” Opt. Eng. 42(10), 2936–2941 (2003).
[CrossRef]

Ford, J. E.

Fuh, A. Y.-G.

T.-H. Lin and A. Y.-G. Fuh, “Transflective spatial filter based on azo-dye-doped cholesteric liquid crystal films,” Appl. Phys. Lett. 87(1), 011106 (2005).
[CrossRef]

Galvin, P.

D. Brennan, J. Justice, B. Corbett, T. McCarthy, and P. Galvin, “Emerging optofluidic technologies for point-of-care genetic analysis systems: a review,” Anal. Bioanal. Chem. 395(3), 621–636 (2009).
[CrossRef] [PubMed]

Guymon, C. A.

J. Klosterman, L. V. Natarajan, V. P. Tondiglia, R. L. Sutherland, T. J. White, C. A. Guymon, and T. J. Bunning, “The influence of surfactant in reflective HPDLC gratings,” Polymer (Guildf.) 45(21), 7213–7218 (2004).
[CrossRef]

Hoke, L.

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, L. Hoke, D. M. Steeves, and B. R. Kimball, “Azobenzene liquid crystalline materials for efficient optical switching with pulsed and/or continuous wave laser beams,” Opt. Express 18(8), 8697–8704 (2010).
[CrossRef] [PubMed]

U. Hrozhyk, S. Serak, N. Tabiryan, D. M. Steeves, L. Hoke, and B. R. Kimball, “Azobenzene liquid crystals for fast reversible optical switching and enhanced sensitivity for visible wavelengths,” Proc. SPIE 7414, 74140L (2009).
[CrossRef]

S. R. Nersisyan, N. V. Tabiryan, L. Hoke, D. M. Steeves, and B. R. Kimball, “Polarization insensitive imaging through polarization gratings,” Opt. Express 17(3), 1817–1830 (2009).
[CrossRef] [PubMed]

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, L. Hoke, D. M. Steeves, B. Kimball, and G. Kedziora, “Systematic study of absorption spectra of donor–acceptor azobenzene mesogenic structures,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 489(1), 257–272 (2008).
[CrossRef]

Hrozhyk, U.

U. Hrozhyk, S. Serak, N. Tabiryan, D. M. Steeves, L. Hoke, and B. R. Kimball, “Azobenzene liquid crystals for fast reversible optical switching and enhanced sensitivity for visible wavelengths,” Proc. SPIE 7414, 74140L (2009).
[CrossRef]

Hrozhyk, U. A.

Ikeda, T.

A. Urbas, J. Klosterman, V. Tondiglia, L. Natarajan, R. Sutherland, O. Tsutsumi, T. Ikeda, and T. Bunning, “Optically switchable bragg reflectors,” Adv. Mater. (Deerfield Beach Fla.) 16(16), 1453–1456 (2004).
[CrossRef]

Y. Yu and T. Ikeda, “Alignment modulation of azobenzene-containing liquid crystal systems by photochemical reactions,” J. Photochem. Photobiol. Chem. 5(3), 247–265 (2004).
[CrossRef]

O. Tsutsumi, A. Kanazawa, T. Shiono, T. Ikeda, and L.-S. Park, “Photoinduced phase transition of nematic liquid crystals with donor-acceptor azobenzenes: mechanism of the thermal recovery of the nematic phase,” Phys. Chem. Chem. Phys. 1(18), 4219–4224 (1999).
[CrossRef]

Jordan, P.

G. Sinclair, P. Jordan, J. Leach, M. J. Padgett, and J. Cooper, “Defining the trapping limits of holographical optical tweezers,” J. Mod. Opt. 51(3), 409–414 (2004).
[CrossRef]

Justice, J.

D. Brennan, J. Justice, B. Corbett, T. McCarthy, and P. Galvin, “Emerging optofluidic technologies for point-of-care genetic analysis systems: a review,” Anal. Bioanal. Chem. 395(3), 621–636 (2009).
[CrossRef] [PubMed]

Kanazawa, A.

O. Tsutsumi, A. Kanazawa, T. Shiono, T. Ikeda, and L.-S. Park, “Photoinduced phase transition of nematic liquid crystals with donor-acceptor azobenzenes: mechanism of the thermal recovery of the nematic phase,” Phys. Chem. Chem. Phys. 1(18), 4219–4224 (1999).
[CrossRef]

Kedziora, G.

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, L. Hoke, D. M. Steeves, B. Kimball, and G. Kedziora, “Systematic study of absorption spectra of donor–acceptor azobenzene mesogenic structures,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 489(1), 257–272 (2008).
[CrossRef]

Kelly, S. M.

