Abstract

We study the quantum properties and statistics of photons emitted by a quantum-dot biexciton inside a cavity. In the biexciton-exciton cascade, fine-structure splitting between exciton levels degrades polarization-entanglement for the emitted pair of photons. However, here we show that the polarization-entanglement can be preserved in such a system through simultaneous emission of two degenerate photons into cavity modes tuned to half the biexciton energy. Based on detailed theoretical calculations for realistic quantum-dot and cavity parameters, we quantify the degree of achievable entanglement.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Edamatsu, “Entangled photons: generation, observation, and characterization,” Jpn. J. Appl. Phys. 46, 7175–7187 (2007).
    [CrossRef]
  2. K.-I. Yoshino, T. Aoki, and A. Furusawa, “Generation of continuous-wave broadband entangled beams using periodically poled lithium niobate waveguides,” Appl. Phys. Lett. 90, 041111 (2007).
    [CrossRef]
  3. A. Hayat, P. Ginzburg, and M. Orenstein, “Observation of two-photon emission from semiconductors,” Nat. Photonics 2, 238–241 (2008).
    [CrossRef]
  4. S. Strauf, N. G. Stoltz, M. T. Rakher, L. Coldren, P. M. Petroff, and D. Bouwmeester, “High-frequency single photon source with polarization control,” Nat. Photonics 1, 704–708 (2007).
    [CrossRef]
  5. M. Mehta, D. Reuter, A. D. Wieck, S. Michaelis de Vasconcellos, A. Zrenner, and C. Meier, “An intentionally positioned (In,Ga)As quantum dot in a micron sized light emitting diode,” Appl. Phys. Lett. 97, 143101 (2010).
    [CrossRef]
  6. J. Wiersig, C. Gies, F. Jahnke, M. Assmann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Hofling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460, 245–249 (2009).
    [CrossRef] [PubMed]
  7. S. Strauf and F. Jahnke, “Single quantum dot nanolaser,” Laser Photon. Rev. 5, 607–633 (2011).
  8. O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, “Regulated and entangled photons from a single quantum dot,” Phys. Rev. Lett. 84, 2513–2516 (2000).
    [CrossRef] [PubMed]
  9. A. Dousse, J. Suffczynski, A. Beveratos, O. Krebs, A. Lemaitre, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466, 217–220 (2010).
    [CrossRef] [PubMed]
  10. R. Hafenbrak, S. M. Ulrich, P. Michler, L. Wang, A. Rastelli, and O. G. Schmidt, “Triggered polarization-entangled photon pairs from a single quantum dot up to 30 k,” New J. Phys. 9, 315 (2007).
    [CrossRef]
  11. F. Troiani, J. I. Perea, and C. Tejedor, “Cavity-assisted generation of entangled photon pairs by a quantum-dot cascade decay,” Phys. Rev. B 74, 235310 (2006).
    [CrossRef]
  12. A. Carmele, F. Milde, M.-R. Dachner, M. B. Harouni, R. Roknizadeh, M. Richter, and A. Knorr, “Formation dynamics of an entangled photon pair: a temperature-dependent analysis,” Phys. Rev. B 81, 195319 (2010).
  13. A. Carmele and A. Knorr, “Analytical solution of the quantum-state tomography of the biexciton cascade in semiconductor quantum dots: pure dephasing does not affect entanglement,” Phys. Rev. B 84, 075328 (2011).
    [CrossRef]
  14. A. Mohan, M. Felici, P. Gallo, B. Dwir, A. Rudra, J. Faist, and E. Kapon, “Polarization-entangled photons produced with high-symmetry site-controlled quantum dots,” Nat. Photonics 4, 302–306 (2010).
    [CrossRef]
  15. E. Stock, T. Warming, I. Ostapenko, S. Rodt, A. Schliwa, J. A. Töfflinger, A. Lochmann, A. I. Toropov, S. A. Moshchenko, D. V. Dmitriev, V. A. Haisler, and D. Bimberg, “Single-photon emission from InGaAs quantum dots grown on (111) GaAs,” Appl. Phys. Lett. 96, 093112 (2010).
    [CrossRef]
  16. L. He, M. Gong, C.-F. Li, G.-C. Guo, and A. Zunger, “Highly reduced fine-structure splitting in InAs/InP quantum dots offering an efficient on-demand entangled 1.55 – ?m photon emitter,” Phys. Rev. Lett. 101, 157405 (2008).
    [CrossRef] [PubMed]
  17. B. D. Gerardot, S. Seidl, P. A. Dalgarno, R. J. Warburton, D. Granados, J. M. Garcia, K. Kowalik, O. Krebs, K. Karrai, A. Badolato, and P. M. Petroff, “Manipulating exciton fine structure in quantum dots with a lateral electric field,” Appl. Phys. Lett. 90, 041101 (2007).
    [CrossRef]
  18. R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “A semiconductor source of triggered entangled photon pairs,” Nature 439, 179–182 (2006).
    [CrossRef] [PubMed]
  19. S. Seidl, M. Kroner, A. Högele, K. Karrai, R. J. Warburton, A. Badolato, and P. M. Petroff, “Effect of uniaxial stress on excitons in a self-assembled quantum dot,” Appl. Phys. Lett. 88, 203113 (2006).
    [CrossRef]
  20. E. del Valle, A. Gonzalez-Tudela, E. Cancellieri, F. P. Laussy, and C. Tejedor, “Generation of a two-photon state from a quantum dot in a microcavity,” New J. Phys. 13, 113014 (2011).
    [CrossRef]
  21. U. Hohenester, T. Volz, M. Winger, and A. Imamoglu, “Cavity-assisted two-photon decay of biexcitons,” OECS12 Conference Proceedings, page 110 (2011).
  22. Y. Ota, S. Iwamoto, N. Kumagai, and Y. Arakawa, “Spontaneous two-photon emission from a single quantum dot,” Phys. Rev. Lett. 107, 233602 (2011).
    [CrossRef] [PubMed]
  23. G. Lindblad, “On the generators of quantum dynamical semigroups,” Commun. Math. Phys. 48, 119–130 (1976).
    [CrossRef]
  24. A. Laucht, N. Hauke, J. M. Villas-Boas, F. Hofbauer, M. Kaniber, G. Böhm, and J. J. Finley, “Dephasing of exciton polaritons in photoexcited InGaAs quantum dots in GaAs nanocavities,” Phys. Rev. Lett. 103, 087405 (2009).
    [CrossRef] [PubMed]
  25. G. Pfanner, M. Seliger, and U. Hohenester, “Entangled photon sources based on semiconductor quantum dots: the role of pure dephasing,” Phys. Rev. B 78, 195410 (2008).
  26. H. J. Carmichael, Statistical Methods in Quantum Optics 1: Master Equations and Fokker-Planck Equations (Springer, 2002), 2nd ed.
  27. R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,” Rev. Mod. Phys. 81, 865–942 (2009).
    [CrossRef]
  28. T. Flissikowski, A. Betke, I. A. Akimov, and F. Henneberger, “Two-photon coherent control of a single quantum dot,” Phys. Rev. Lett. 92, 227401 (2004).
    [CrossRef] [PubMed]

2011

S. Strauf and F. Jahnke, “Single quantum dot nanolaser,” Laser Photon. Rev. 5, 607–633 (2011).

A. Carmele and A. Knorr, “Analytical solution of the quantum-state tomography of the biexciton cascade in semiconductor quantum dots: pure dephasing does not affect entanglement,” Phys. Rev. B 84, 075328 (2011).
[CrossRef]

E. del Valle, A. Gonzalez-Tudela, E. Cancellieri, F. P. Laussy, and C. Tejedor, “Generation of a two-photon state from a quantum dot in a microcavity,” New J. Phys. 13, 113014 (2011).
[CrossRef]

Y. Ota, S. Iwamoto, N. Kumagai, and Y. Arakawa, “Spontaneous two-photon emission from a single quantum dot,” Phys. Rev. Lett. 107, 233602 (2011).
[CrossRef] [PubMed]

2010

A. Dousse, J. Suffczynski, A. Beveratos, O. Krebs, A. Lemaitre, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466, 217–220 (2010).
[CrossRef] [PubMed]

A. Mohan, M. Felici, P. Gallo, B. Dwir, A. Rudra, J. Faist, and E. Kapon, “Polarization-entangled photons produced with high-symmetry site-controlled quantum dots,” Nat. Photonics 4, 302–306 (2010).
[CrossRef]

E. Stock, T. Warming, I. Ostapenko, S. Rodt, A. Schliwa, J. A. Töfflinger, A. Lochmann, A. I. Toropov, S. A. Moshchenko, D. V. Dmitriev, V. A. Haisler, and D. Bimberg, “Single-photon emission from InGaAs quantum dots grown on (111) GaAs,” Appl. Phys. Lett. 96, 093112 (2010).
[CrossRef]

M. Mehta, D. Reuter, A. D. Wieck, S. Michaelis de Vasconcellos, A. Zrenner, and C. Meier, “An intentionally positioned (In,Ga)As quantum dot in a micron sized light emitting diode,” Appl. Phys. Lett. 97, 143101 (2010).
[CrossRef]

2009

J. Wiersig, C. Gies, F. Jahnke, M. Assmann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Hofling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460, 245–249 (2009).
[CrossRef] [PubMed]

A. Laucht, N. Hauke, J. M. Villas-Boas, F. Hofbauer, M. Kaniber, G. Böhm, and J. J. Finley, “Dephasing of exciton polaritons in photoexcited InGaAs quantum dots in GaAs nanocavities,” Phys. Rev. Lett. 103, 087405 (2009).
[CrossRef] [PubMed]

R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,” Rev. Mod. Phys. 81, 865–942 (2009).
[CrossRef]

2008

A. Hayat, P. Ginzburg, and M. Orenstein, “Observation of two-photon emission from semiconductors,” Nat. Photonics 2, 238–241 (2008).
[CrossRef]

L. He, M. Gong, C.-F. Li, G.-C. Guo, and A. Zunger, “Highly reduced fine-structure splitting in InAs/InP quantum dots offering an efficient on-demand entangled 1.55 – ?m photon emitter,” Phys. Rev. Lett. 101, 157405 (2008).
[CrossRef] [PubMed]

2007

B. D. Gerardot, S. Seidl, P. A. Dalgarno, R. J. Warburton, D. Granados, J. M. Garcia, K. Kowalik, O. Krebs, K. Karrai, A. Badolato, and P. M. Petroff, “Manipulating exciton fine structure in quantum dots with a lateral electric field,” Appl. Phys. Lett. 90, 041101 (2007).
[CrossRef]

R. Hafenbrak, S. M. Ulrich, P. Michler, L. Wang, A. Rastelli, and O. G. Schmidt, “Triggered polarization-entangled photon pairs from a single quantum dot up to 30 k,” New J. Phys. 9, 315 (2007).
[CrossRef]

S. Strauf, N. G. Stoltz, M. T. Rakher, L. Coldren, P. M. Petroff, and D. Bouwmeester, “High-frequency single photon source with polarization control,” Nat. Photonics 1, 704–708 (2007).
[CrossRef]

K. Edamatsu, “Entangled photons: generation, observation, and characterization,” Jpn. J. Appl. Phys. 46, 7175–7187 (2007).
[CrossRef]

K.-I. Yoshino, T. Aoki, and A. Furusawa, “Generation of continuous-wave broadband entangled beams using periodically poled lithium niobate waveguides,” Appl. Phys. Lett. 90, 041111 (2007).
[CrossRef]

2006

F. Troiani, J. I. Perea, and C. Tejedor, “Cavity-assisted generation of entangled photon pairs by a quantum-dot cascade decay,” Phys. Rev. B 74, 235310 (2006).
[CrossRef]

R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “A semiconductor source of triggered entangled photon pairs,” Nature 439, 179–182 (2006).
[CrossRef] [PubMed]

S. Seidl, M. Kroner, A. Högele, K. Karrai, R. J. Warburton, A. Badolato, and P. M. Petroff, “Effect of uniaxial stress on excitons in a self-assembled quantum dot,” Appl. Phys. Lett. 88, 203113 (2006).
[CrossRef]

2004

T. Flissikowski, A. Betke, I. A. Akimov, and F. Henneberger, “Two-photon coherent control of a single quantum dot,” Phys. Rev. Lett. 92, 227401 (2004).
[CrossRef] [PubMed]

2000

O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, “Regulated and entangled photons from a single quantum dot,” Phys. Rev. Lett. 84, 2513–2516 (2000).
[CrossRef] [PubMed]

1976

G. Lindblad, “On the generators of quantum dynamical semigroups,” Commun. Math. Phys. 48, 119–130 (1976).
[CrossRef]

Akimov, I. A.

T. Flissikowski, A. Betke, I. A. Akimov, and F. Henneberger, “Two-photon coherent control of a single quantum dot,” Phys. Rev. Lett. 92, 227401 (2004).
[CrossRef] [PubMed]

Aoki, T.

K.-I. Yoshino, T. Aoki, and A. Furusawa, “Generation of continuous-wave broadband entangled beams using periodically poled lithium niobate waveguides,” Appl. Phys. Lett. 90, 041111 (2007).
[CrossRef]

Arakawa, Y.

Y. Ota, S. Iwamoto, N. Kumagai, and Y. Arakawa, “Spontaneous two-photon emission from a single quantum dot,” Phys. Rev. Lett. 107, 233602 (2011).
[CrossRef] [PubMed]

Assmann, M.

J. Wiersig, C. Gies, F. Jahnke, M. Assmann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Hofling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460, 245–249 (2009).
[CrossRef] [PubMed]

Atkinson, P.

R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “A semiconductor source of triggered entangled photon pairs,” Nature 439, 179–182 (2006).
[CrossRef] [PubMed]

Badolato, A.

B. D. Gerardot, S. Seidl, P. A. Dalgarno, R. J. Warburton, D. Granados, J. M. Garcia, K. Kowalik, O. Krebs, K. Karrai, A. Badolato, and P. M. Petroff, “Manipulating exciton fine structure in quantum dots with a lateral electric field,” Appl. Phys. Lett. 90, 041101 (2007).
[CrossRef]

S. Seidl, M. Kroner, A. Högele, K. Karrai, R. J. Warburton, A. Badolato, and P. M. Petroff, “Effect of uniaxial stress on excitons in a self-assembled quantum dot,” Appl. Phys. Lett. 88, 203113 (2006).
[CrossRef]

Bayer, M.

J. Wiersig, C. Gies, F. Jahnke, M. Assmann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Hofling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460, 245–249 (2009).
[CrossRef] [PubMed]

Benson, O.

O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, “Regulated and entangled photons from a single quantum dot,” Phys. Rev. Lett. 84, 2513–2516 (2000).
[CrossRef] [PubMed]

Berstermann, T.

J. Wiersig, C. Gies, F. Jahnke, M. Assmann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Hofling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460, 245–249 (2009).
[CrossRef] [PubMed]

Betke, A.

T. Flissikowski, A. Betke, I. A. Akimov, and F. Henneberger, “Two-photon coherent control of a single quantum dot,” Phys. Rev. Lett. 92, 227401 (2004).
[CrossRef] [PubMed]

Beveratos, A.

A. Dousse, J. Suffczynski, A. Beveratos, O. Krebs, A. Lemaitre, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466, 217–220 (2010).
[CrossRef] [PubMed]

Bimberg, D.

E. Stock, T. Warming, I. Ostapenko, S. Rodt, A. Schliwa, J. A. Töfflinger, A. Lochmann, A. I. Toropov, S. A. Moshchenko, D. V. Dmitriev, V. A. Haisler, and D. Bimberg, “Single-photon emission from InGaAs quantum dots grown on (111) GaAs,” Appl. Phys. Lett. 96, 093112 (2010).
[CrossRef]

Bloch, J.

A. Dousse, J. Suffczynski, A. Beveratos, O. Krebs, A. Lemaitre, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466, 217–220 (2010).
[CrossRef] [PubMed]

Böhm, G.

A. Laucht, N. Hauke, J. M. Villas-Boas, F. Hofbauer, M. Kaniber, G. Böhm, and J. J. Finley, “Dephasing of exciton polaritons in photoexcited InGaAs quantum dots in GaAs nanocavities,” Phys. Rev. Lett. 103, 087405 (2009).
[CrossRef] [PubMed]

Bouwmeester, D.

S. Strauf, N. G. Stoltz, M. T. Rakher, L. Coldren, P. M. Petroff, and D. Bouwmeester, “High-frequency single photon source with polarization control,” Nat. Photonics 1, 704–708 (2007).
[CrossRef]

Cancellieri, E.

E. del Valle, A. Gonzalez-Tudela, E. Cancellieri, F. P. Laussy, and C. Tejedor, “Generation of a two-photon state from a quantum dot in a microcavity,” New J. Phys. 13, 113014 (2011).
[CrossRef]

Carmele, A.

A. Carmele and A. Knorr, “Analytical solution of the quantum-state tomography of the biexciton cascade in semiconductor quantum dots: pure dephasing does not affect entanglement,” Phys. Rev. B 84, 075328 (2011).
[CrossRef]

A. Carmele, F. Milde, M.-R. Dachner, M. B. Harouni, R. Roknizadeh, M. Richter, and A. Knorr, “Formation dynamics of an entangled photon pair: a temperature-dependent analysis,” Phys. Rev. B 81, 195319 (2010).

Carmichael, H. J.

H. J. Carmichael, Statistical Methods in Quantum Optics 1: Master Equations and Fokker-Planck Equations (Springer, 2002), 2nd ed.

Coldren, L.

S. Strauf, N. G. Stoltz, M. T. Rakher, L. Coldren, P. M. Petroff, and D. Bouwmeester, “High-frequency single photon source with polarization control,” Nat. Photonics 1, 704–708 (2007).
[CrossRef]

Cooper, K.

R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “A semiconductor source of triggered entangled photon pairs,” Nature 439, 179–182 (2006).
[CrossRef] [PubMed]

Dachner, M.-R.

A. Carmele, F. Milde, M.-R. Dachner, M. B. Harouni, R. Roknizadeh, M. Richter, and A. Knorr, “Formation dynamics of an entangled photon pair: a temperature-dependent analysis,” Phys. Rev. B 81, 195319 (2010).

Dalgarno, P. A.

B. D. Gerardot, S. Seidl, P. A. Dalgarno, R. J. Warburton, D. Granados, J. M. Garcia, K. Kowalik, O. Krebs, K. Karrai, A. Badolato, and P. M. Petroff, “Manipulating exciton fine structure in quantum dots with a lateral electric field,” Appl. Phys. Lett. 90, 041101 (2007).
[CrossRef]

del Valle, E.

E. del Valle, A. Gonzalez-Tudela, E. Cancellieri, F. P. Laussy, and C. Tejedor, “Generation of a two-photon state from a quantum dot in a microcavity,” New J. Phys. 13, 113014 (2011).
[CrossRef]

Dmitriev, D. V.

E. Stock, T. Warming, I. Ostapenko, S. Rodt, A. Schliwa, J. A. Töfflinger, A. Lochmann, A. I. Toropov, S. A. Moshchenko, D. V. Dmitriev, V. A. Haisler, and D. Bimberg, “Single-photon emission from InGaAs quantum dots grown on (111) GaAs,” Appl. Phys. Lett. 96, 093112 (2010).
[CrossRef]

Dousse, A.

A. Dousse, J. Suffczynski, A. Beveratos, O. Krebs, A. Lemaitre, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466, 217–220 (2010).
[CrossRef] [PubMed]

Dwir, B.

A. Mohan, M. Felici, P. Gallo, B. Dwir, A. Rudra, J. Faist, and E. Kapon, “Polarization-entangled photons produced with high-symmetry site-controlled quantum dots,” Nat. Photonics 4, 302–306 (2010).
[CrossRef]

Edamatsu, K.

K. Edamatsu, “Entangled photons: generation, observation, and characterization,” Jpn. J. Appl. Phys. 46, 7175–7187 (2007).
[CrossRef]

Faist, J.

A. Mohan, M. Felici, P. Gallo, B. Dwir, A. Rudra, J. Faist, and E. Kapon, “Polarization-entangled photons produced with high-symmetry site-controlled quantum dots,” Nat. Photonics 4, 302–306 (2010).
[CrossRef]

Felici, M.

A. Mohan, M. Felici, P. Gallo, B. Dwir, A. Rudra, J. Faist, and E. Kapon, “Polarization-entangled photons produced with high-symmetry site-controlled quantum dots,” Nat. Photonics 4, 302–306 (2010).
[CrossRef]

Finley, J. J.

A. Laucht, N. Hauke, J. M. Villas-Boas, F. Hofbauer, M. Kaniber, G. Böhm, and J. J. Finley, “Dephasing of exciton polaritons in photoexcited InGaAs quantum dots in GaAs nanocavities,” Phys. Rev. Lett. 103, 087405 (2009).
[CrossRef] [PubMed]

Flissikowski, T.

T. Flissikowski, A. Betke, I. A. Akimov, and F. Henneberger, “Two-photon coherent control of a single quantum dot,” Phys. Rev. Lett. 92, 227401 (2004).
[CrossRef] [PubMed]

Forchel, A.

J. Wiersig, C. Gies, F. Jahnke, M. Assmann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Hofling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460, 245–249 (2009).
[CrossRef] [PubMed]

Furusawa, A.

K.-I. Yoshino, T. Aoki, and A. Furusawa, “Generation of continuous-wave broadband entangled beams using periodically poled lithium niobate waveguides,” Appl. Phys. Lett. 90, 041111 (2007).
[CrossRef]

Gallo, P.

A. Mohan, M. Felici, P. Gallo, B. Dwir, A. Rudra, J. Faist, and E. Kapon, “Polarization-entangled photons produced with high-symmetry site-controlled quantum dots,” Nat. Photonics 4, 302–306 (2010).
[CrossRef]

Garcia, J. M.

B. D. Gerardot, S. Seidl, P. A. Dalgarno, R. J. Warburton, D. Granados, J. M. Garcia, K. Kowalik, O. Krebs, K. Karrai, A. Badolato, and P. M. Petroff, “Manipulating exciton fine structure in quantum dots with a lateral electric field,” Appl. Phys. Lett. 90, 041101 (2007).
[CrossRef]

Gerardot, B. D.

B. D. Gerardot, S. Seidl, P. A. Dalgarno, R. J. Warburton, D. Granados, J. M. Garcia, K. Kowalik, O. Krebs, K. Karrai, A. Badolato, and P. M. Petroff, “Manipulating exciton fine structure in quantum dots with a lateral electric field,” Appl. Phys. Lett. 90, 041101 (2007).
[CrossRef]

Gies, C.

J. Wiersig, C. Gies, F. Jahnke, M. Assmann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Hofling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460, 245–249 (2009).
[CrossRef] [PubMed]

Ginzburg, P.

A. Hayat, P. Ginzburg, and M. Orenstein, “Observation of two-photon emission from semiconductors,” Nat. Photonics 2, 238–241 (2008).
[CrossRef]

Gong, M.

L. He, M. Gong, C.-F. Li, G.-C. Guo, and A. Zunger, “Highly reduced fine-structure splitting in InAs/InP quantum dots offering an efficient on-demand entangled 1.55 – ?m photon emitter,” Phys. Rev. Lett. 101, 157405 (2008).
[CrossRef] [PubMed]

Gonzalez-Tudela, A.

E. del Valle, A. Gonzalez-Tudela, E. Cancellieri, F. P. Laussy, and C. Tejedor, “Generation of a two-photon state from a quantum dot in a microcavity,” New J. Phys. 13, 113014 (2011).
[CrossRef]

Granados, D.

B. D. Gerardot, S. Seidl, P. A. Dalgarno, R. J. Warburton, D. Granados, J. M. Garcia, K. Kowalik, O. Krebs, K. Karrai, A. Badolato, and P. M. Petroff, “Manipulating exciton fine structure in quantum dots with a lateral electric field,” Appl. Phys. Lett. 90, 041101 (2007).
[CrossRef]

Guo, G.-C.

L. He, M. Gong, C.-F. Li, G.-C. Guo, and A. Zunger, “Highly reduced fine-structure splitting in InAs/InP quantum dots offering an efficient on-demand entangled 1.55 – ?m photon emitter,” Phys. Rev. Lett. 101, 157405 (2008).
[CrossRef] [PubMed]

Hafenbrak, R.

R. Hafenbrak, S. M. Ulrich, P. Michler, L. Wang, A. Rastelli, and O. G. Schmidt, “Triggered polarization-entangled photon pairs from a single quantum dot up to 30 k,” New J. Phys. 9, 315 (2007).
[CrossRef]

Haisler, V. A.

E. Stock, T. Warming, I. Ostapenko, S. Rodt, A. Schliwa, J. A. Töfflinger, A. Lochmann, A. I. Toropov, S. A. Moshchenko, D. V. Dmitriev, V. A. Haisler, and D. Bimberg, “Single-photon emission from InGaAs quantum dots grown on (111) GaAs,” Appl. Phys. Lett. 96, 093112 (2010).
[CrossRef]

Harouni, M. B.

A. Carmele, F. Milde, M.-R. Dachner, M. B. Harouni, R. Roknizadeh, M. Richter, and A. Knorr, “Formation dynamics of an entangled photon pair: a temperature-dependent analysis,” Phys. Rev. B 81, 195319 (2010).

Hauke, N.

A. Laucht, N. Hauke, J. M. Villas-Boas, F. Hofbauer, M. Kaniber, G. Böhm, and J. J. Finley, “Dephasing of exciton polaritons in photoexcited InGaAs quantum dots in GaAs nanocavities,” Phys. Rev. Lett. 103, 087405 (2009).
[CrossRef] [PubMed]

Hayat, A.

A. Hayat, P. Ginzburg, and M. Orenstein, “Observation of two-photon emission from semiconductors,” Nat. Photonics 2, 238–241 (2008).
[CrossRef]

He, L.

L. He, M. Gong, C.-F. Li, G.-C. Guo, and A. Zunger, “Highly reduced fine-structure splitting in InAs/InP quantum dots offering an efficient on-demand entangled 1.55 – ?m photon emitter,” Phys. Rev. Lett. 101, 157405 (2008).
[CrossRef] [PubMed]

Henneberger, F.

T. Flissikowski, A. Betke, I. A. Akimov, and F. Henneberger, “Two-photon coherent control of a single quantum dot,” Phys. Rev. Lett. 92, 227401 (2004).
[CrossRef] [PubMed]

Hofbauer, F.

A. Laucht, N. Hauke, J. M. Villas-Boas, F. Hofbauer, M. Kaniber, G. Böhm, and J. J. Finley, “Dephasing of exciton polaritons in photoexcited InGaAs quantum dots in GaAs nanocavities,” Phys. Rev. Lett. 103, 087405 (2009).
[CrossRef] [PubMed]

Hofling, S.

J. Wiersig, C. Gies, F. Jahnke, M. Assmann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Hofling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460, 245–249 (2009).
[CrossRef] [PubMed]

Högele, A.

S. Seidl, M. Kroner, A. Högele, K. Karrai, R. J. Warburton, A. Badolato, and P. M. Petroff, “Effect of uniaxial stress on excitons in a self-assembled quantum dot,” Appl. Phys. Lett. 88, 203113 (2006).
[CrossRef]

Hohenester, U.

G. Pfanner, M. Seliger, and U. Hohenester, “Entangled photon sources based on semiconductor quantum dots: the role of pure dephasing,” Phys. Rev. B 78, 195410 (2008).

U. Hohenester, T. Volz, M. Winger, and A. Imamoglu, “Cavity-assisted two-photon decay of biexcitons,” OECS12 Conference Proceedings, page 110 (2011).

Hommel, D.

J. Wiersig, C. Gies, F. Jahnke, M. Assmann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Hofling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460, 245–249 (2009).
[CrossRef] [PubMed]

Horodecki, K.

R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,” Rev. Mod. Phys. 81, 865–942 (2009).
[CrossRef]

Horodecki, M.

R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,” Rev. Mod. Phys. 81, 865–942 (2009).
[CrossRef]

Horodecki, P.

R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,” Rev. Mod. Phys. 81, 865–942 (2009).
[CrossRef]

Horodecki, R.

R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,” Rev. Mod. Phys. 81, 865–942 (2009).
[CrossRef]

Imamoglu, A.

U. Hohenester, T. Volz, M. Winger, and A. Imamoglu, “Cavity-assisted two-photon decay of biexcitons,” OECS12 Conference Proceedings, page 110 (2011).

Iwamoto, S.

Y. Ota, S. Iwamoto, N. Kumagai, and Y. Arakawa, “Spontaneous two-photon emission from a single quantum dot,” Phys. Rev. Lett. 107, 233602 (2011).
[CrossRef] [PubMed]

Jahnke, F.

S. Strauf and F. Jahnke, “Single quantum dot nanolaser,” Laser Photon. Rev. 5, 607–633 (2011).

J. Wiersig, C. Gies, F. Jahnke, M. Assmann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Hofling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460, 245–249 (2009).
[CrossRef] [PubMed]

Kalden, J.

J. Wiersig, C. Gies, F. Jahnke, M. Assmann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Hofling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460, 245–249 (2009).
[CrossRef] [PubMed]

Kaniber, M.

A. Laucht, N. Hauke, J. M. Villas-Boas, F. Hofbauer, M. Kaniber, G. Böhm, and J. J. Finley, “Dephasing of exciton polaritons in photoexcited InGaAs quantum dots in GaAs nanocavities,” Phys. Rev. Lett. 103, 087405 (2009).
[CrossRef] [PubMed]

Kapon, E.

A. Mohan, M. Felici, P. Gallo, B. Dwir, A. Rudra, J. Faist, and E. Kapon, “Polarization-entangled photons produced with high-symmetry site-controlled quantum dots,” Nat. Photonics 4, 302–306 (2010).
[CrossRef]

Karrai, K.

B. D. Gerardot, S. Seidl, P. A. Dalgarno, R. J. Warburton, D. Granados, J. M. Garcia, K. Kowalik, O. Krebs, K. Karrai, A. Badolato, and P. M. Petroff, “Manipulating exciton fine structure in quantum dots with a lateral electric field,” Appl. Phys. Lett. 90, 041101 (2007).
[CrossRef]

S. Seidl, M. Kroner, A. Högele, K. Karrai, R. J. Warburton, A. Badolato, and P. M. Petroff, “Effect of uniaxial stress on excitons in a self-assembled quantum dot,” Appl. Phys. Lett. 88, 203113 (2006).
[CrossRef]

Kistner, C.

J. Wiersig, C. Gies, F. Jahnke, M. Assmann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Hofling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460, 245–249 (2009).
[CrossRef] [PubMed]

Knorr, A.

A. Carmele and A. Knorr, “Analytical solution of the quantum-state tomography of the biexciton cascade in semiconductor quantum dots: pure dephasing does not affect entanglement,” Phys. Rev. B 84, 075328 (2011).
[CrossRef]

A. Carmele, F. Milde, M.-R. Dachner, M. B. Harouni, R. Roknizadeh, M. Richter, and A. Knorr, “Formation dynamics of an entangled photon pair: a temperature-dependent analysis,” Phys. Rev. B 81, 195319 (2010).

Kowalik, K.

B. D. Gerardot, S. Seidl, P. A. Dalgarno, R. J. Warburton, D. Granados, J. M. Garcia, K. Kowalik, O. Krebs, K. Karrai, A. Badolato, and P. M. Petroff, “Manipulating exciton fine structure in quantum dots with a lateral electric field,” Appl. Phys. Lett. 90, 041101 (2007).
[CrossRef]

Krebs, O.

A. Dousse, J. Suffczynski, A. Beveratos, O. Krebs, A. Lemaitre, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466, 217–220 (2010).
[CrossRef] [PubMed]

B. D. Gerardot, S. Seidl, P. A. Dalgarno, R. J. Warburton, D. Granados, J. M. Garcia, K. Kowalik, O. Krebs, K. Karrai, A. Badolato, and P. M. Petroff, “Manipulating exciton fine structure in quantum dots with a lateral electric field,” Appl. Phys. Lett. 90, 041101 (2007).
[CrossRef]

Kroner, M.

S. Seidl, M. Kroner, A. Högele, K. Karrai, R. J. Warburton, A. Badolato, and P. M. Petroff, “Effect of uniaxial stress on excitons in a self-assembled quantum dot,” Appl. Phys. Lett. 88, 203113 (2006).
[CrossRef]

Kruse, C.

J. Wiersig, C. Gies, F. Jahnke, M. Assmann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Hofling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460, 245–249 (2009).
[CrossRef] [PubMed]

Kumagai, N.

Y. Ota, S. Iwamoto, N. Kumagai, and Y. Arakawa, “Spontaneous two-photon emission from a single quantum dot,” Phys. Rev. Lett. 107, 233602 (2011).
[CrossRef] [PubMed]

Laucht, A.

A. Laucht, N. Hauke, J. M. Villas-Boas, F. Hofbauer, M. Kaniber, G. Böhm, and J. J. Finley, “Dephasing of exciton polaritons in photoexcited InGaAs quantum dots in GaAs nanocavities,” Phys. Rev. Lett. 103, 087405 (2009).
[CrossRef] [PubMed]

Laussy, F. P.

E. del Valle, A. Gonzalez-Tudela, E. Cancellieri, F. P. Laussy, and C. Tejedor, “Generation of a two-photon state from a quantum dot in a microcavity,” New J. Phys. 13, 113014 (2011).
[CrossRef]

Lemaitre, A.

A. Dousse, J. Suffczynski, A. Beveratos, O. Krebs, A. Lemaitre, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466, 217–220 (2010).
[CrossRef] [PubMed]

Li, C.-F.

L. He, M. Gong, C.-F. Li, G.-C. Guo, and A. Zunger, “Highly reduced fine-structure splitting in InAs/InP quantum dots offering an efficient on-demand entangled 1.55 – ?m photon emitter,” Phys. Rev. Lett. 101, 157405 (2008).
[CrossRef] [PubMed]

Lindblad, G.

G. Lindblad, “On the generators of quantum dynamical semigroups,” Commun. Math. Phys. 48, 119–130 (1976).
[CrossRef]

Lochmann, A.

E. Stock, T. Warming, I. Ostapenko, S. Rodt, A. Schliwa, J. A. Töfflinger, A. Lochmann, A. I. Toropov, S. A. Moshchenko, D. V. Dmitriev, V. A. Haisler, and D. Bimberg, “Single-photon emission from InGaAs quantum dots grown on (111) GaAs,” Appl. Phys. Lett. 96, 093112 (2010).
[CrossRef]

Mehta, M.

M. Mehta, D. Reuter, A. D. Wieck, S. Michaelis de Vasconcellos, A. Zrenner, and C. Meier, “An intentionally positioned (In,Ga)As quantum dot in a micron sized light emitting diode,” Appl. Phys. Lett. 97, 143101 (2010).
[CrossRef]

Meier, C.

M. Mehta, D. Reuter, A. D. Wieck, S. Michaelis de Vasconcellos, A. Zrenner, and C. Meier, “An intentionally positioned (In,Ga)As quantum dot in a micron sized light emitting diode,” Appl. Phys. Lett. 97, 143101 (2010).
[CrossRef]

Michaelis de Vasconcellos, S.

M. Mehta, D. Reuter, A. D. Wieck, S. Michaelis de Vasconcellos, A. Zrenner, and C. Meier, “An intentionally positioned (In,Ga)As quantum dot in a micron sized light emitting diode,” Appl. Phys. Lett. 97, 143101 (2010).
[CrossRef]

Michler, P.

R. Hafenbrak, S. M. Ulrich, P. Michler, L. Wang, A. Rastelli, and O. G. Schmidt, “Triggered polarization-entangled photon pairs from a single quantum dot up to 30 k,” New J. Phys. 9, 315 (2007).
[CrossRef]

Milde, F.

A. Carmele, F. Milde, M.-R. Dachner, M. B. Harouni, R. Roknizadeh, M. Richter, and A. Knorr, “Formation dynamics of an entangled photon pair: a temperature-dependent analysis,” Phys. Rev. B 81, 195319 (2010).

Mohan, A.

A. Mohan, M. Felici, P. Gallo, B. Dwir, A. Rudra, J. Faist, and E. Kapon, “Polarization-entangled photons produced with high-symmetry site-controlled quantum dots,” Nat. Photonics 4, 302–306 (2010).
[CrossRef]

Moshchenko, S. A.

E. Stock, T. Warming, I. Ostapenko, S. Rodt, A. Schliwa, J. A. Töfflinger, A. Lochmann, A. I. Toropov, S. A. Moshchenko, D. V. Dmitriev, V. A. Haisler, and D. Bimberg, “Single-photon emission from InGaAs quantum dots grown on (111) GaAs,” Appl. Phys. Lett. 96, 093112 (2010).
[CrossRef]

Orenstein, M.

A. Hayat, P. Ginzburg, and M. Orenstein, “Observation of two-photon emission from semiconductors,” Nat. Photonics 2, 238–241 (2008).
[CrossRef]

Ostapenko, I.

E. Stock, T. Warming, I. Ostapenko, S. Rodt, A. Schliwa, J. A. Töfflinger, A. Lochmann, A. I. Toropov, S. A. Moshchenko, D. V. Dmitriev, V. A. Haisler, and D. Bimberg, “Single-photon emission from InGaAs quantum dots grown on (111) GaAs,” Appl. Phys. Lett. 96, 093112 (2010).
[CrossRef]

Ota, Y.

Y. Ota, S. Iwamoto, N. Kumagai, and Y. Arakawa, “Spontaneous two-photon emission from a single quantum dot,” Phys. Rev. Lett. 107, 233602 (2011).
[CrossRef] [PubMed]

Pelton, M.

O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, “Regulated and entangled photons from a single quantum dot,” Phys. Rev. Lett. 84, 2513–2516 (2000).
[CrossRef] [PubMed]

Perea, J. I.

F. Troiani, J. I. Perea, and C. Tejedor, “Cavity-assisted generation of entangled photon pairs by a quantum-dot cascade decay,” Phys. Rev. B 74, 235310 (2006).
[CrossRef]

Petroff, P. M.

B. D. Gerardot, S. Seidl, P. A. Dalgarno, R. J. Warburton, D. Granados, J. M. Garcia, K. Kowalik, O. Krebs, K. Karrai, A. Badolato, and P. M. Petroff, “Manipulating exciton fine structure in quantum dots with a lateral electric field,” Appl. Phys. Lett. 90, 041101 (2007).
[CrossRef]

S. Strauf, N. G. Stoltz, M. T. Rakher, L. Coldren, P. M. Petroff, and D. Bouwmeester, “High-frequency single photon source with polarization control,” Nat. Photonics 1, 704–708 (2007).
[CrossRef]

S. Seidl, M. Kroner, A. Högele, K. Karrai, R. J. Warburton, A. Badolato, and P. M. Petroff, “Effect of uniaxial stress on excitons in a self-assembled quantum dot,” Appl. Phys. Lett. 88, 203113 (2006).
[CrossRef]

Pfanner, G.

G. Pfanner, M. Seliger, and U. Hohenester, “Entangled photon sources based on semiconductor quantum dots: the role of pure dephasing,” Phys. Rev. B 78, 195410 (2008).

Rakher, M. T.

S. Strauf, N. G. Stoltz, M. T. Rakher, L. Coldren, P. M. Petroff, and D. Bouwmeester, “High-frequency single photon source with polarization control,” Nat. Photonics 1, 704–708 (2007).
[CrossRef]

Rastelli, A.

R. Hafenbrak, S. M. Ulrich, P. Michler, L. Wang, A. Rastelli, and O. G. Schmidt, “Triggered polarization-entangled photon pairs from a single quantum dot up to 30 k,” New J. Phys. 9, 315 (2007).
[CrossRef]

Reitzenstein, S.

J. Wiersig, C. Gies, F. Jahnke, M. Assmann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Hofling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460, 245–249 (2009).
[CrossRef] [PubMed]

Reuter, D.

M. Mehta, D. Reuter, A. D. Wieck, S. Michaelis de Vasconcellos, A. Zrenner, and C. Meier, “An intentionally positioned (In,Ga)As quantum dot in a micron sized light emitting diode,” Appl. Phys. Lett. 97, 143101 (2010).
[CrossRef]

Richter, M.

A. Carmele, F. Milde, M.-R. Dachner, M. B. Harouni, R. Roknizadeh, M. Richter, and A. Knorr, “Formation dynamics of an entangled photon pair: a temperature-dependent analysis,” Phys. Rev. B 81, 195319 (2010).

Ritchie, D. A.

R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “A semiconductor source of triggered entangled photon pairs,” Nature 439, 179–182 (2006).
[CrossRef] [PubMed]

Rodt, S.

E. Stock, T. Warming, I. Ostapenko, S. Rodt, A. Schliwa, J. A. Töfflinger, A. Lochmann, A. I. Toropov, S. A. Moshchenko, D. V. Dmitriev, V. A. Haisler, and D. Bimberg, “Single-photon emission from InGaAs quantum dots grown on (111) GaAs,” Appl. Phys. Lett. 96, 093112 (2010).
[CrossRef]

Roknizadeh, R.

A. Carmele, F. Milde, M.-R. Dachner, M. B. Harouni, R. Roknizadeh, M. Richter, and A. Knorr, “Formation dynamics of an entangled photon pair: a temperature-dependent analysis,” Phys. Rev. B 81, 195319 (2010).

Rudra, A.

A. Mohan, M. Felici, P. Gallo, B. Dwir, A. Rudra, J. Faist, and E. Kapon, “Polarization-entangled photons produced with high-symmetry site-controlled quantum dots,” Nat. Photonics 4, 302–306 (2010).
[CrossRef]

Sagnes, I.

A. Dousse, J. Suffczynski, A. Beveratos, O. Krebs, A. Lemaitre, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466, 217–220 (2010).
[CrossRef] [PubMed]

Santori, C.

O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, “Regulated and entangled photons from a single quantum dot,” Phys. Rev. Lett. 84, 2513–2516 (2000).
[CrossRef] [PubMed]

Schliwa, A.

E. Stock, T. Warming, I. Ostapenko, S. Rodt, A. Schliwa, J. A. Töfflinger, A. Lochmann, A. I. Toropov, S. A. Moshchenko, D. V. Dmitriev, V. A. Haisler, and D. Bimberg, “Single-photon emission from InGaAs quantum dots grown on (111) GaAs,” Appl. Phys. Lett. 96, 093112 (2010).
[CrossRef]

Schmidt, O. G.

R. Hafenbrak, S. M. Ulrich, P. Michler, L. Wang, A. Rastelli, and O. G. Schmidt, “Triggered polarization-entangled photon pairs from a single quantum dot up to 30 k,” New J. Phys. 9, 315 (2007).
[CrossRef]

Schneider, C.

J. Wiersig, C. Gies, F. Jahnke, M. Assmann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Hofling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460, 245–249 (2009).
[CrossRef] [PubMed]

Seidl, S.

B. D. Gerardot, S. Seidl, P. A. Dalgarno, R. J. Warburton, D. Granados, J. M. Garcia, K. Kowalik, O. Krebs, K. Karrai, A. Badolato, and P. M. Petroff, “Manipulating exciton fine structure in quantum dots with a lateral electric field,” Appl. Phys. Lett. 90, 041101 (2007).
[CrossRef]

S. Seidl, M. Kroner, A. Högele, K. Karrai, R. J. Warburton, A. Badolato, and P. M. Petroff, “Effect of uniaxial stress on excitons in a self-assembled quantum dot,” Appl. Phys. Lett. 88, 203113 (2006).
[CrossRef]

Seliger, M.

G. Pfanner, M. Seliger, and U. Hohenester, “Entangled photon sources based on semiconductor quantum dots: the role of pure dephasing,” Phys. Rev. B 78, 195410 (2008).

Senellart, P.

A. Dousse, J. Suffczynski, A. Beveratos, O. Krebs, A. Lemaitre, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466, 217–220 (2010).
[CrossRef] [PubMed]

Shields, A. J.

R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “A semiconductor source of triggered entangled photon pairs,” Nature 439, 179–182 (2006).
[CrossRef] [PubMed]

Stevenson, R. M.

R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “A semiconductor source of triggered entangled photon pairs,” Nature 439, 179–182 (2006).
[CrossRef] [PubMed]

Stock, E.

E. Stock, T. Warming, I. Ostapenko, S. Rodt, A. Schliwa, J. A. Töfflinger, A. Lochmann, A. I. Toropov, S. A. Moshchenko, D. V. Dmitriev, V. A. Haisler, and D. Bimberg, “Single-photon emission from InGaAs quantum dots grown on (111) GaAs,” Appl. Phys. Lett. 96, 093112 (2010).
[CrossRef]

Stoltz, N. G.

S. Strauf, N. G. Stoltz, M. T. Rakher, L. Coldren, P. M. Petroff, and D. Bouwmeester, “High-frequency single photon source with polarization control,” Nat. Photonics 1, 704–708 (2007).
[CrossRef]

Strauf, S.

S. Strauf and F. Jahnke, “Single quantum dot nanolaser,” Laser Photon. Rev. 5, 607–633 (2011).

S. Strauf, N. G. Stoltz, M. T. Rakher, L. Coldren, P. M. Petroff, and D. Bouwmeester, “High-frequency single photon source with polarization control,” Nat. Photonics 1, 704–708 (2007).
[CrossRef]

Suffczynski, J.

A. Dousse, J. Suffczynski, A. Beveratos, O. Krebs, A. Lemaitre, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466, 217–220 (2010).
[CrossRef] [PubMed]

Tejedor, C.

E. del Valle, A. Gonzalez-Tudela, E. Cancellieri, F. P. Laussy, and C. Tejedor, “Generation of a two-photon state from a quantum dot in a microcavity,” New J. Phys. 13, 113014 (2011).
[CrossRef]

F. Troiani, J. I. Perea, and C. Tejedor, “Cavity-assisted generation of entangled photon pairs by a quantum-dot cascade decay,” Phys. Rev. B 74, 235310 (2006).
[CrossRef]

Töfflinger, J. A.

E. Stock, T. Warming, I. Ostapenko, S. Rodt, A. Schliwa, J. A. Töfflinger, A. Lochmann, A. I. Toropov, S. A. Moshchenko, D. V. Dmitriev, V. A. Haisler, and D. Bimberg, “Single-photon emission from InGaAs quantum dots grown on (111) GaAs,” Appl. Phys. Lett. 96, 093112 (2010).
[CrossRef]

Toropov, A. I.

E. Stock, T. Warming, I. Ostapenko, S. Rodt, A. Schliwa, J. A. Töfflinger, A. Lochmann, A. I. Toropov, S. A. Moshchenko, D. V. Dmitriev, V. A. Haisler, and D. Bimberg, “Single-photon emission from InGaAs quantum dots grown on (111) GaAs,” Appl. Phys. Lett. 96, 093112 (2010).
[CrossRef]

Troiani, F.

F. Troiani, J. I. Perea, and C. Tejedor, “Cavity-assisted generation of entangled photon pairs by a quantum-dot cascade decay,” Phys. Rev. B 74, 235310 (2006).
[CrossRef]

Ulrich, S. M.

R. Hafenbrak, S. M. Ulrich, P. Michler, L. Wang, A. Rastelli, and O. G. Schmidt, “Triggered polarization-entangled photon pairs from a single quantum dot up to 30 k,” New J. Phys. 9, 315 (2007).
[CrossRef]

Villas-Boas, J. M.

A. Laucht, N. Hauke, J. M. Villas-Boas, F. Hofbauer, M. Kaniber, G. Böhm, and J. J. Finley, “Dephasing of exciton polaritons in photoexcited InGaAs quantum dots in GaAs nanocavities,” Phys. Rev. Lett. 103, 087405 (2009).
[CrossRef] [PubMed]

Voisin, P.

A. Dousse, J. Suffczynski, A. Beveratos, O. Krebs, A. Lemaitre, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466, 217–220 (2010).
[CrossRef] [PubMed]

Volz, T.

U. Hohenester, T. Volz, M. Winger, and A. Imamoglu, “Cavity-assisted two-photon decay of biexcitons,” OECS12 Conference Proceedings, page 110 (2011).

Wang, L.

R. Hafenbrak, S. M. Ulrich, P. Michler, L. Wang, A. Rastelli, and O. G. Schmidt, “Triggered polarization-entangled photon pairs from a single quantum dot up to 30 k,” New J. Phys. 9, 315 (2007).
[CrossRef]

Warburton, R. J.

B. D. Gerardot, S. Seidl, P. A. Dalgarno, R. J. Warburton, D. Granados, J. M. Garcia, K. Kowalik, O. Krebs, K. Karrai, A. Badolato, and P. M. Petroff, “Manipulating exciton fine structure in quantum dots with a lateral electric field,” Appl. Phys. Lett. 90, 041101 (2007).
[CrossRef]

S. Seidl, M. Kroner, A. Högele, K. Karrai, R. J. Warburton, A. Badolato, and P. M. Petroff, “Effect of uniaxial stress on excitons in a self-assembled quantum dot,” Appl. Phys. Lett. 88, 203113 (2006).
[CrossRef]

Warming, T.

E. Stock, T. Warming, I. Ostapenko, S. Rodt, A. Schliwa, J. A. Töfflinger, A. Lochmann, A. I. Toropov, S. A. Moshchenko, D. V. Dmitriev, V. A. Haisler, and D. Bimberg, “Single-photon emission from InGaAs quantum dots grown on (111) GaAs,” Appl. Phys. Lett. 96, 093112 (2010).
[CrossRef]

Wieck, A. D.

M. Mehta, D. Reuter, A. D. Wieck, S. Michaelis de Vasconcellos, A. Zrenner, and C. Meier, “An intentionally positioned (In,Ga)As quantum dot in a micron sized light emitting diode,” Appl. Phys. Lett. 97, 143101 (2010).
[CrossRef]

Wiersig, J.

J. Wiersig, C. Gies, F. Jahnke, M. Assmann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Hofling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460, 245–249 (2009).
[CrossRef] [PubMed]

Winger, M.

U. Hohenester, T. Volz, M. Winger, and A. Imamoglu, “Cavity-assisted two-photon decay of biexcitons,” OECS12 Conference Proceedings, page 110 (2011).

Yamamoto, Y.

O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, “Regulated and entangled photons from a single quantum dot,” Phys. Rev. Lett. 84, 2513–2516 (2000).
[CrossRef] [PubMed]

Yoshino, K.-I.

K.-I. Yoshino, T. Aoki, and A. Furusawa, “Generation of continuous-wave broadband entangled beams using periodically poled lithium niobate waveguides,” Appl. Phys. Lett. 90, 041111 (2007).
[CrossRef]

Young, R. J.

R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “A semiconductor source of triggered entangled photon pairs,” Nature 439, 179–182 (2006).
[CrossRef] [PubMed]

Zrenner, A.

M. Mehta, D. Reuter, A. D. Wieck, S. Michaelis de Vasconcellos, A. Zrenner, and C. Meier, “An intentionally positioned (In,Ga)As quantum dot in a micron sized light emitting diode,” Appl. Phys. Lett. 97, 143101 (2010).
[CrossRef]

Zunger, A.

L. He, M. Gong, C.-F. Li, G.-C. Guo, and A. Zunger, “Highly reduced fine-structure splitting in InAs/InP quantum dots offering an efficient on-demand entangled 1.55 – ?m photon emitter,” Phys. Rev. Lett. 101, 157405 (2008).
[CrossRef] [PubMed]

Appl. Phys. Lett.

K.-I. Yoshino, T. Aoki, and A. Furusawa, “Generation of continuous-wave broadband entangled beams using periodically poled lithium niobate waveguides,” Appl. Phys. Lett. 90, 041111 (2007).
[CrossRef]

M. Mehta, D. Reuter, A. D. Wieck, S. Michaelis de Vasconcellos, A. Zrenner, and C. Meier, “An intentionally positioned (In,Ga)As quantum dot in a micron sized light emitting diode,” Appl. Phys. Lett. 97, 143101 (2010).
[CrossRef]

E. Stock, T. Warming, I. Ostapenko, S. Rodt, A. Schliwa, J. A. Töfflinger, A. Lochmann, A. I. Toropov, S. A. Moshchenko, D. V. Dmitriev, V. A. Haisler, and D. Bimberg, “Single-photon emission from InGaAs quantum dots grown on (111) GaAs,” Appl. Phys. Lett. 96, 093112 (2010).
[CrossRef]

B. D. Gerardot, S. Seidl, P. A. Dalgarno, R. J. Warburton, D. Granados, J. M. Garcia, K. Kowalik, O. Krebs, K. Karrai, A. Badolato, and P. M. Petroff, “Manipulating exciton fine structure in quantum dots with a lateral electric field,” Appl. Phys. Lett. 90, 041101 (2007).
[CrossRef]

S. Seidl, M. Kroner, A. Högele, K. Karrai, R. J. Warburton, A. Badolato, and P. M. Petroff, “Effect of uniaxial stress on excitons in a self-assembled quantum dot,” Appl. Phys. Lett. 88, 203113 (2006).
[CrossRef]

Commun. Math. Phys.

G. Lindblad, “On the generators of quantum dynamical semigroups,” Commun. Math. Phys. 48, 119–130 (1976).
[CrossRef]

Jpn. J. Appl. Phys.

K. Edamatsu, “Entangled photons: generation, observation, and characterization,” Jpn. J. Appl. Phys. 46, 7175–7187 (2007).
[CrossRef]

Laser Photon. Rev.

S. Strauf and F. Jahnke, “Single quantum dot nanolaser,” Laser Photon. Rev. 5, 607–633 (2011).

Nat. Photonics

A. Mohan, M. Felici, P. Gallo, B. Dwir, A. Rudra, J. Faist, and E. Kapon, “Polarization-entangled photons produced with high-symmetry site-controlled quantum dots,” Nat. Photonics 4, 302–306 (2010).
[CrossRef]

A. Hayat, P. Ginzburg, and M. Orenstein, “Observation of two-photon emission from semiconductors,” Nat. Photonics 2, 238–241 (2008).
[CrossRef]

S. Strauf, N. G. Stoltz, M. T. Rakher, L. Coldren, P. M. Petroff, and D. Bouwmeester, “High-frequency single photon source with polarization control,” Nat. Photonics 1, 704–708 (2007).
[CrossRef]

Nature

J. Wiersig, C. Gies, F. Jahnke, M. Assmann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Hofling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460, 245–249 (2009).
[CrossRef] [PubMed]

A. Dousse, J. Suffczynski, A. Beveratos, O. Krebs, A. Lemaitre, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466, 217–220 (2010).
[CrossRef] [PubMed]

R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “A semiconductor source of triggered entangled photon pairs,” Nature 439, 179–182 (2006).
[CrossRef] [PubMed]

New J. Phys.

R. Hafenbrak, S. M. Ulrich, P. Michler, L. Wang, A. Rastelli, and O. G. Schmidt, “Triggered polarization-entangled photon pairs from a single quantum dot up to 30 k,” New J. Phys. 9, 315 (2007).
[CrossRef]

E. del Valle, A. Gonzalez-Tudela, E. Cancellieri, F. P. Laussy, and C. