Abstract

A compact thermometer based on a broadband microfiber coupler tip is demonstrated. This sensor can measure a broad temperature interval ranging from room temperature to 1283 °C with sub-200 µm spatial resolution. An average sensitivity of 11.96 pm/°C was achieved for a coupler tip with ~2.5 µm diameter. This is the highest temperature measured with a silica optical fiber device.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol. 8(4), 355–375 (1997).
    [CrossRef]
  2. K. T. V. Grattan, Z. Y. Zhang, T. Sun, Y. Shen, L. Tong, and Z. Ding, “Sapphire-ruby single-crystal fibre for application in high temperature optical fibre thermometers: studies at temperatures up to 1500 °C,” Meas. Sci. Technol. 12, 981–986 (2001).
  3. G. Coviello, V. Finazzi, J. Villatoro, and V. Pruneri, “Thermally stabilized PCF-based sensor for temperature measurements up to 1000 ° C,” Opt. Express 17(24), 21551–21559 (2009).
    [CrossRef] [PubMed]
  4. J. L. Kou, J. Feng, L. Ye, F. Xu, and Y. Q. Lu, “Miniaturized fiber taper reflective interferometer for high temperature measurement,” Opt. Express 18(13), 14245–14250 (2010).
    [CrossRef] [PubMed]
  5. D. Grobnic, S. J. Mihailov, C. W. Smelser, and H. Ding, “Sapphire fiber Bragg grating sensor made using femtosecond laser radiation for ultrahigh temperature applications,” IEEE Photon. Technol. Lett. 16(11), 2505–2507 (2004).
    [CrossRef]
  6. J. Feng, M. Ding, J.-L. Kou, F. Xu, and Y. Q. Lu, “An optical fiber tip micrograting thermometer,” IEEE Photonics J. 3(5), 810–814 (2011).
    [CrossRef]
  7. J. L. Kou, S. J. Qiu, F. Xu, and Y. Q. Lu, “Demonstration of a compact temperature sensor based on first-order Bragg grating in a tapered fiber probe,” Opt. Express 19(19), 18452–18457 (2011).
    [CrossRef] [PubMed]
  8. V. de Oliveira, M. Muller, and H. J. Kalinowski, “Bragg gratings in standard nonhydrogenated fibers for high-temperature sensing,” Appl. Opt. 50(25), E55–E58 (2011).
    [CrossRef]
  9. G. Brambilla and H. Rutt, “Fiber Bragg gratings with enhanced thermal stability,” Appl. Phys. Lett. 80(18), 3259–3261 (2002).
    [CrossRef]
  10. D. Barrera, V. Finazzi, J. Villatoro, S. Sales, and V. Pruneri, “Packaged optical sensors based on regenerated fiber Bragg gratings for high temperature application,” IEEE Sens. J. 12(1), 107–112 (2012).
    [CrossRef]
  11. J. Canning, M. Stevenson, S. Bandyopadhyay, and K. Cook, “Extreme silica optical fibre gratings,” Sensors (Basel Switzerland) 8(10), 6448–6452 (2008).
    [CrossRef]
  12. Y. Li, M. Yang, D. N. Wang, J. Lu, T. Sun, and K. T. Grattan, “Fiber Bragg gratings with enhanced thermal stability by residual stress relaxation,” Opt. Express 17(22), 19785–19790 (2009).
    [CrossRef] [PubMed]
  13. L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
    [CrossRef] [PubMed]
  14. C. Y. Chao and L. J. Guo, “Design and optimization of microring resonators in biochemical sensing applications,” J. Lightwave Technol. 24(3), 1395–1402 (2006).
    [CrossRef]
  15. G. Brambilla, “Optical fibre nanotaper sensors,” Opt. Fiber Technol. 16(6), 331–342 (2010).
    [CrossRef]
  16. G. Brambilla, G. S. Murugan, J. S. Wilkinson, and D. J. Richardson, “Optical manipulation of microspheres along a subwavelength optical wire,” Opt. Lett. 32(20), 3041–3043 (2007).
    [CrossRef] [PubMed]
  17. Y. Jung, G. Brambilla, and D. J. Richardson, “Broadband single-mode operation of standard optical fibers by using a sub-wavelength optical wire filter,” Opt. Express 16(19), 14661–14667 (2008).
    [CrossRef] [PubMed]
  18. Y. Jung, G. Brambilla, and D. J. Richardson, “Optical microfiber coupler for broadband single-mode operation,” Opt. Express 17(7), 5273–5278 (2009).
    [CrossRef] [PubMed]
  19. H. Guo, F. Pang, X. Zeng, N. Chen, Z. Chen, and T. Wang, “Temperature sensor using an optical fiber coupler with a thin film,” Appl. Opt. 47(19), 3530–3534 (2008).
    [CrossRef] [PubMed]
  20. G. Brambilla, E. Koizumi, X. Feng, and D. J. Richardson, “Compound-glass optical nanowires,” Electron. Lett. 41(7), 400–402 (2005).
    [CrossRef]
  21. F. P. Payne, C. D. Hussey, and M. S. Yataki, “Polarisation analysis of strongly fused and weakly fused tapered couplers,” Electron. Lett. 21(13), 561–563 (1985).
    [CrossRef]
  22. J. H. Wray and J. T. Neu, “Refractive index of several glasses as a function of wavelength and temperature,” J. Opt. Soc. Am. 59(6), 774–776 (1969).
    [CrossRef]
  23. C. Rodenburg, X. Lui, M. A. E. Jepson, S. A. Boden, and G. Brambilla, ““Surface morphology of silica nanowires at the nanometer scale,”J. Non-Cryst. Sol. 357, 3042–3045 (2011).
  24. K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
    [CrossRef]
  25. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. Joseph Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
    [CrossRef]

