Abstract

We apply generalized ellipsometry, well-known to be sensitive to the optical properties of anisotropic materials, to determine the amount of fibronectin protein that adsorbs onto a Ti slanted columnar thin film from solution. We find that the anisotropic optical properties of the thin film change upon organic adsorption. An optical model for ellipsometry data analysis incorporates an anisotropic Bruggeman effective medium approximation. We find that differences in experimental data from before and after fibronectin adsorption can be solely attributable to the uptake of fibronectin within the slanted columnar thin film. Simultaneous, in-situ generalized ellipsometry and quartz crystal microbalance measurements show excellent agreement on the amount and rate of fibronectin adsorption. Quantitative characterization of organic materials within three-dimensional, optically anisotropic slanted columnar thin films could permit their use in optical sensor applications.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Yang, J. Y. Gerasimov, and R. Y. Lai, “Folding-based electrochemical DNA sensor fabricated on a gold-plated screen-printed carbon electrode,” Chem. Commun. 20, 2902–2904 (2009).
    [CrossRef]
  2. R. M. Burks, S. E. Pacquette, M. A. Guericke, M. V. Wilson, D. J. Symonsbergen, K. A. Lucas, and A. E. Holmes, “DETECHIP®: a sensor for drugs of abuse,” J. Forensic Sci. 55, 723–727 (2010).
    [CrossRef] [PubMed]
  3. K. Robbie and M. J. Brett, “Sculptured thin films and glancing angle deposition: growth mechanics and applications,” J. Vac. Sci. Technol. A 15, 1460–1465 (1997).
    [CrossRef]
  4. D. Schmidt, E. Schubert, and M. Schubert, “Generalized ellipsometry determination of non-reciprocity in chiral silicon sculptured thin films,” Phys. Stat. Sol. A. 205, 748–751 (2008).
    [CrossRef]
  5. D. Schmidt, A. C. Kjerstad, T. Hofmann, R. Skomski, E. Schubert, and M. Schubert, “Optical, structural, and magnetic properties of cobalt nanostructure thin films,” J. Appl. Phys. 105, 113508 (2009).
    [CrossRef]
  6. D. Schmidt, B. Booso, T. Hofmann, E. Schubert, A. Sarangan, and M. Schubert, “Monoclinic optical constants, birefringence, and dichroism of slanted titanium nanocolumns determined by generalized ellipsometry,” Appl. Phys. Lett. 94, 011914 (2009).
    [CrossRef]
  7. D. Schmidt, C. Müller, T. Hofmann, O. Inganäs, H. Arwin, E. Schubert, and M. Schubert, “Optical properties of hybrid titanium chevron sculptured thin films coated with a semiconducting polymer,” Thin Solid Films 519, 2645–2649 (2009).
    [CrossRef]
  8. D. van Noort and C.-F. Mandenius, “Porous gold surfaces for biosensor applications,” Biosens. Bioelectron. 15, 203–209 (2000).
    [CrossRef]
  9. F. Höök, B. Kasemo, T. Nylander, C. Fant, K. Sott, and H. Elwing, “Variations in coupled water, viscoelastic properties, and film thickness of a mefp-1 protein film during adsorption and cross-linking: a quartz crystal microbalance with dissipation monitoring, ellipsometry, and surface plasmon resonance study,” Anal. Chem. 73, 5796–5804 (2001).
    [CrossRef]
  10. E. Bittrich, K. B. Rodenhausen, K.-J. Eichhorn, T. Hofmann, M. Schubert, M. Stamm, and P. Uhlmann, “Protein adsorption on and swelling of polyelectrolyte brushes: a simultaneous ellipsometry-quartz crystal microbalance study,” Biointerphases 5, 1–9 (2010).
    [CrossRef]
  11. R. A. May, D. W. Flaherty, C. B. Mullins, and K. J. Stevenson, “Hybrid generalized ellipsometry and quartz crystal microbalance nanogravimetry for the determination of adsorption isotherms on biaxial metal oxide films,” J. Phys. Chem. Lett. 1, 1264–1268 (2010).
    [CrossRef]
  12. K. B. Rodenhausen, T. Kasputis, A. K. Pannier, J. Y. Gerasimov, R. Y. Lai, M. Solinksy, T. Tiwald, A. Sarkar, T. Hofmann, N. Ianno, and M. Schubert, “Combined optical and acoustical method for determination of thickness and porosity of transparent organic layers below the ultra-thin film limit,” Rev. Sci. Instrum. 82, 103111 (2011).
    [CrossRef] [PubMed]
  13. D. A. G. Bruggeman, “Berechnung verschiedener physikalischer konstanten von heterogenen substanzen. I. dielektrizitätskonstanten und leitfähigkeiten der mischkörper aus isotropen substanzen,” Ann. Phys. 416, 636–679 (1935).
    [CrossRef]
  14. D. Polder and J. H. van Santen, “The effective permeability of mixtures of solids,” Physica 12, 257–271 (1946).
    [CrossRef]
  15. D. Schmidt, E. Schubert, and M. Schubert, “Optical properties of cobalt sculptured thin films passivated by atomic layer deposition,” Appl. Phys. Lett. 100, 011912 (2012).
    [CrossRef]
  16. C. G. Granqvist, D. L. Bellac, and G. A. Niklasson, “Angular selective window coatings: effective medium theory and experimental data on sputter-deposited films,” Renew. Energ. 8, 530–539 (1996).
    [CrossRef]
  17. H. P. Erickson, “Size and shape of protein molecules at the nanometer level determined by sedimentation, gel filtration, and electron microscopy,” Biol. Proced. Online 11, 32–51 (2009).
    [CrossRef] [PubMed]
  18. T. Berlind, G. K. Pribil, D. Thompson, J. A. Woollam, and H. Arwin, “Effects of ion concentration on refractive indices of fluids measured by the minimum deviation technique,” Phys. Stat. Sol. C. 5, 1249–1252 (2008).
    [CrossRef]
  19. D. Schmidt, B. Booso, T. Hofmann, E. Schubert, A. Sarangan, and M. Schubert, “Generalized ellipsometry for monoclinic absorbing materials: determination of optical constants of Cr columnar thin films,” Opt. Lett. 34, 992–994 (2009).
    [CrossRef] [PubMed]
  20. G. Sauerbrey, “Verwendung von schwingquarzen zur wägung dünner schichten und zur mikrowägung,” Z. Phys. A-Hadron Nucl. 155, 206–222 (1959).
  21. B. Ivarsson and I. Lundström, “Physical characterization of protein adsorption on metal and metal oxide surfaces,” Crit. Rev. Biocompat. 2, 1–96 (1986).
  22. M. B. Hovgaard, K. Rechendorff, J. Chevallier, M. Foss, and F. Besenbacher, “Fibronectin adsorption on tantalum: the influence of nanoroughness,” J. Phys. Chem. B 112, 8241–8249 (2008).
    [CrossRef] [PubMed]