M. O’Neill and S. M. Kelly, “Ordered materials for organic electronics and photonics,” Adv. Mater. (Deerfield Beach Fla.) 23(5), 566–584 (2011).
[CrossRef] [PubMed]

Khoo, I. C.

I. C. Khoo, M. Y. Shih, and A. Shishido, “Supra optical nonlinearities of potosensitive nematic liquid crystals,” Mol. Cryst. Liq. Crys. A 364(1), 141–149 (2001).
[CrossRef]

I. C. Khoo, M. Wood, M. Y. Shih, and P. Chen, “Extremely nonlinear photosensitive liquid crystals for image sensing and sensor protection,” Opt. Express 4(11), 432–442 (1999).
[CrossRef] [PubMed]

Kimball, B.

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, L. Hoke, D. M. Steeves, B. Kimball, and G. Kedziora, “Systematic study of absorption spectra of donor–acceptor azobenzene mesogenic structures,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 489(1), 257–272 (2008).
[CrossRef]

Kimball, B. R.

N. V. Tabiryan, S. R. Nersisyan, T. J. White, T. J. Bunning, D. M. Steeves, and B. R. Kimball, “Transparent thin film polarizing and optical control systems,” AIP Advances 1(2), 022153 (2011).
[CrossRef]

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, L. Hoke, D. M. Steeves, and B. R. Kimball, “Azobenzene liquid crystalline materials for efficient optical switching with pulsed and/or continuous wave laser beams,” Opt. Express 18(8), 8697–8704 (2010).
[CrossRef] [PubMed]

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “The promise of diffractive waveplates,” Opt. Photon. News 21(3), 40–45 (2010).
[CrossRef]

U. Hrozhyk, S. Serak, N. Tabiryan, D. M. Steeves, L. Hoke, and B. R. Kimball, “Azobenzene liquid crystals for fast reversible optical switching and enhanced sensitivity for visible wavelengths,” Proc. SPIE 7414, 74140L (2009).
[CrossRef]

S. R. Nersisyan, N. V. Tabiryan, L. Hoke, D. M. Steeves, and B. R. Kimball, “Polarization insensitive imaging through polarization gratings,” Opt. Express 17(3), 1817–1830 (2009).
[CrossRef] [PubMed]

Klosterman, J.

A. Urbas, J. Klosterman, V. Tondiglia, L. Natarajan, R. Sutherland, O. Tsutsumi, T. Ikeda, and T. Bunning, “Optically switchable bragg reflectors,” Adv. Mater. (Deerfield Beach Fla.) 16(16), 1453–1456 (2004).
[CrossRef]

J. Klosterman, L. V. Natarajan, V. P. Tondiglia, R. L. Sutherland, T. J. White, C. A. Guymon, and T. J. Bunning, “The influence of surfactant in reflective HPDLC gratings,” Polymer (Guildf.) 45(21), 7213–7218 (2004).
[CrossRef]

Lavrentovich, O. D.

O. D. Lavrentovich, “Liquid crystals, photonic crystals, metamaterials, and transformation optics,” Proc. Natl. Acad. Sci. U.S.A. 108(13), 5143–5144 (2011).
[CrossRef] [PubMed]

Leach, J.

G. Sinclair, P. Jordan, J. Leach, M. J. Padgett, and J. Cooper, “Defining the trapping limits of holographical optical tweezers,” J. Mod. Opt. 51(3), 409–414 (2004).
[CrossRef]

Li, J. H.

A. Urbas, V. Tondiglia, L. Natarajan, R. Sutherland, H. Yu, J. H. Li, and T. Bunning, “Optically switchable liquid crystal photonic structures,” J. Am. Chem. Soc. 126(42), 13580–13581 (2004).
[CrossRef] [PubMed]

Lin, T.-H.

T.-H. Lin and A. Y.-G. Fuh, “Transflective spatial filter based on azo-dye-doped cholesteric liquid crystal films,” Appl. Phys. Lett. 87(1), 011106 (2005).
[CrossRef]

Liu, H.-K.

L. Deng and H.-K. Liu, “Nonlinear optical limiting of the azo dye methyl-red doped nematic liquid crystalline films,” Opt. Eng. 42(10), 2936–2941 (2003).
[CrossRef]

McCarthy, T.

D. Brennan, J. Justice, B. Corbett, T. McCarthy, and P. Galvin, “Emerging optofluidic technologies for point-of-care genetic analysis systems: a review,” Anal. Bioanal. Chem. 395(3), 621–636 (2009).
[CrossRef] [PubMed]

McConney, M. E.