2012 (1)

D. Barrera, V. Finazzi, J. Villatoro, S. Sales, and V. Pruneri, “Packaged optical sensors based on regenerated fiber Bragg gratings for high temperature application,” IEEE Sens. J. 12(1), 107–112 (2012).
[CrossRef]

2011 (4)

J. Feng, M. Ding, J.-L. Kou, F. Xu, and Y. Q. Lu, “An optical fiber tip micrograting thermometer,” IEEE Photonics J. 3(5), 810–814 (2011).
[CrossRef]

J. L. Kou, S. J. Qiu, F. Xu, and Y. Q. Lu, “Demonstration of a compact temperature sensor based on first-order Bragg grating in a tapered fiber probe,” Opt. Express 19(19), 18452–18457 (2011).
[CrossRef] [PubMed]

V. de Oliveira, M. Muller, and H. J. Kalinowski, “Bragg gratings in standard nonhydrogenated fibers for high-temperature sensing,” Appl. Opt. 50(25), E55–E58 (2011).
[CrossRef]

C. Rodenburg, X. Lui, M. A. E. Jepson, S. A. Boden, and G. Brambilla, ““Surface morphology of silica nanowires at the nanometer scale,”J. Non-Cryst. Sol. 357, 3042–3045 (2011).

2010 (2)

2009 (3)

2008 (3)

2007 (1)

2006 (1)

2005 (1)

G. Brambilla, E. Koizumi, X. Feng, and D. J. Richardson, “Compound-glass optical nanowires,” Electron. Lett. 41(7), 400–402 (2005).
[CrossRef]

2004 (1)

D. Grobnic, S. J. Mihailov, C. W. Smelser, and H. Ding, “Sapphire fiber Bragg grating sensor made using femtosecond laser radiation for ultrahigh temperature applications,” IEEE Photon. Technol. Lett. 16(11), 2505–2507 (2004).
[CrossRef]

2003 (1)

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

2002 (1)

G. Brambilla and H. Rutt, “Fiber Bragg gratings with enhanced thermal stability,” Appl. Phys. Lett. 80(18), 3259–3261 (2002).
[CrossRef]

2001 (1)

K. T. V. Grattan, Z. Y. Zhang, T. Sun, Y. Shen, L. Tong, and Z. Ding, “Sapphire-ruby single-crystal fibre for application in high temperature optical fibre thermometers: studies at temperatures up to 1500 °C,” Meas. Sci. Technol. 12, 981–986 (2001).

1997 (3)

Y. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol. 8(4), 355–375 (1997).
[CrossRef]

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
[CrossRef]

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. Joseph Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

1985 (1)

F. P. Payne, C. D. Hussey, and M. S. Yataki, “Polarisation analysis of strongly fused and weakly fused tapered couplers,” Electron. Lett. 21(13), 561–563 (1985).
[CrossRef]

1969 (1)

Ashcom, J. B.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Askins, C. G.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. Joseph Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Bandyopadhyay, S.

J. Canning, M. Stevenson, S. Bandyopadhyay, and K. Cook, “Extreme silica optical fibre gratings,” Sensors (Basel Switzerland) 8(10), 6448–6452 (2008).
[CrossRef]

Barrera, D.