2012 (1)

D. Schmidt, E. Schubert, and M. Schubert, “Optical properties of cobalt sculptured thin films passivated by atomic layer deposition,” Appl. Phys. Lett. 100, 011912 (2012).
[CrossRef]

2011 (1)

K. B. Rodenhausen, T. Kasputis, A. K. Pannier, J. Y. Gerasimov, R. Y. Lai, M. Solinksy, T. Tiwald, A. Sarkar, T. Hofmann, N. Ianno, and M. Schubert, “Combined optical and acoustical method for determination of thickness and porosity of transparent organic layers below the ultra-thin film limit,” Rev. Sci. Instrum. 82, 103111 (2011).
[CrossRef] [PubMed]

2010 (3)

E. Bittrich, K. B. Rodenhausen, K.-J. Eichhorn, T. Hofmann, M. Schubert, M. Stamm, and P. Uhlmann, “Protein adsorption on and swelling of polyelectrolyte brushes: a simultaneous ellipsometry-quartz crystal microbalance study,” Biointerphases 5, 1–9 (2010).
[CrossRef]

R. A. May, D. W. Flaherty, C. B. Mullins, and K. J. Stevenson, “Hybrid generalized ellipsometry and quartz crystal microbalance nanogravimetry for the determination of adsorption isotherms on biaxial metal oxide films,” J. Phys. Chem. Lett. 1, 1264–1268 (2010).
[CrossRef]

R. M. Burks, S. E. Pacquette, M. A. Guericke, M. V. Wilson, D. J. Symonsbergen, K. A. Lucas, and A. E. Holmes, “DETECHIP®: a sensor for drugs of abuse,” J. Forensic Sci. 55, 723–727 (2010).
[CrossRef] [PubMed]

2009 (6)

W. Yang, J. Y. Gerasimov, and R. Y. Lai, “Folding-based electrochemical DNA sensor fabricated on a gold-plated screen-printed carbon electrode,” Chem. Commun. 20, 2902–2904 (2009).
[CrossRef]

D. Schmidt, A. C. Kjerstad, T. Hofmann, R. Skomski, E. Schubert, and M. Schubert, “Optical, structural, and magnetic properties of cobalt nanostructure thin films,” J. Appl. Phys. 105, 113508 (2009).
[CrossRef]

D. Schmidt, B. Booso, T. Hofmann, E. Schubert, A. Sarangan, and M. Schubert, “Monoclinic optical constants, birefringence, and dichroism of slanted titanium nanocolumns determined by generalized ellipsometry,” Appl. Phys. Lett. 94, 011914 (2009).
[CrossRef]

D. Schmidt, C. Müller, T. Hofmann, O. Inganäs, H. Arwin, E. Schubert, and M. Schubert, “Optical properties of hybrid titanium chevron sculptured thin films coated with a semiconducting polymer,” Thin Solid Films 519, 2645–2649 (2009).
[CrossRef]

H. P. Erickson, “Size and shape of protein molecules at the nanometer level determined by sedimentation, gel filtration, and electron microscopy,” Biol. Proced. Online 11, 32–51 (2009).
[CrossRef] [PubMed]

D. Schmidt, B. Booso, T. Hofmann, E. Schubert, A. Sarangan, and M. Schubert, “Generalized ellipsometry for monoclinic absorbing materials: determination of optical constants of Cr columnar thin films,” Opt. Lett. 34, 992–994 (2009).
[CrossRef] [PubMed]

2008 (3)

T. Berlind, G. K. Pribil, D. Thompson, J. A. Woollam, and H. Arwin, “Effects of ion concentration on refractive indices of fluids measured by the minimum deviation technique,” Phys. Stat. Sol. C. 5, 1249–1252 (2008).
[CrossRef]

M. B. Hovgaard, K. Rechendorff, J. Chevallier, M. Foss, and F. Besenbacher, “Fibronectin adsorption on tantalum: the influence of nanoroughness,” J. Phys. Chem. B 112, 8241–8249 (2008).
[CrossRef] [PubMed]

D. Schmidt, E. Schubert, and M. Schubert, “Generalized ellipsometry determination of non-reciprocity in chiral silicon sculptured thin films,” Phys. Stat. Sol. A. 205, 748–751 (2008).
[CrossRef]

2001 (1)

F. Höök, B. Kasemo, T. Nylander, C. Fant, K. Sott, and H. Elwing, “Variations in coupled water, viscoelastic properties, and film thickness of a mefp-1 protein film during adsorption and cross-linking: a quartz crystal microbalance with dissipation monitoring, ellipsometry, and surface plasmon resonance study,” Anal. Chem. 73, 5796–5804 (2001).
[CrossRef]

2000 (1)

D. van Noort and C.-F. Mandenius, “Porous gold surfaces for biosensor applications,” Biosens. Bioelectron. 15, 203–209 (2000).
[CrossRef]

1997 (1)

K. Robbie and M. J. Brett, “Sculptured thin films and glancing angle deposition: growth mechanics and applications,” J. Vac. Sci. Technol. A 15, 1460–1465 (1997).
[CrossRef]

1996 (1)

C. G. Granqvist, D. L. Bellac, and G. A. Niklasson, “Angular selective window coatings: effective medium theory and experimental data on sputter-deposited films,” Renew. Energ. 8, 530–539 (1996).
[CrossRef]

1986 (1)

B. Ivarsson and I. Lundström, “Physical characterization of protein adsorption on metal and metal oxide surfaces,” Crit. Rev. Biocompat. 2, 1–96 (1986).

1959 (1)

G. Sauerbrey, “Verwendung von schwingquarzen zur wägung dünner schichten und zur mikrowägung,” Z. Phys. A-Hadron Nucl. 155, 206–222 (1959).

1946 (1)

D. Polder and J. H. van Santen, “The effective permeability of mixtures of solids,” Physica 12, 257–271 (1946).
[CrossRef]

1935 (1)

D. A. G. Bruggeman, “Berechnung verschiedener physikalischer konstanten von heterogenen substanzen. I. dielektrizitätskonstanten und leitfähigkeiten der mischkörper aus isotropen substanzen,” Ann. Phys. 416, 636–679 (1935).
[CrossRef]

Arwin, H.