T. J. White, M. E. McConney, and T. J. Bunning, “Dynamic color in stimuli-responsive cholesteric liquid crystals,” J. Mater. Chem. 20(44), 9832–9847 (2010).
[CrossRef]

Muller, M.

J. Squier and M. Muller, “High resolution nonlinear microscopy: A review of sources and methods for achieving optimal imaging,” Rev. Sci. Instrum. 72(7), 2855–2867 (2001).
[CrossRef]

Natarajan, L.

A. Urbas, V. Tondiglia, L. Natarajan, R. Sutherland, H. Yu, J. H. Li, and T. Bunning, “Optically switchable liquid crystal photonic structures,” J. Am. Chem. Soc. 126(42), 13580–13581 (2004).
[CrossRef] [PubMed]

A. Urbas, J. Klosterman, V. Tondiglia, L. Natarajan, R. Sutherland, O. Tsutsumi, T. Ikeda, and T. Bunning, “Optically switchable bragg reflectors,” Adv. Mater. (Deerfield Beach Fla.) 16(16), 1453–1456 (2004).
[CrossRef]

Natarajan, L. V.

J. Klosterman, L. V. Natarajan, V. P. Tondiglia, R. L. Sutherland, T. J. White, C. A. Guymon, and T. J. Bunning, “The influence of surfactant in reflective HPDLC gratings,” Polymer (Guildf.) 45(21), 7213–7218 (2004).
[CrossRef]

R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, S. Chandra, C. K. Shepherd, D. M. Brandelik, S. A. Siwecki, and T. J. Bunning, “Polarization and switching properties of holographic polymer-dispersed liquid-crystal gratings. II. Experimental investigations,” J. Opt. Soc. Am. B 19(12), 3004–3012 (2002).
[CrossRef]

R. T. Pogue, L. V. Natarajan, S. A. Siwecki, V. P. Tondiglia, R. L. Sutherland, and T. J. Bunning, “Monomer functionality effects in the anisotropic phase separation of liquid crystals,” Polymer (Guildf.) 41(2), 733–741 (2000).
[CrossRef]

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci. 30(1), 83–115 (2000).
[CrossRef]

Nersisyan, S. R.

N. V. Tabiryan, S. R. Nersisyan, T. J. White, T. J. Bunning, D. M. Steeves, and B. R. Kimball, “Transparent thin film polarizing and optical control systems,” AIP Advances 1(2), 022153 (2011).
[CrossRef]

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “The promise of diffractive waveplates,” Opt. Photon. News 21(3), 40–45 (2010).
[CrossRef]

S. R. Nersisyan, N. V. Tabiryan, L. Hoke, D. M. Steeves, and B. R. Kimball, “Polarization insensitive imaging through polarization gratings,” Opt. Express 17(3), 1817–1830 (2009).
[CrossRef] [PubMed]

O’Neill, M.

M. O’Neill and S. M. Kelly, “Ordered materials for organic electronics and photonics,” Adv. Mater. (Deerfield Beach Fla.) 23(5), 566–584 (2011).
[CrossRef] [PubMed]

Padgett, M. J.

G. Sinclair, P. Jordan, J. Leach, M. J. Padgett, and J. Cooper, “Defining the trapping limits of holographical optical tweezers,” J. Mod. Opt. 51(3), 409–414 (2004).
[CrossRef]

Park, L.-S.

O. Tsutsumi, A. Kanazawa, T. Shiono, T. Ikeda, and L.-S. Park, “Photoinduced phase transition of nematic liquid crystals with donor-acceptor azobenzenes: mechanism of the thermal recovery of the nematic phase,” Phys. Chem. Chem. Phys. 1(18), 4219–4224 (1999).
[CrossRef]

Pogue, R. T.

R. T. Pogue, L. V. Natarajan, S. A. Siwecki, V. P. Tondiglia, R. L. Sutherland, and T. J. Bunning, “Monomer functionality effects in the anisotropic phase separation of liquid crystals,” Polymer (Guildf.) 41(2), 733–741 (2000).
[CrossRef]

Serak, S.

U. Hrozhyk, S. Serak, N. Tabiryan, D. M. Steeves, L. Hoke, and B. R. Kimball, “Azobenzene liquid crystals for fast reversible optical switching and enhanced sensitivity for visible wavelengths,” Proc. SPIE 7414, 74140L (2009).
[CrossRef]

Serak, S. V.

Shepherd, C. K.

Shih, M. Y.