D. Barrera, V. Finazzi, J. Villatoro, S. Sales, and V. Pruneri, “Packaged optical sensors based on regenerated fiber Bragg gratings for high temperature application,” IEEE Sens. J. 12(1), 107–112 (2012).
[CrossRef]

Boden, S. A.

C. Rodenburg, X. Lui, M. A. E. Jepson, S. A. Boden, and G. Brambilla, ““Surface morphology of silica nanowires at the nanometer scale,”J. Non-Cryst. Sol. 357, 3042–3045 (2011).

Brambilla, G.

C. Rodenburg, X. Lui, M. A. E. Jepson, S. A. Boden, and G. Brambilla, ““Surface morphology of silica nanowires at the nanometer scale,”J. Non-Cryst. Sol. 357, 3042–3045 (2011).

G. Brambilla, “Optical fibre nanotaper sensors,” Opt. Fiber Technol. 16(6), 331–342 (2010).
[CrossRef]

Y. Jung, G. Brambilla, and D. J. Richardson, “Optical microfiber coupler for broadband single-mode operation,” Opt. Express 17(7), 5273–5278 (2009).
[CrossRef] [PubMed]

Y. Jung, G. Brambilla, and D. J. Richardson, “Broadband single-mode operation of standard optical fibers by using a sub-wavelength optical wire filter,” Opt. Express 16(19), 14661–14667 (2008).
[CrossRef] [PubMed]

G. Brambilla, G. S. Murugan, J. S. Wilkinson, and D. J. Richardson, “Optical manipulation of microspheres along a subwavelength optical wire,” Opt. Lett. 32(20), 3041–3043 (2007).
[CrossRef] [PubMed]

G. Brambilla, E. Koizumi, X. Feng, and D. J. Richardson, “Compound-glass optical nanowires,” Electron. Lett. 41(7), 400–402 (2005).
[CrossRef]

G. Brambilla and H. Rutt, “Fiber Bragg gratings with enhanced thermal stability,” Appl. Phys. Lett. 80(18), 3259–3261 (2002).
[CrossRef]

Canning, J.

J. Canning, M. Stevenson, S. Bandyopadhyay, and K. Cook, “Extreme silica optical fibre gratings,” Sensors (Basel Switzerland) 8(10), 6448–6452 (2008).
[CrossRef]

Chao, C. Y.

Chen, N.

Chen, Z.

Cook, K.

J. Canning, M. Stevenson, S. Bandyopadhyay, and K. Cook, “Extreme silica optical fibre gratings,” Sensors (Basel Switzerland) 8(10), 6448–6452 (2008).
[CrossRef]

Coviello, G.

Davis, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. Joseph Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

de Oliveira, V.

Ding, H.

D. Grobnic, S. J. Mihailov, C. W. Smelser, and H. Ding, “Sapphire fiber Bragg grating sensor made using femtosecond laser radiation for ultrahigh temperature applications,” IEEE Photon. Technol. Lett. 16(11), 2505–2507 (2004).
[CrossRef]

Ding, M.

J. Feng, M. Ding, J.-L. Kou, F. Xu, and Y. Q. Lu, “An optical fiber tip micrograting thermometer,” IEEE Photonics J. 3(5), 810–814 (2011).
[CrossRef]

Ding, Z.

K. T. V. Grattan, Z. Y. Zhang, T. Sun, Y. Shen, L. Tong, and Z. Ding, “Sapphire-ruby single-crystal fibre for application in high temperature optical fibre thermometers: studies at temperatures up to 1500 °C,” Meas. Sci. Technol. 12, 981–986 (2001).

Feng, J.

J. Feng, M. Ding, J.-L. Kou, F. Xu, and Y. Q. Lu, “An optical fiber tip micrograting thermometer,” IEEE Photonics J. 3(5), 810–814 (2011).
[CrossRef]

J. L. Kou, J. Feng, L. Ye, F. Xu, and Y. Q. Lu, “Miniaturized fiber taper reflective interferometer for high temperature measurement,” Opt. Express 18(13), 14245–14250 (2010).
[CrossRef] [PubMed]

Feng, X.

G. Brambilla, E. Koizumi, X. Feng, and D. J. Richardson, “Compound-glass optical nanowires,” Electron. Lett. 41(7), 400–402 (2005).
[CrossRef]

Finazzi, V.