D. Schmidt, C. Müller, T. Hofmann, O. Inganäs, H. Arwin, E. Schubert, and M. Schubert, “Optical properties of hybrid titanium chevron sculptured thin films coated with a semiconducting polymer,” Thin Solid Films 519, 2645–2649 (2009).
[CrossRef]

T. Berlind, G. K. Pribil, D. Thompson, J. A. Woollam, and H. Arwin, “Effects of ion concentration on refractive indices of fluids measured by the minimum deviation technique,” Phys. Stat. Sol. C. 5, 1249–1252 (2008).
[CrossRef]

Bellac, D. L.

C. G. Granqvist, D. L. Bellac, and G. A. Niklasson, “Angular selective window coatings: effective medium theory and experimental data on sputter-deposited films,” Renew. Energ. 8, 530–539 (1996).
[CrossRef]

Berlind, T.

T. Berlind, G. K. Pribil, D. Thompson, J. A. Woollam, and H. Arwin, “Effects of ion concentration on refractive indices of fluids measured by the minimum deviation technique,” Phys. Stat. Sol. C. 5, 1249–1252 (2008).
[CrossRef]

Besenbacher, F.

M. B. Hovgaard, K. Rechendorff, J. Chevallier, M. Foss, and F. Besenbacher, “Fibronectin adsorption on tantalum: the influence of nanoroughness,” J. Phys. Chem. B 112, 8241–8249 (2008).
[CrossRef] [PubMed]

Bittrich, E.

E. Bittrich, K. B. Rodenhausen, K.-J. Eichhorn, T. Hofmann, M. Schubert, M. Stamm, and P. Uhlmann, “Protein adsorption on and swelling of polyelectrolyte brushes: a simultaneous ellipsometry-quartz crystal microbalance study,” Biointerphases 5, 1–9 (2010).
[CrossRef]

Booso, B.

D. Schmidt, B. Booso, T. Hofmann, E. Schubert, A. Sarangan, and M. Schubert, “Monoclinic optical constants, birefringence, and dichroism of slanted titanium nanocolumns determined by generalized ellipsometry,” Appl. Phys. Lett. 94, 011914 (2009).
[CrossRef]

D. Schmidt, B. Booso, T. Hofmann, E. Schubert, A. Sarangan, and M. Schubert, “Generalized ellipsometry for monoclinic absorbing materials: determination of optical constants of Cr columnar thin films,” Opt. Lett. 34, 992–994 (2009).
[CrossRef] [PubMed]

Brett, M. J.

K. Robbie and M. J. Brett, “Sculptured thin films and glancing angle deposition: growth mechanics and applications,” J. Vac. Sci. Technol. A 15, 1460–1465 (1997).
[CrossRef]

Bruggeman, D. A. G.

D. A. G. Bruggeman, “Berechnung verschiedener physikalischer konstanten von heterogenen substanzen. I. dielektrizitätskonstanten und leitfähigkeiten der mischkörper aus isotropen substanzen,” Ann. Phys. 416, 636–679 (1935).
[CrossRef]

Burks, R. M.

R. M. Burks, S. E. Pacquette, M. A. Guericke, M. V. Wilson, D. J. Symonsbergen, K. A. Lucas, and A. E. Holmes, “DETECHIP®: a sensor for drugs of abuse,” J. Forensic Sci. 55, 723–727 (2010).
[CrossRef] [PubMed]

Chevallier, J.

M. B. Hovgaard, K. Rechendorff, J. Chevallier, M. Foss, and F. Besenbacher, “Fibronectin adsorption on tantalum: the influence of nanoroughness,” J. Phys. Chem. B 112, 8241–8249 (2008).
[CrossRef] [PubMed]

Eichhorn, K.-J.

E. Bittrich, K. B. Rodenhausen, K.-J. Eichhorn, T. Hofmann, M. Schubert, M. Stamm, and P. Uhlmann, “Protein adsorption on and swelling of polyelectrolyte brushes: a simultaneous ellipsometry-quartz crystal microbalance study,” Biointerphases 5, 1–9 (2010).
[CrossRef]

Elwing, H.

F. Höök, B. Kasemo, T. Nylander, C. Fant, K. Sott, and H. Elwing, “Variations in coupled water, viscoelastic properties, and film thickness of a mefp-1 protein film during adsorption and cross-linking: a quartz crystal microbalance with dissipation monitoring, ellipsometry, and surface plasmon resonance study,” Anal. Chem. 73, 5796–5804 (2001).
[CrossRef]

Erickson, H. P.

H. P. Erickson, “Size and shape of protein molecules at the nanometer level determined by sedimentation, gel filtration, and electron microscopy,” Biol. Proced. Online 11, 32–51 (2009).
[CrossRef] [PubMed]

Fant, C.

F. Höök, B. Kasemo, T. Nylander, C. Fant, K. Sott, and H. Elwing, “Variations in coupled water, viscoelastic properties, and film thickness of a mefp-1 protein film during adsorption and cross-linking: a quartz crystal microbalance with dissipation monitoring, ellipsometry, and surface plasmon resonance study,” Anal. Chem. 73, 5796–5804 (2001).
[CrossRef]

Flaherty, D. W.

R. A. May, D. W. Flaherty, C. B. Mullins, and K. J. Stevenson, “Hybrid generalized ellipsometry and quartz crystal microbalance nanogravimetry for the determination of adsorption isotherms on biaxial metal oxide films,” J. Phys. Chem. Lett. 1, 1264–1268 (2010).
[CrossRef]

Foss, M.

M. B. Hovgaard, K. Rechendorff, J. Chevallier, M. Foss, and F. Besenbacher, “Fibronectin adsorption on tantalum: the influence of nanoroughness,” J. Phys. Chem. B 112, 8241–8249 (2008).
[CrossRef] [PubMed]

Gerasimov, J. Y.

K. B. Rodenhausen, T. Kasputis, A. K. Pannier, J. Y. Gerasimov, R. Y. Lai, M. Solinksy, T. Tiwald, A. Sarkar, T. Hofmann, N. Ianno, and M. Schubert, “Combined optical and acoustical method for determination of thickness and porosity of transparent organic layers below the ultra-thin film limit,” Rev. Sci. Instrum. 82, 103111 (2011).
[CrossRef] [PubMed]

W. Yang, J. Y. Gerasimov, and R. Y. Lai, “Folding-based electrochemical DNA sensor fabricated on a gold-plated screen-printed carbon electrode,” Chem. Commun. 20, 2902–2904 (2009).
[CrossRef]

Granqvist, C. G.