I. C. Khoo, M. Y. Shih, and A. Shishido, “Supra optical nonlinearities of potosensitive nematic liquid crystals,” Mol. Cryst. Liq. Crys. A 364(1), 141–149 (2001).
[CrossRef]

I. C. Khoo, M. Wood, M. Y. Shih, and P. Chen, “Extremely nonlinear photosensitive liquid crystals for image sensing and sensor protection,” Opt. Express 4(11), 432–442 (1999).
[CrossRef] [PubMed]

Shiono, T.

O. Tsutsumi, A. Kanazawa, T. Shiono, T. Ikeda, and L.-S. Park, “Photoinduced phase transition of nematic liquid crystals with donor-acceptor azobenzenes: mechanism of the thermal recovery of the nematic phase,” Phys. Chem. Chem. Phys. 1(18), 4219–4224 (1999).
[CrossRef]

Shishido, A.

I. C. Khoo, M. Y. Shih, and A. Shishido, “Supra optical nonlinearities of potosensitive nematic liquid crystals,” Mol. Cryst. Liq. Crys. A 364(1), 141–149 (2001).
[CrossRef]

Sinclair, G.

G. Sinclair, P. Jordan, J. Leach, M. J. Padgett, and J. Cooper, “Defining the trapping limits of holographical optical tweezers,” J. Mod. Opt. 51(3), 409–414 (2004).
[CrossRef]

Siwecki, S. A.

R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, S. Chandra, C. K. Shepherd, D. M. Brandelik, S. A. Siwecki, and T. J. Bunning, “Polarization and switching properties of holographic polymer-dispersed liquid-crystal gratings. II. Experimental investigations,” J. Opt. Soc. Am. B 19(12), 3004–3012 (2002).
[CrossRef]

R. T. Pogue, L. V. Natarajan, S. A. Siwecki, V. P. Tondiglia, R. L. Sutherland, and T. J. Bunning, “Monomer functionality effects in the anisotropic phase separation of liquid crystals,” Polymer (Guildf.) 41(2), 733–741 (2000).
[CrossRef]

Solgaard, O.

Squier, J.

J. Squier and M. Muller, “High resolution nonlinear microscopy: A review of sources and methods for achieving optimal imaging,” Rev. Sci. Instrum. 72(7), 2855–2867 (2001).
[CrossRef]

Steeves, D. M.

N. V. Tabiryan, S. R. Nersisyan, T. J. White, T. J. Bunning, D. M. Steeves, and B. R. Kimball, “Transparent thin film polarizing and optical control systems,” AIP Advances 1(2), 022153 (2011).
[CrossRef]

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “The promise of diffractive waveplates,” Opt. Photon. News 21(3), 40–45 (2010).
[CrossRef]

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, L. Hoke, D. M. Steeves, and B. R. Kimball, “Azobenzene liquid crystalline materials for efficient optical switching with pulsed and/or continuous wave laser beams,” Opt. Express 18(8), 8697–8704 (2010).
[CrossRef] [PubMed]

U. Hrozhyk, S. Serak, N. Tabiryan, D. M. Steeves, L. Hoke, and B. R. Kimball, “Azobenzene liquid crystals for fast reversible optical switching and enhanced sensitivity for visible wavelengths,” Proc. SPIE 7414, 74140L (2009).
[CrossRef]

S. R. Nersisyan, N. V. Tabiryan, L. Hoke, D. M. Steeves, and B. R. Kimball, “Polarization insensitive imaging through polarization gratings,” Opt. Express 17(3), 1817–1830 (2009).
[CrossRef] [PubMed]

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, L. Hoke, D. M. Steeves, B. Kimball, and G. Kedziora, “Systematic study of absorption spectra of donor–acceptor azobenzene mesogenic structures,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 489(1), 257–272 (2008).
[CrossRef]

Sutherland, R.

A. Urbas, V. Tondiglia, L. Natarajan, R. Sutherland, H. Yu, J. H. Li, and T. Bunning, “Optically switchable liquid crystal photonic structures,” J. Am. Chem. Soc. 126(42), 13580–13581 (2004).
[CrossRef] [PubMed]

A. Urbas, J. Klosterman, V. Tondiglia, L. Natarajan, R. Sutherland, O. Tsutsumi, T. Ikeda, and T. Bunning, “Optically switchable bragg reflectors,” Adv. Mater. (Deerfield Beach Fla.) 16(16), 1453–1456 (2004).
[CrossRef]

Sutherland, R. L.