D. Barrera, V. Finazzi, J. Villatoro, S. Sales, and V. Pruneri, “Packaged optical sensors based on regenerated fiber Bragg gratings for high temperature application,” IEEE Sens. J. 12(1), 107–112 (2012).
[CrossRef]

G. Coviello, V. Finazzi, J. Villatoro, and V. Pruneri, “Thermally stabilized PCF-based sensor for temperature measurements up to 1000 ° C,” Opt. Express 17(24), 21551–21559 (2009).
[CrossRef] [PubMed]

Gattass, R. R.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Grattan, K. T.

Grattan, K. T. V.

K. T. V. Grattan, Z. Y. Zhang, T. Sun, Y. Shen, L. Tong, and Z. Ding, “Sapphire-ruby single-crystal fibre for application in high temperature optical fibre thermometers: studies at temperatures up to 1500 °C,” Meas. Sci. Technol. 12, 981–986 (2001).

Grobnic, D.

D. Grobnic, S. J. Mihailov, C. W. Smelser, and H. Ding, “Sapphire fiber Bragg grating sensor made using femtosecond laser radiation for ultrahigh temperature applications,” IEEE Photon. Technol. Lett. 16(11), 2505–2507 (2004).
[CrossRef]

Guo, H.

Guo, L. J.

He, S. L.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Hill, K. O.

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
[CrossRef]

Hussey, C. D.

F. P. Payne, C. D. Hussey, and M. S. Yataki, “Polarisation analysis of strongly fused and weakly fused tapered couplers,” Electron. Lett. 21(13), 561–563 (1985).
[CrossRef]

Jepson, M. A. E.

C. Rodenburg, X. Lui, M. A. E. Jepson, S. A. Boden, and G. Brambilla, ““Surface morphology of silica nanowires at the nanometer scale,”J. Non-Cryst. Sol. 357, 3042–3045 (2011).

Joseph Friebele, E.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. Joseph Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Jung, Y.

Kalinowski, H. J.

Kersey, A. D.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. Joseph Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Koizumi, E.

G. Brambilla, E. Koizumi, X. Feng, and D. J. Richardson, “Compound-glass optical nanowires,” Electron. Lett. 41(7), 400–402 (2005).
[CrossRef]

Koo, K. P.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. Joseph Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Kou, J. L.

Kou, J.-L.

J. Feng, M. Ding, J.-L. Kou, F. Xu, and Y. Q. Lu, “An optical fiber tip micrograting thermometer,” IEEE Photonics J. 3(5), 810–814 (2011).
[CrossRef]

LeBlanc, M.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. Joseph Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Li, Y.

Lou, J. Y.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Lu, J.

Lu, Y. Q.

Lui, X.

C. Rodenburg, X. Lui, M. A. E. Jepson, S. A. Boden, and G. Brambilla, ““Surface morphology of silica nanowires at the nanometer scale,”J. Non-Cryst. Sol. 357, 3042–3045 (2011).

Maxwell, I.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Mazur, E.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Meltz, G.

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
[CrossRef]

Mihailov, S. J.

D. Grobnic, S. J. Mihailov, C. W. Smelser, and H. Ding, “Sapphire fiber Bragg grating sensor made using femtosecond laser radiation for ultrahigh temperature applications,” IEEE Photon. Technol. Lett. 16(11), 2505–2507 (2004).
[CrossRef]

Muller, M.

Murugan, G. S.

Neu, J. T.

Pang, F.

Patrick, H. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. Joseph Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Payne, F. P.

F. P. Payne, C. D. Hussey, and M. S. Yataki, “Polarisation analysis of strongly fused and weakly fused tapered couplers,” Electron. Lett. 21(13), 561–563 (1985).
[CrossRef]

Pruneri, V.

D. Barrera, V. Finazzi, J. Villatoro, S. Sales, and V. Pruneri, “Packaged optical sensors based on regenerated fiber Bragg gratings for high temperature application,” IEEE Sens. J. 12(1), 107–112 (2012).
[CrossRef]

G. Coviello, V. Finazzi, J. Villatoro, and V. Pruneri, “Thermally stabilized PCF-based sensor for temperature measurements up to 1000 ° C,” Opt. Express 17(24), 21551–21559 (2009).
[CrossRef] [PubMed]

Putnam, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. Joseph Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Qiu, S. J.

Rao, Y.

Y. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol. 8(4), 355–375 (1997).
[CrossRef]

Richardson, D. J.

Rodenburg, C.