C. G. Granqvist, D. L. Bellac, and G. A. Niklasson, “Angular selective window coatings: effective medium theory and experimental data on sputter-deposited films,” Renew. Energ. 8, 530–539 (1996).
[CrossRef]

Guericke, M. A.

R. M. Burks, S. E. Pacquette, M. A. Guericke, M. V. Wilson, D. J. Symonsbergen, K. A. Lucas, and A. E. Holmes, “DETECHIP®: a sensor for drugs of abuse,” J. Forensic Sci. 55, 723–727 (2010).
[CrossRef] [PubMed]

Hofmann, T.

K. B. Rodenhausen, T. Kasputis, A. K. Pannier, J. Y. Gerasimov, R. Y. Lai, M. Solinksy, T. Tiwald, A. Sarkar, T. Hofmann, N. Ianno, and M. Schubert, “Combined optical and acoustical method for determination of thickness and porosity of transparent organic layers below the ultra-thin film limit,” Rev. Sci. Instrum. 82, 103111 (2011).
[CrossRef] [PubMed]

E. Bittrich, K. B. Rodenhausen, K.-J. Eichhorn, T. Hofmann, M. Schubert, M. Stamm, and P. Uhlmann, “Protein adsorption on and swelling of polyelectrolyte brushes: a simultaneous ellipsometry-quartz crystal microbalance study,” Biointerphases 5, 1–9 (2010).
[CrossRef]

D. Schmidt, C. Müller, T. Hofmann, O. Inganäs, H. Arwin, E. Schubert, and M. Schubert, “Optical properties of hybrid titanium chevron sculptured thin films coated with a semiconducting polymer,” Thin Solid Films 519, 2645–2649 (2009).
[CrossRef]

D. Schmidt, B. Booso, T. Hofmann, E. Schubert, A. Sarangan, and M. Schubert, “Monoclinic optical constants, birefringence, and dichroism of slanted titanium nanocolumns determined by generalized ellipsometry,” Appl. Phys. Lett. 94, 011914 (2009).
[CrossRef]

D. Schmidt, A. C. Kjerstad, T. Hofmann, R. Skomski, E. Schubert, and M. Schubert, “Optical, structural, and magnetic properties of cobalt nanostructure thin films,” J. Appl. Phys. 105, 113508 (2009).
[CrossRef]

D. Schmidt, B. Booso, T. Hofmann, E. Schubert, A. Sarangan, and M. Schubert, “Generalized ellipsometry for monoclinic absorbing materials: determination of optical constants of Cr columnar thin films,” Opt. Lett. 34, 992–994 (2009).
[CrossRef] [PubMed]

Holmes, A. E.

R. M. Burks, S. E. Pacquette, M. A. Guericke, M. V. Wilson, D. J. Symonsbergen, K. A. Lucas, and A. E. Holmes, “DETECHIP®: a sensor for drugs of abuse,” J. Forensic Sci. 55, 723–727 (2010).
[CrossRef] [PubMed]

Höök, F.

F. Höök, B. Kasemo, T. Nylander, C. Fant, K. Sott, and H. Elwing, “Variations in coupled water, viscoelastic properties, and film thickness of a mefp-1 protein film during adsorption and cross-linking: a quartz crystal microbalance with dissipation monitoring, ellipsometry, and surface plasmon resonance study,” Anal. Chem. 73, 5796–5804 (2001).
[CrossRef]

Hovgaard, M. B.

M. B. Hovgaard, K. Rechendorff, J. Chevallier, M. Foss, and F. Besenbacher, “Fibronectin adsorption on tantalum: the influence of nanoroughness,” J. Phys. Chem. B 112, 8241–8249 (2008).
[CrossRef] [PubMed]

Ianno, N.

K. B. Rodenhausen, T. Kasputis, A. K. Pannier, J. Y. Gerasimov, R. Y. Lai, M. Solinksy, T. Tiwald, A. Sarkar, T. Hofmann, N. Ianno, and M. Schubert, “Combined optical and acoustical method for determination of thickness and porosity of transparent organic layers below the ultra-thin film limit,” Rev. Sci. Instrum. 82, 103111 (2011).
[CrossRef] [PubMed]

Inganäs, O.

D. Schmidt, C. Müller, T. Hofmann, O. Inganäs, H. Arwin, E. Schubert, and M. Schubert, “Optical properties of hybrid titanium chevron sculptured thin films coated with a semiconducting polymer,” Thin Solid Films 519, 2645–2649 (2009).
[CrossRef]

Ivarsson, B.

B. Ivarsson and I. Lundström, “Physical characterization of protein adsorption on metal and metal oxide surfaces,” Crit. Rev. Biocompat. 2, 1–96 (1986).

Kasemo, B.

F. Höök, B. Kasemo, T. Nylander, C. Fant, K. Sott, and H. Elwing, “Variations in coupled water, viscoelastic properties, and film thickness of a mefp-1 protein film during adsorption and cross-linking: a quartz crystal microbalance with dissipation monitoring, ellipsometry, and surface plasmon resonance study,” Anal. Chem. 73, 5796–5804 (2001).
[CrossRef]

Kasputis, T.

K. B. Rodenhausen, T. Kasputis, A. K. Pannier, J. Y. Gerasimov, R. Y. Lai, M. Solinksy, T. Tiwald, A. Sarkar, T. Hofmann, N. Ianno, and M. Schubert, “Combined optical and acoustical method for determination of thickness and porosity of transparent organic layers below the ultra-thin film limit,” Rev. Sci. Instrum. 82, 103111 (2011).
[CrossRef] [PubMed]

Kjerstad, A. C.

D. Schmidt, A. C. Kjerstad, T. Hofmann, R. Skomski, E. Schubert, and M. Schubert, “Optical, structural, and magnetic properties of cobalt nanostructure thin films,” J. Appl. Phys. 105, 113508 (2009).
[CrossRef]

Lai, R. Y.