J. Klosterman, L. V. Natarajan, V. P. Tondiglia, R. L. Sutherland, T. J. White, C. A. Guymon, and T. J. Bunning, “The influence of surfactant in reflective HPDLC gratings,” Polymer (Guildf.) 45(21), 7213–7218 (2004).
[CrossRef]

R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, S. Chandra, C. K. Shepherd, D. M. Brandelik, S. A. Siwecki, and T. J. Bunning, “Polarization and switching properties of holographic polymer-dispersed liquid-crystal gratings. II. Experimental investigations,” J. Opt. Soc. Am. B 19(12), 3004–3012 (2002).
[CrossRef]

R. T. Pogue, L. V. Natarajan, S. A. Siwecki, V. P. Tondiglia, R. L. Sutherland, and T. J. Bunning, “Monomer functionality effects in the anisotropic phase separation of liquid crystals,” Polymer (Guildf.) 41(2), 733–741 (2000).
[CrossRef]

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci. 30(1), 83–115 (2000).
[CrossRef]

Tabiryan, N.

U. Hrozhyk, S. Serak, N. Tabiryan, D. M. Steeves, L. Hoke, and B. R. Kimball, “Azobenzene liquid crystals for fast reversible optical switching and enhanced sensitivity for visible wavelengths,” Proc. SPIE 7414, 74140L (2009).
[CrossRef]

Tabiryan, N. V.

N. V. Tabiryan, S. R. Nersisyan, T. J. White, T. J. Bunning, D. M. Steeves, and B. R. Kimball, “Transparent thin film polarizing and optical control systems,” AIP Advances 1(2), 022153 (2011).
[CrossRef]

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “The promise of diffractive waveplates,” Opt. Photon. News 21(3), 40–45 (2010).
[CrossRef]

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, L. Hoke, D. M. Steeves, and B. R. Kimball, “Azobenzene liquid crystalline materials for efficient optical switching with pulsed and/or continuous wave laser beams,” Opt. Express 18(8), 8697–8704 (2010).
[CrossRef] [PubMed]

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, T. J. White, and T. J. Bunning, “Optically switchable, rapidly relaxing cholesteric liquid crystal reflectors,” Opt. Express 18(9), 9651–9657 (2010).
[CrossRef] [PubMed]

S. R. Nersisyan, N. V. Tabiryan, L. Hoke, D. M. Steeves, and B. R. Kimball, “Polarization insensitive imaging through polarization gratings,” Opt. Express 17(3), 1817–1830 (2009).
[CrossRef] [PubMed]

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, L. Hoke, D. M. Steeves, B. Kimball, and G. Kedziora, “Systematic study of absorption spectra of donor–acceptor azobenzene mesogenic structures,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 489(1), 257–272 (2008).
[CrossRef]

Tondiglia, V.

A. Urbas, V. Tondiglia, L. Natarajan, R. Sutherland, H. Yu, J. H. Li, and T. Bunning, “Optically switchable liquid crystal photonic structures,” J. Am. Chem. Soc. 126(42), 13580–13581 (2004).
[CrossRef] [PubMed]

A. Urbas, J. Klosterman, V. Tondiglia, L. Natarajan, R. Sutherland, O. Tsutsumi, T. Ikeda, and T. Bunning, “Optically switchable bragg reflectors,” Adv. Mater. (Deerfield Beach Fla.) 16(16), 1453–1456 (2004).
[CrossRef]

Tondiglia, V. P.

J. Klosterman, L. V. Natarajan, V. P. Tondiglia, R. L. Sutherland, T. J. White, C. A. Guymon, and T. J. Bunning, “The influence of surfactant in reflective HPDLC gratings,” Polymer (Guildf.) 45(21), 7213–7218 (2004).
[CrossRef]

R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, S. Chandra, C. K. Shepherd, D. M. Brandelik, S. A. Siwecki, and T. J. Bunning, “Polarization and switching properties of holographic polymer-dispersed liquid-crystal gratings. II. Experimental investigations,” J. Opt. Soc. Am. B 19(12), 3004–3012 (2002).
[CrossRef]

R. T. Pogue, L. V. Natarajan, S. A. Siwecki, V. P. Tondiglia, R. L. Sutherland, and T. J. Bunning, “Monomer functionality effects in the anisotropic phase separation of liquid crystals,” Polymer (Guildf.) 41(2), 733–741 (2000).
[CrossRef]

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci. 30(1), 83–115 (2000).
[CrossRef]

Tsutsumi, O.

A. Urbas, J. Klosterman, V. Tondiglia, L. Natarajan, R. Sutherland, O. Tsutsumi, T. Ikeda, and T. Bunning, “Optically switchable bragg reflectors,” Adv. Mater. (Deerfield Beach Fla.) 16(16), 1453–1456 (2004).
[CrossRef]

O. Tsutsumi, A. Kanazawa, T. Shiono, T. Ikeda, and L.-S. Park, “Photoinduced phase transition of nematic liquid crystals with donor-acceptor azobenzenes: mechanism of the thermal recovery of the nematic phase,” Phys. Chem. Chem. Phys. 1(18), 4219–4224 (1999).
[CrossRef]

Urbas, A.

A. Urbas, J. Klosterman, V. Tondiglia, L. Natarajan, R. Sutherland, O. Tsutsumi, T. Ikeda, and T. Bunning, “Optically switchable bragg reflectors,” Adv. Mater. (Deerfield Beach Fla.) 16(16), 1453–1456 (2004).
[CrossRef]

A. Urbas, V. Tondiglia, L. Natarajan, R. Sutherland, H. Yu, J. H. Li, and T. Bunning, “Optically switchable liquid crystal photonic structures,” J. Am. Chem. Soc. 126(42), 13580–13581 (2004).
[CrossRef] [PubMed]

White, T. J.

N. V. Tabiryan, S. R. Nersisyan, T. J. White, T. J. Bunning, D. M. Steeves, and B. R. Kimball, “Transparent thin film polarizing and optical control systems,” AIP Advances 1(2), 022153 (2011).
[CrossRef]

T. J. White, M. E. McConney, and T. J. Bunning, “Dynamic color in stimuli-responsive cholesteric liquid crystals,” J. Mater. Chem. 20(44), 9832–9847 (2010).
[CrossRef]

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, T. J. White, and T. J. Bunning, “Optically switchable, rapidly relaxing cholesteric liquid crystal reflectors,” Opt. Express 18(9), 9651–9657 (2010).
[CrossRef] [PubMed]

J. Klosterman, L. V. Natarajan, V. P. Tondiglia, R. L. Sutherland, T. J. White, C. A. Guymon, and T. J. Bunning, “The influence of surfactant in reflective HPDLC gratings,” Polymer (Guildf.) 45(21), 7213–7218 (2004).
[CrossRef]

Wood, M.

Wu, M. C.

Yu, H.

A. Urbas, V. Tondiglia, L. Natarajan, R. Sutherland, H. Yu, J. H. Li, and T. Bunning, “Optically switchable liquid crystal photonic structures,” J. Am. Chem. Soc. 126(42), 13580–13581 (2004).
[CrossRef] [PubMed]

Yu, Y.

Y. Yu and T. Ikeda, “Alignment modulation of azobenzene-containing liquid crystal systems by photochemical reactions,” J. Photochem. Photobiol. Chem. 5(3), 247–265 (2004).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.)

M. O’Neill and S. M. Kelly, “Ordered materials for organic electronics and photonics,” Adv. Mater. (Deerfield Beach Fla.) 23(5), 566–584 (2011).
[CrossRef] [PubMed]

A. Urbas, J. Klosterman, V. Tondiglia, L. Natarajan, R. Sutherland, O. Tsutsumi, T. Ikeda, and T. Bunning, “Optically switchable bragg reflectors,” Adv. Mater. (Deerfield Beach Fla.) 16(16), 1453–1456 (2004).
[CrossRef]

AIP Advances

N. V. Tabiryan, S. R. Nersisyan, T. J. White, T. J. Bunning, D. M. Steeves, and B. R. Kimball, “Transparent thin film polarizing and optical control systems,” AIP Advances 1(2), 022153 (2011).
[CrossRef]

Anal. Bioanal. Chem.

D. Brennan, J. Justice, B. Corbett, T. McCarthy, and P. Galvin, “Emerging optofluidic technologies for point-of-care genetic analysis systems: a review,” Anal. Bioanal. Chem. 395(3), 621–636 (2009).
[CrossRef] [PubMed]

Annu. Rev. Mater. Sci.

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci. 30(1), 83–115 (2000).
[CrossRef]

Appl. Phys. Lett.

T.-H. Lin and A. Y.-G. Fuh, “Transflective spatial filter based on azo-dye-doped cholesteric liquid crystal films,” Appl. Phys. Lett. 87(1), 011106 (2005).
[CrossRef]

J. Am. Chem. Soc.

A. Urbas, V. Tondiglia, L. Natarajan, R. Sutherland, H. Yu, J. H. Li, and T. Bunning, “Optically switchable liquid crystal photonic structures,” J. Am. Chem. Soc. 126(42), 13580–13581 (2004).
[CrossRef] [PubMed]

J. Lightwave Technol.

J. Mater. Chem.

T. J. White, M. E. McConney, and T. J. Bunning, “Dynamic color in stimuli-responsive cholesteric liquid crystals,” J. Mater. Chem. 20(44), 9832–9847 (2010).
[CrossRef]