C. Rodenburg, X. Lui, M. A. E. Jepson, S. A. Boden, and G. Brambilla, ““Surface morphology of silica nanowires at the nanometer scale,”J. Non-Cryst. Sol. 357, 3042–3045 (2011).

Rutt, H.

G. Brambilla and H. Rutt, “Fiber Bragg gratings with enhanced thermal stability,” Appl. Phys. Lett. 80(18), 3259–3261 (2002).
[CrossRef]

Sales, S.

D. Barrera, V. Finazzi, J. Villatoro, S. Sales, and V. Pruneri, “Packaged optical sensors based on regenerated fiber Bragg gratings for high temperature application,” IEEE Sens. J. 12(1), 107–112 (2012).
[CrossRef]

Shen, M. Y.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Shen, Y.

K. T. V. Grattan, Z. Y. Zhang, T. Sun, Y. Shen, L. Tong, and Z. Ding, “Sapphire-ruby single-crystal fibre for application in high temperature optical fibre thermometers: studies at temperatures up to 1500 °C,” Meas. Sci. Technol. 12, 981–986 (2001).

Smelser, C. W.

D. Grobnic, S. J. Mihailov, C. W. Smelser, and H. Ding, “Sapphire fiber Bragg grating sensor made using femtosecond laser radiation for ultrahigh temperature applications,” IEEE Photon. Technol. Lett. 16(11), 2505–2507 (2004).
[CrossRef]

Stevenson, M.

J. Canning, M. Stevenson, S. Bandyopadhyay, and K. Cook, “Extreme silica optical fibre gratings,” Sensors (Basel Switzerland) 8(10), 6448–6452 (2008).
[CrossRef]

Sun, T.

Y. Li, M. Yang, D. N. Wang, J. Lu, T. Sun, and K. T. Grattan, “Fiber Bragg gratings with enhanced thermal stability by residual stress relaxation,” Opt. Express 17(22), 19785–19790 (2009).
[CrossRef] [PubMed]

K. T. V. Grattan, Z. Y. Zhang, T. Sun, Y. Shen, L. Tong, and Z. Ding, “Sapphire-ruby single-crystal fibre for application in high temperature optical fibre thermometers: studies at temperatures up to 1500 °C,” Meas. Sci. Technol. 12, 981–986 (2001).

Tong, L.

K. T. V. Grattan, Z. Y. Zhang, T. Sun, Y. Shen, L. Tong, and Z. Ding, “Sapphire-ruby single-crystal fibre for application in high temperature optical fibre thermometers: studies at temperatures up to 1500 °C,” Meas. Sci. Technol. 12, 981–986 (2001).

Tong, L. M.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Villatoro, J.

D. Barrera, V. Finazzi, J. Villatoro, S. Sales, and V. Pruneri, “Packaged optical sensors based on regenerated fiber Bragg gratings for high temperature application,” IEEE Sens. J. 12(1), 107–112 (2012).
[CrossRef]

G. Coviello, V. Finazzi, J. Villatoro, and V. Pruneri, “Thermally stabilized PCF-based sensor for temperature measurements up to 1000 ° C,” Opt. Express 17(24), 21551–21559 (2009).
[CrossRef] [PubMed]

Wang, D. N.

Wang, T.

Wilkinson, J. S.

Wray, J. H.

Xu, F.

Yang, M.

Yataki, M. S.

F. P. Payne, C. D. Hussey, and M. S. Yataki, “Polarisation analysis of strongly fused and weakly fused tapered couplers,” Electron. Lett. 21(13), 561–563 (1985).
[CrossRef]

Ye, L.

Zeng, X.

Zhang, Z. Y.

K. T. V. Grattan, Z. Y. Zhang, T. Sun, Y. Shen, L. Tong, and Z. Ding, “Sapphire-ruby single-crystal fibre for application in high temperature optical fibre thermometers: studies at temperatures up to 1500 °C,” Meas. Sci. Technol. 12, 981–986 (2001).