K. B. Rodenhausen, T. Kasputis, A. K. Pannier, J. Y. Gerasimov, R. Y. Lai, M. Solinksy, T. Tiwald, A. Sarkar, T. Hofmann, N. Ianno, and M. Schubert, “Combined optical and acoustical method for determination of thickness and porosity of transparent organic layers below the ultra-thin film limit,” Rev. Sci. Instrum. 82, 103111 (2011).
[CrossRef] [PubMed]

W. Yang, J. Y. Gerasimov, and R. Y. Lai, “Folding-based electrochemical DNA sensor fabricated on a gold-plated screen-printed carbon electrode,” Chem. Commun. 20, 2902–2904 (2009).
[CrossRef]

Lucas, K. A.

R. M. Burks, S. E. Pacquette, M. A. Guericke, M. V. Wilson, D. J. Symonsbergen, K. A. Lucas, and A. E. Holmes, “DETECHIP®: a sensor for drugs of abuse,” J. Forensic Sci. 55, 723–727 (2010).
[CrossRef] [PubMed]

Lundström, I.

B. Ivarsson and I. Lundström, “Physical characterization of protein adsorption on metal and metal oxide surfaces,” Crit. Rev. Biocompat. 2, 1–96 (1986).

Mandenius, C.-F.

D. van Noort and C.-F. Mandenius, “Porous gold surfaces for biosensor applications,” Biosens. Bioelectron. 15, 203–209 (2000).
[CrossRef]

May, R. A.

R. A. May, D. W. Flaherty, C. B. Mullins, and K. J. Stevenson, “Hybrid generalized ellipsometry and quartz crystal microbalance nanogravimetry for the determination of adsorption isotherms on biaxial metal oxide films,” J. Phys. Chem. Lett. 1, 1264–1268 (2010).
[CrossRef]

Müller, C.

D. Schmidt, C. Müller, T. Hofmann, O. Inganäs, H. Arwin, E. Schubert, and M. Schubert, “Optical properties of hybrid titanium chevron sculptured thin films coated with a semiconducting polymer,” Thin Solid Films 519, 2645–2649 (2009).
[CrossRef]

Mullins, C. B.

R. A. May, D. W. Flaherty, C. B. Mullins, and K. J. Stevenson, “Hybrid generalized ellipsometry and quartz crystal microbalance nanogravimetry for the determination of adsorption isotherms on biaxial metal oxide films,” J. Phys. Chem. Lett. 1, 1264–1268 (2010).
[CrossRef]

Niklasson, G. A.

C. G. Granqvist, D. L. Bellac, and G. A. Niklasson, “Angular selective window coatings: effective medium theory and experimental data on sputter-deposited films,” Renew. Energ. 8, 530–539 (1996).
[CrossRef]

Nylander, T.

F. Höök, B. Kasemo, T. Nylander, C. Fant, K. Sott, and H. Elwing, “Variations in coupled water, viscoelastic properties, and film thickness of a mefp-1 protein film during adsorption and cross-linking: a quartz crystal microbalance with dissipation monitoring, ellipsometry, and surface plasmon resonance study,” Anal. Chem. 73, 5796–5804 (2001).
[CrossRef]

Pacquette, S. E.

R. M. Burks, S. E. Pacquette, M. A. Guericke, M. V. Wilson, D. J. Symonsbergen, K. A. Lucas, and A. E. Holmes, “DETECHIP®: a sensor for drugs of abuse,” J. Forensic Sci. 55, 723–727 (2010).
[CrossRef] [PubMed]

Pannier, A. K.

K. B. Rodenhausen, T. Kasputis, A. K. Pannier, J. Y. Gerasimov, R. Y. Lai, M. Solinksy, T. Tiwald, A. Sarkar, T. Hofmann, N. Ianno, and M. Schubert, “Combined optical and acoustical method for determination of thickness and porosity of transparent organic layers below the ultra-thin film limit,” Rev. Sci. Instrum. 82, 103111 (2011).
[CrossRef] [PubMed]

Polder, D.

D. Polder and J. H. van Santen, “The effective permeability of mixtures of solids,” Physica 12, 257–271 (1946).
[CrossRef]

Pribil, G. K.

T. Berlind, G. K. Pribil, D. Thompson, J. A. Woollam, and H. Arwin, “Effects of ion concentration on refractive indices of fluids measured by the minimum deviation technique,” Phys. Stat. Sol. C. 5, 1249–1252 (2008).
[CrossRef]

Rechendorff, K.

M. B. Hovgaard, K. Rechendorff, J. Chevallier, M. Foss, and F. Besenbacher, “Fibronectin adsorption on tantalum: the influence of nanoroughness,” J. Phys. Chem. B 112, 8241–8249 (2008).
[CrossRef] [PubMed]

Robbie, K.

K. Robbie and M. J. Brett, “Sculptured thin films and glancing angle deposition: growth mechanics and applications,” J. Vac. Sci. Technol. A 15, 1460–1465 (1997).
[CrossRef]

Rodenhausen, K. B.

K. B. Rodenhausen, T. Kasputis, A. K. Pannier, J. Y. Gerasimov, R. Y. Lai, M. Solinksy, T. Tiwald, A. Sarkar, T. Hofmann, N. Ianno, and M. Schubert, “Combined optical and acoustical method for determination of thickness and porosity of transparent organic layers below the ultra-thin film limit,” Rev. Sci. Instrum. 82, 103111 (2011).
[CrossRef] [PubMed]

E. Bittrich, K. B. Rodenhausen, K.-J. Eichhorn, T. Hofmann, M. Schubert, M. Stamm, and P. Uhlmann, “Protein adsorption on and swelling of polyelectrolyte brushes: a simultaneous ellipsometry-quartz crystal microbalance study,” Biointerphases 5, 1–9 (2010).
[CrossRef]

Sarangan, A.

D. Schmidt, B. Booso, T. Hofmann, E. Schubert, A. Sarangan, and M. Schubert, “Monoclinic optical constants, birefringence, and dichroism of slanted titanium nanocolumns determined by generalized ellipsometry,” Appl. Phys. Lett. 94, 011914 (2009).
[CrossRef]

D. Schmidt, B. Booso, T. Hofmann, E. Schubert, A. Sarangan, and M. Schubert, “Generalized ellipsometry for monoclinic absorbing materials: determination of optical constants of Cr columnar thin films,” Opt. Lett. 34, 992–994 (2009).
[CrossRef] [PubMed]

Sarkar, A.

K. B. Rodenhausen, T. Kasputis, A. K. Pannier, J. Y. Gerasimov, R. Y. Lai, M. Solinksy, T. Tiwald, A. Sarkar, T. Hofmann, N. Ianno, and M. Schubert, “Combined optical and acoustical method for determination of thickness and porosity of transparent organic layers below the ultra-thin film limit,” Rev. Sci. Instrum. 82, 103111 (2011).
[CrossRef] [PubMed]

Sauerbrey, G.