J. Mod. Opt.

G. Sinclair, P. Jordan, J. Leach, M. J. Padgett, and J. Cooper, “Defining the trapping limits of holographical optical tweezers,” J. Mod. Opt. 51(3), 409–414 (2004).
[CrossRef]

J. Opt. Soc. Am. B

J. Photochem. Photobiol. Chem.

Y. Yu and T. Ikeda, “Alignment modulation of azobenzene-containing liquid crystal systems by photochemical reactions,” J. Photochem. Photobiol. Chem. 5(3), 247–265 (2004).
[CrossRef]

Mol. Cryst. Liq. Crys. A

I. C. Khoo, M. Y. Shih, and A. Shishido, “Supra optical nonlinearities of potosensitive nematic liquid crystals,” Mol. Cryst. Liq. Crys. A 364(1), 141–149 (2001).
[CrossRef]

Mol. Cryst. Liq. Cryst. (Phila. Pa.)

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, L. Hoke, D. M. Steeves, B. Kimball, and G. Kedziora, “Systematic study of absorption spectra of donor–acceptor azobenzene mesogenic structures,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 489(1), 257–272 (2008).
[CrossRef]

Opt. Eng.

L. Deng and H.-K. Liu, “Nonlinear optical limiting of the azo dye methyl-red doped nematic liquid crystalline films,” Opt. Eng. 42(10), 2936–2941 (2003).
[CrossRef]

Opt. Express

Opt. Photon. News

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “The promise of diffractive waveplates,” Opt. Photon. News 21(3), 40–45 (2010).
[CrossRef]

Philos. Transact. A Math. Phys. Eng. Sci.

M. J. Booth, “Adaptive optics in microscopy,” Philos. Transact. A Math. Phys. Eng. Sci. 365(1861), 2829–2843 (2007).
[CrossRef] [PubMed]

Phys. Chem. Chem. Phys.

O. Tsutsumi, A. Kanazawa, T. Shiono, T. Ikeda, and L.-S. Park, “Photoinduced phase transition of nematic liquid crystals with donor-acceptor azobenzenes: mechanism of the thermal recovery of the nematic phase,” Phys. Chem. Chem. Phys. 1(18), 4219–4224 (1999).
[CrossRef]

Polymer (Guildf.)

J. Klosterman, L. V. Natarajan, V. P. Tondiglia, R. L. Sutherland, T. J. White, C. A. Guymon, and T. J. Bunning, “The influence of surfactant in reflective HPDLC gratings,” Polymer (Guildf.) 45(21), 7213–7218 (2004).
[CrossRef]

R. T. Pogue, L. V. Natarajan, S. A. Siwecki, V. P. Tondiglia, R. L. Sutherland, and T. J. Bunning, “Monomer functionality effects in the anisotropic phase separation of liquid crystals,” Polymer (Guildf.) 41(2), 733–741 (2000).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A.

O. D. Lavrentovich, “Liquid crystals, photonic crystals, metamaterials, and transformation optics,” Proc. Natl. Acad. Sci. U.S.A. 108(13), 5143–5144 (2011).
[CrossRef] [PubMed]

Proc. SPIE

U. Hrozhyk, S. Serak, N. Tabiryan, D. M. Steeves, L. Hoke, and B. R. Kimball, “Azobenzene liquid crystals for fast reversible optical switching and enhanced sensitivity for visible wavelengths,” Proc. SPIE 7414, 74140L (2009).
[CrossRef]

Rev. Sci. Instrum.

J. Squier and M. Muller, “High resolution nonlinear microscopy: A review of sources and methods for achieving optimal imaging,” Rev. Sci. Instrum. 72(7), 2855–2867 (2001).
[CrossRef]

Other

D. K. Yang and S. T. Wu, Fundamentals of liquid crystal devices (John Wiley, West Sussex, England, 2006).

R. R. Hainich and O. Bimber, Displays: fundamentals & applications (Taylor & Francis Group, Boca Raton, FL, 2011).

S. T. Wu and D. K. Yang, Reflective liquid crystal displays (Wiley, West Sussex, England, 2001).

S. Kitsinelis, Light sources: technologies and applications (Taylor & Francis, Boca Raton, FL, 2011).

M. Csele, Fundamentals of light sources and lasers (John Wiley & Sons, Hoboken, NJ, 2004).

T. Smeeton and C. Humphreys, “Perspectives on electronic and optoelectronic materials,” in Springer handbook of electronic and photonic materials, S. O. Kasap and P. Capper, eds. (Springer, New York, NY, 2006).