Appl. Opt. (2)

Appl. Phys. Lett. (1)

G. Brambilla and H. Rutt, “Fiber Bragg gratings with enhanced thermal stability,” Appl. Phys. Lett. 80(18), 3259–3261 (2002).
[CrossRef]

Electron. Lett. (2)

G. Brambilla, E. Koizumi, X. Feng, and D. J. Richardson, “Compound-glass optical nanowires,” Electron. Lett. 41(7), 400–402 (2005).
[CrossRef]

F. P. Payne, C. D. Hussey, and M. S. Yataki, “Polarisation analysis of strongly fused and weakly fused tapered couplers,” Electron. Lett. 21(13), 561–563 (1985).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

D. Grobnic, S. J. Mihailov, C. W. Smelser, and H. Ding, “Sapphire fiber Bragg grating sensor made using femtosecond laser radiation for ultrahigh temperature applications,” IEEE Photon. Technol. Lett. 16(11), 2505–2507 (2004).
[CrossRef]

IEEE Photonics J. (1)

J. Feng, M. Ding, J.-L. Kou, F. Xu, and Y. Q. Lu, “An optical fiber tip micrograting thermometer,” IEEE Photonics J. 3(5), 810–814 (2011).
[CrossRef]

IEEE Sens. J. (1)

D. Barrera, V. Finazzi, J. Villatoro, S. Sales, and V. Pruneri, “Packaged optical sensors based on regenerated fiber Bragg gratings for high temperature application,” IEEE Sens. J. 12(1), 107–112 (2012).
[CrossRef]

J. Lightwave Technol. (3)

C. Y. Chao and L. J. Guo, “Design and optimization of microring resonators in biochemical sensing applications,” J. Lightwave Technol. 24(3), 1395–1402 (2006).
[CrossRef]

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
[CrossRef]

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. Joseph Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

J. Non-Cryst. Sol. (1)

C. Rodenburg, X. Lui, M. A. E. Jepson, S. A. Boden, and G. Brambilla, ““Surface morphology of silica nanowires at the nanometer scale,”J. Non-Cryst. Sol. 357, 3042–3045 (2011).

J. Opt. Soc. Am. (1)

Meas. Sci. Technol. (2)

Y. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol. 8(4), 355–375 (1997).
[CrossRef]

K. T. V. Grattan, Z. Y. Zhang, T. Sun, Y. Shen, L. Tong, and Z. Ding, “Sapphire-ruby single-crystal fibre for application in high temperature optical fibre thermometers: studies at temperatures up to 1500 °C,” Meas. Sci. Technol. 12, 981–986 (2001).

Nature (1)

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Opt. Express (6)

Opt. Fiber Technol. (1)

G. Brambilla, “Optical fibre nanotaper sensors,” Opt. Fiber Technol. 16(6), 331–342 (2010).
[CrossRef]

Opt. Lett. (1)

Sensors (Basel Switzerland) (1)

J. Canning, M. Stevenson, S. Bandyopadhyay, and K. Cook, “Extreme silica optical fibre gratings,” Sensors (Basel Switzerland) 8(10), 6448–6452 (2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of (a) a bi-conical microfiber coupler (MFC) and (b) a bi-conical microfiber coupler tip (MFCT).

Fig. 2
Fig. 2

(a) SEM images of the MFCT. Single microfiber diameter and uniform region length are ~2.5 µm and ~3 mm, respectively; (b) MFCT reflection spectrum at room temperature.

Fig. 3
Fig. 3

The output power from port P2 at 26 °C, 471 °C and 828 °C. Inset: MCFT cross section in the “weakly fusing” approximation.

Fig. 4
Fig. 4

(a) MFCT characterization set-up; (b) relation between the driver current and temperature; (c) reflection spectra of the peak at 1219 nm in Fig. 2(b) when the driver current increases from 0.4 A to 2.8 A by steps of 0.2 A.

Fig. 5
Fig. 5

Wavelength shift dependence on the microheater temperature. The red solid curve and the blue dash curve report measurements for decreasing and increasing temperatures, respectively.

Fig. 6
Fig. 6

(a) Experimental set-up used to demonstrate the MFCT 2D spatial resolution; (b) sensor response when the MFCT was scanned along the tangential direction of the Ni-Cr wire at ~250 µm from the wire surface. The red solid and the blue dash curves are the experiment results and the curve expected from heat transfer equation, respectively.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

C x = 2 3/2 ( n 1 2 n 0 2 ) 1/2 U 2 (2 n 1 2 V+1) n 1 3 a( π ) V 7/2
C y = 2 3/2 ( n 1 2 n 0 2 ) 1/2 U 2 (2 n 1 2 V1) n 1 3 a( π ) V 7/2
P 4 = 1 2 {1cos[( C x ¯ + C y ¯ )L]cos[( C x ¯ C y ¯ )L]}
P 2 = ( n 1 n 0 n 1 + n 0 ) 2 P 4
T= C 1 *ln [ x 2 + (500μm) 2 ] 1 2 + C 2

Metrics