G. Sauerbrey, “Verwendung von schwingquarzen zur wägung dünner schichten und zur mikrowägung,” Z. Phys. A-Hadron Nucl. 155, 206–222 (1959).

Schmidt, D.

D. Schmidt, E. Schubert, and M. Schubert, “Optical properties of cobalt sculptured thin films passivated by atomic layer deposition,” Appl. Phys. Lett. 100, 011912 (2012).
[CrossRef]

D. Schmidt, C. Müller, T. Hofmann, O. Inganäs, H. Arwin, E. Schubert, and M. Schubert, “Optical properties of hybrid titanium chevron sculptured thin films coated with a semiconducting polymer,” Thin Solid Films 519, 2645–2649 (2009).
[CrossRef]

D. Schmidt, B. Booso, T. Hofmann, E. Schubert, A. Sarangan, and M. Schubert, “Monoclinic optical constants, birefringence, and dichroism of slanted titanium nanocolumns determined by generalized ellipsometry,” Appl. Phys. Lett. 94, 011914 (2009).
[CrossRef]

D. Schmidt, A. C. Kjerstad, T. Hofmann, R. Skomski, E. Schubert, and M. Schubert, “Optical, structural, and magnetic properties of cobalt nanostructure thin films,” J. Appl. Phys. 105, 113508 (2009).
[CrossRef]

D. Schmidt, B. Booso, T. Hofmann, E. Schubert, A. Sarangan, and M. Schubert, “Generalized ellipsometry for monoclinic absorbing materials: determination of optical constants of Cr columnar thin films,” Opt. Lett. 34, 992–994 (2009).
[CrossRef] [PubMed]

D. Schmidt, E. Schubert, and M. Schubert, “Generalized ellipsometry determination of non-reciprocity in chiral silicon sculptured thin films,” Phys. Stat. Sol. A. 205, 748–751 (2008).
[CrossRef]

Schubert, E.

D. Schmidt, E. Schubert, and M. Schubert, “Optical properties of cobalt sculptured thin films passivated by atomic layer deposition,” Appl. Phys. Lett. 100, 011912 (2012).
[CrossRef]

D. Schmidt, B. Booso, T. Hofmann, E. Schubert, A. Sarangan, and M. Schubert, “Monoclinic optical constants, birefringence, and dichroism of slanted titanium nanocolumns determined by generalized ellipsometry,” Appl. Phys. Lett. 94, 011914 (2009).
[CrossRef]

D. Schmidt, A. C. Kjerstad, T. Hofmann, R. Skomski, E. Schubert, and M. Schubert, “Optical, structural, and magnetic properties of cobalt nanostructure thin films,” J. Appl. Phys. 105, 113508 (2009).
[CrossRef]

D. Schmidt, C. Müller, T. Hofmann, O. Inganäs, H. Arwin, E. Schubert, and M. Schubert, “Optical properties of hybrid titanium chevron sculptured thin films coated with a semiconducting polymer,” Thin Solid Films 519, 2645–2649 (2009).
[CrossRef]

D. Schmidt, B. Booso, T. Hofmann, E. Schubert, A. Sarangan, and M. Schubert, “Generalized ellipsometry for monoclinic absorbing materials: determination of optical constants of Cr columnar thin films,” Opt. Lett. 34, 992–994 (2009).
[CrossRef] [PubMed]

D. Schmidt, E. Schubert, and M. Schubert, “Generalized ellipsometry determination of non-reciprocity in chiral silicon sculptured thin films,” Phys. Stat. Sol. A. 205, 748–751 (2008).
[CrossRef]

Schubert, M.

D. Schmidt, E. Schubert, and M. Schubert, “Optical properties of cobalt sculptured thin films passivated by atomic layer deposition,” Appl. Phys. Lett. 100, 011912 (2012).
[CrossRef]

K. B. Rodenhausen, T. Kasputis, A. K. Pannier, J. Y. Gerasimov, R. Y. Lai, M. Solinksy, T. Tiwald, A. Sarkar, T. Hofmann, N. Ianno, and M. Schubert, “Combined optical and acoustical method for determination of thickness and porosity of transparent organic layers below the ultra-thin film limit,” Rev. Sci. Instrum. 82, 103111 (2011).
[CrossRef] [PubMed]

E. Bittrich, K. B. Rodenhausen, K.-J. Eichhorn, T. Hofmann, M. Schubert, M. Stamm, and P. Uhlmann, “Protein adsorption on and swelling of polyelectrolyte brushes: a simultaneous ellipsometry-quartz crystal microbalance study,” Biointerphases 5, 1–9 (2010).
[CrossRef]

D. Schmidt, C. Müller, T. Hofmann, O. Inganäs, H. Arwin, E. Schubert, and M. Schubert, “Optical properties of hybrid titanium chevron sculptured thin films coated with a semiconducting polymer,” Thin Solid Films 519, 2645–2649 (2009).
[CrossRef]

D. Schmidt, B. Booso, T. Hofmann, E. Schubert, A. Sarangan, and M. Schubert, “Monoclinic optical constants, birefringence, and dichroism of slanted titanium nanocolumns determined by generalized ellipsometry,” Appl. Phys. Lett. 94, 011914 (2009).
[CrossRef]

D. Schmidt, A. C. Kjerstad, T. Hofmann, R. Skomski, E. Schubert, and M. Schubert, “Optical, structural, and magnetic properties of cobalt nanostructure thin films,” J. Appl. Phys. 105, 113508 (2009).
[CrossRef]

D. Schmidt, B. Booso, T. Hofmann, E. Schubert, A. Sarangan, and M. Schubert, “Generalized ellipsometry for monoclinic absorbing materials: determination of optical constants of Cr columnar thin films,” Opt. Lett. 34, 992–994 (2009).
[CrossRef] [PubMed]

D. Schmidt, E. Schubert, and M. Schubert, “Generalized ellipsometry determination of non-reciprocity in chiral silicon sculptured thin films,” Phys. Stat. Sol. A. 205, 748–751 (2008).
[CrossRef]

Skomski, R.

D. Schmidt, A. C. Kjerstad, T. Hofmann, R. Skomski, E. Schubert, and M. Schubert, “Optical, structural, and magnetic properties of cobalt nanostructure thin films,” J. Appl. Phys. 105, 113508 (2009).
[CrossRef]

Solinksy, M.