S. Ossicini, L. Pavesi, and F. Priolo, Light emitting silicon for microphotonics (Springer, Berlin, 2003).

A. Al-Azzawi, Photonics: principles and practices (CRC Press, Boca Raton, FL, 2007).

B. E. A. Saleh and M. C. Teich, Fundamentals of photonics (John Wiley & Sons, Inc., Hoboken, NJ, 2007).

W. R. Jamroz, R. V. Kruzelecky, and E. I. Haddad, Applied microphotonics (CRC Taylor & Francis, Boca Raton, FL, 2006).

W. T. Welford, Aberrations of optical systems (Taylor and Francis, New York, NY, 1986).

W. Cai and V. Shalaev, Optical metamaterials (Springer, New York, NY, 2010).

L. Nikolova and S. Ramanujam, Polarization holography (Cambridge University Press, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Diffractive properties of CDWs: (a) a single CDW splits unpolarized light into two beams, one right- and one left-circularly polarized; (b) CDW of an opposite sign changes the diffraction sign of the right- and left-polarized beams; (c) a CDW pair with parallel arrangement restores collinear propagation without introducing appreciable lateral shift due to thinness of adjacent CDWs; (d) pairing CDWs of opposite signs splits an unpolarized laser beam into orthogonal circularly polarized beams doubling the angle between them. Black and white arrows correspond to right- and left-circular polarized beams, respectively

Fig. 2
Fig. 2

Schematic illustration of nonlinear switching of laser beam using a pair of CDW with planarly aligned cell of a photoresponsive guest-host azo-NLC between them. (a) A planar aligned LC cell acting as a half-waveplate between anti-parallel CDWs reverses the handedness of the beams leading to overlapping collinear propagating output. (b) Photoinduced isothermal phase transition from the nematic to isotropic phase eliminates the birefringence of the azo NLC thereby disrupting the polarization converting ability of the azo NLC waveplate resulting in doubled diffraction angle between the beams. Black and white arrows correspond to right- and left-circular polarized beams, respectively.

Fig. 3
Fig. 3

Absorption spectra of azo NLC1 (1) and azo NLC2 (2). The dashed line corresponds to 532 nm wavelength.

Fig. 4
Fig. 4

(a) Schematic of the experimental setup: NDF, set of neutral density filters; BE, beam expander; D, diaphragm; (b) diffracted beams at the output of the CDW system without the azo NLC; (c) overlapping diffracted beams for anti-parallel CDW pair with azo NLC in half-wave retardation state; (d) diffracted beams for anti-parallel CDW pair with azo NLC in photoinduced isotropic state.

Fig. 5
Fig. 5

(a) Output/input power dependence; and (b) transmission vs input beam power density for Azo NLC1.

Fig. 6
Fig. 6

(a) Output/input power dependence, and (b) transmission vs input beam power density for Azo NLC2. The data are presented for both vertical and horizontal polarizations of the laser beam.

Fig. 7
Fig. 7

(a) Temporal response of the optical switching of CDW/NLC1 system upon exposure to 532 nm irradiation of increasing power. (b) Summary of the dependence of response time on input beam power.

Fig. 8
Fig. 8

(a) Temporal response of the optical switching of CDW/NLC2 system upon exposure to 532 nm irradiation of increasing power. (b) Summary of the dependence of response time on input beam power.

Fig. 9
Fig. 9

(a) Output/input pulse energy dependence, and (b) transmission vs energy density for Azo NLC1. The curve in (a) corresponds to data fitting by the function Eout = EsatEin/(Eth + Ein).

Fig. 10
Fig. 10

(a) Output/input pulse energy dependence, and (b) transmission vs energy density for azo NLC2 between CDWs for vertical and horizontal beam polarizations as well as for the cell between crossed polarizers making 45° angle with respect to the beam polarization.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

M 0 =[ cos 0 0 cos ], M ±1 = i 2 sinexp( ±i2qx )[ 1 ±i ±i 1 ],
R=exp( a 1 )exp( i φ 1 )[ exp( a )exp( iφ ) 0 0 exp( a )exp( iφ ) ],
E in =[ cosβ sinβ ],
S ±1 = 1 2 exp( ±i2qx )exp( ±iβ )exp( a _ )exp( i φ _ )[ coshacosφ+isinhasinφ ][ 1 i ] 
S 0 = 1 2 exp( ±iβ )exp( a _ )exp( i φ _ )[ sinhacosφ+icoshasinφ ][ 1 ±i ].
T= e 2 a _ ( sin h 2 a+ sin 2 φ ).

Metrics