K. B. Rodenhausen, T. Kasputis, A. K. Pannier, J. Y. Gerasimov, R. Y. Lai, M. Solinksy, T. Tiwald, A. Sarkar, T. Hofmann, N. Ianno, and M. Schubert, “Combined optical and acoustical method for determination of thickness and porosity of transparent organic layers below the ultra-thin film limit,” Rev. Sci. Instrum. 82, 103111 (2011).
[CrossRef] [PubMed]

Sott, K.

F. Höök, B. Kasemo, T. Nylander, C. Fant, K. Sott, and H. Elwing, “Variations in coupled water, viscoelastic properties, and film thickness of a mefp-1 protein film during adsorption and cross-linking: a quartz crystal microbalance with dissipation monitoring, ellipsometry, and surface plasmon resonance study,” Anal. Chem. 73, 5796–5804 (2001).
[CrossRef]

Stamm, M.

E. Bittrich, K. B. Rodenhausen, K.-J. Eichhorn, T. Hofmann, M. Schubert, M. Stamm, and P. Uhlmann, “Protein adsorption on and swelling of polyelectrolyte brushes: a simultaneous ellipsometry-quartz crystal microbalance study,” Biointerphases 5, 1–9 (2010).
[CrossRef]

Stevenson, K. J.

R. A. May, D. W. Flaherty, C. B. Mullins, and K. J. Stevenson, “Hybrid generalized ellipsometry and quartz crystal microbalance nanogravimetry for the determination of adsorption isotherms on biaxial metal oxide films,” J. Phys. Chem. Lett. 1, 1264–1268 (2010).
[CrossRef]

Symonsbergen, D. J.

R. M. Burks, S. E. Pacquette, M. A. Guericke, M. V. Wilson, D. J. Symonsbergen, K. A. Lucas, and A. E. Holmes, “DETECHIP®: a sensor for drugs of abuse,” J. Forensic Sci. 55, 723–727 (2010).
[CrossRef] [PubMed]

Thompson, D.

T. Berlind, G. K. Pribil, D. Thompson, J. A. Woollam, and H. Arwin, “Effects of ion concentration on refractive indices of fluids measured by the minimum deviation technique,” Phys. Stat. Sol. C. 5, 1249–1252 (2008).
[CrossRef]

Tiwald, T.

K. B. Rodenhausen, T. Kasputis, A. K. Pannier, J. Y. Gerasimov, R. Y. Lai, M. Solinksy, T. Tiwald, A. Sarkar, T. Hofmann, N. Ianno, and M. Schubert, “Combined optical and acoustical method for determination of thickness and porosity of transparent organic layers below the ultra-thin film limit,” Rev. Sci. Instrum. 82, 103111 (2011).
[CrossRef] [PubMed]

Uhlmann, P.

E. Bittrich, K. B. Rodenhausen, K.-J. Eichhorn, T. Hofmann, M. Schubert, M. Stamm, and P. Uhlmann, “Protein adsorption on and swelling of polyelectrolyte brushes: a simultaneous ellipsometry-quartz crystal microbalance study,” Biointerphases 5, 1–9 (2010).
[CrossRef]

van Noort, D.

D. van Noort and C.-F. Mandenius, “Porous gold surfaces for biosensor applications,” Biosens. Bioelectron. 15, 203–209 (2000).
[CrossRef]

van Santen, J. H.

D. Polder and J. H. van Santen, “The effective permeability of mixtures of solids,” Physica 12, 257–271 (1946).
[CrossRef]

Wilson, M. V.

R. M. Burks, S. E. Pacquette, M. A. Guericke, M. V. Wilson, D. J. Symonsbergen, K. A. Lucas, and A. E. Holmes, “DETECHIP®: a sensor for drugs of abuse,” J. Forensic Sci. 55, 723–727 (2010).
[CrossRef] [PubMed]

Woollam, J. A.

T. Berlind, G. K. Pribil, D. Thompson, J. A. Woollam, and H. Arwin, “Effects of ion concentration on refractive indices of fluids measured by the minimum deviation technique,” Phys. Stat. Sol. C. 5, 1249–1252 (2008).
[CrossRef]

Yang, W.

W. Yang, J. Y. Gerasimov, and R. Y. Lai, “Folding-based electrochemical DNA sensor fabricated on a gold-plated screen-printed carbon electrode,” Chem. Commun. 20, 2902–2904 (2009).
[CrossRef]

Anal. Chem. (1)

F. Höök, B. Kasemo, T. Nylander, C. Fant, K. Sott, and H. Elwing, “Variations in coupled water, viscoelastic properties, and film thickness of a mefp-1 protein film during adsorption and cross-linking: a quartz crystal microbalance with dissipation monitoring, ellipsometry, and surface plasmon resonance study,” Anal. Chem. 73, 5796–5804 (2001).
[CrossRef]

Ann. Phys. (1)

D. A. G. Bruggeman, “Berechnung verschiedener physikalischer konstanten von heterogenen substanzen. I. dielektrizitätskonstanten und leitfähigkeiten der mischkörper aus isotropen substanzen,” Ann. Phys. 416, 636–679 (1935).
[CrossRef]

Appl. Phys. Lett. (2)

D. Schmidt, E. Schubert, and M. Schubert, “Optical properties of cobalt sculptured thin films passivated by atomic layer deposition,” Appl. Phys. Lett. 100, 011912 (2012).
[CrossRef]

D. Schmidt, B. Booso, T. Hofmann, E. Schubert, A. Sarangan, and M. Schubert, “Monoclinic optical constants, birefringence, and dichroism of slanted titanium nanocolumns determined by generalized ellipsometry,” Appl. Phys. Lett. 94, 011914 (2009).
[CrossRef]

Biointerphases (1)

E. Bittrich, K. B. Rodenhausen, K.-J. Eichhorn, T. Hofmann, M. Schubert, M. Stamm, and P. Uhlmann, “Protein adsorption on and swelling of polyelectrolyte brushes: a simultaneous ellipsometry-quartz crystal microbalance study,” Biointerphases 5, 1–9 (2010).
[CrossRef]

Biol. Proced. Online (1)

H. P. Erickson, “Size and shape of protein molecules at the nanometer level determined by sedimentation, gel filtration, and electron microscopy,” Biol. Proced. Online 11, 32–51 (2009).
[CrossRef] [PubMed]

Biosens. Bioelectron. (1)

D. van Noort and C.-F. Mandenius, “Porous gold surfaces for biosensor applications,” Biosens. Bioelectron. 15, 203–209 (2000).
[CrossRef]

Chem. Commun. (1)

W. Yang, J. Y. Gerasimov, and R. Y. Lai, “Folding-based electrochemical DNA sensor fabricated on a gold-plated screen-printed carbon electrode,” Chem. Commun. 20, 2902–2904 (2009).
[CrossRef]

Crit. Rev. Biocompat. (1)

B. Ivarsson and I. Lundström, “Physical characterization of protein adsorption on metal and metal oxide surfaces,” Crit. Rev. Biocompat. 2, 1–96 (1986).

J. Appl. Phys. (1)

D. Schmidt, A. C. Kjerstad, T. Hofmann, R. Skomski, E. Schubert, and M. Schubert, “Optical, structural, and magnetic properties of cobalt nanostructure thin films,” J. Appl. Phys. 105, 113508 (2009).
[CrossRef]

J. Forensic Sci. (1)

R. M. Burks, S. E. Pacquette, M. A. Guericke, M. V. Wilson, D. J. Symonsbergen, K. A. Lucas, and A. E. Holmes, “DETECHIP®: a sensor for drugs of abuse,” J. Forensic Sci. 55, 723–727 (2010).
[CrossRef] [PubMed]

J. Phys. Chem. B (1)

M. B. Hovgaard, K. Rechendorff, J. Chevallier, M. Foss, and F. Besenbacher, “Fibronectin adsorption on tantalum: the influence of nanoroughness,” J. Phys. Chem. B 112, 8241–8249 (2008).
[CrossRef] [PubMed]

J. Phys. Chem. Lett. (1)

R. A. May, D. W. Flaherty, C. B. Mullins, and K. J. Stevenson, “Hybrid generalized ellipsometry and quartz crystal microbalance nanogravimetry for the determination of adsorption isotherms on biaxial metal oxide films,” J. Phys. Chem. Lett. 1, 1264–1268 (2010).
[CrossRef]

J. Vac. Sci. Technol. A (1)

K. Robbie and M. J. Brett, “Sculptured thin films and glancing angle deposition: growth mechanics and applications,” J. Vac. Sci. Technol. A 15, 1460–1465 (1997).
[CrossRef]

Opt. Lett. (1)

Phys. Stat. Sol. A. (1)

D. Schmidt, E. Schubert, and M. Schubert, “Generalized ellipsometry determination of non-reciprocity in chiral silicon sculptured thin films,” Phys. Stat. Sol. A. 205, 748–751 (2008).
[CrossRef]

Phys. Stat. Sol. C. (1)

T. Berlind, G. K. Pribil, D. Thompson, J. A. Woollam, and H. Arwin, “Effects of ion concentration on refractive indices of fluids measured by the minimum deviation technique,” Phys. Stat. Sol. C. 5, 1249–1252 (2008).
[CrossRef]

Physica (1)

D. Polder and J. H. van Santen, “The effective permeability of mixtures of solids,” Physica 12, 257–271 (1946).
[CrossRef]

Renew. Energ. (1)

C. G. Granqvist, D. L. Bellac, and G. A. Niklasson, “Angular selective window coatings: effective medium theory and experimental data on sputter-deposited films,” Renew. Energ. 8, 530–539 (1996).
[CrossRef]

Rev. Sci. Instrum. (1)

K. B. Rodenhausen, T. Kasputis, A. K. Pannier, J. Y. Gerasimov, R. Y. Lai, M. Solinksy, T. Tiwald, A. Sarkar, T. Hofmann, N. Ianno, and M. Schubert, “Combined optical and acoustical method for determination of thickness and porosity of transparent organic layers below the ultra-thin film limit,” Rev. Sci. Instrum. 82, 103111 (2011).
[CrossRef] [PubMed]

Thin Solid Films (1)

D. Schmidt, C. Müller, T. Hofmann, O. Inganäs, H. Arwin, E. Schubert, and M. Schubert, “Optical properties of hybrid titanium chevron sculptured thin films coated with a semiconducting polymer,” Thin Solid Films 519, 2645–2649 (2009).
[CrossRef]

Z. Phys. A-Hadron Nucl. (1)

G. Sauerbrey, “Verwendung von schwingquarzen zur wägung dünner schichten und zur mikrowägung,” Z. Phys. A-Hadron Nucl. 155, 206–222 (1959).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Effective medium scenarios with mixtures of ellipsoidal inclusions (general case) and a homogeneous host matrix. The mixture with randomly oriented inclusions (a) exhibits an average effective polarizability 〈Peff〉 whereas the mixture with aligned inclusions (b) shows anisotropic properties with three effective polarizability components Peff,j. The major polarizability axes system rendering the biaxial nature of the film is depicted in (c).

Fig. 2
Fig. 2

Illustrations of constituent material fraction regimes. (a) represents a SCTF (fSCTF) in air (fvoid) ambient. (b) applies after liquid (fliq) replaces air as the ambient, and fliq = fvoid. (c) and (d) represent arrangements of material after an identical amount of analyte (fads) adsorbs and displaces liquid ambient, and fliq + fads = fvoid.

Fig. 3
Fig. 3

Select experimental Mueller matrix element spectra from GE measurements just before the FN introduction (solid lines) at t = 145 min and after FN adsorption and the PBS rinse (dotted lines) at t = 220 min.

Fig. 4
Fig. 4

Model-generated (lines) and reduced experimental (symbols) Mueller matrix element spectra after FN adsorption and the PBS rinse at t = 220 min. Elements MM21, MM31, and MM32 are omitted due to significant overlap with elements MM12, MM13, and MM23, respectively.

Fig. 5
Fig. 5

QCM-D frequency (left axis) and dissipation (right axis) data for all experimental overtones (Nov = 3, 5,..., 11) during FN adsorption and PBS rinsing. Frequency overtones are normalized by overtone number. FN solution is introduced at t = 147 min, and rinsing begins at t = 182 min.

Fig. 6
Fig. 6

Surface density and volumetric fraction parameters during FN adsorption and PBS rinsing. FN solution is introduced at t = 147 min, and rinsing begins at t = 182 min. fads and its error bars (in many cases overlapped by data points due to small error) are taken directly from the results of the AB-EMA model.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

n = 1 m f n ε n ε eff , j ε eff , j + L j D ( ε n ε eff , j ) = 0 ,
Γ GE = ρ ads f ads d SCTF ,
Γ QCM = δ ν N ov ρ q μ q 2 ν 0 2 N ov ,

Metrics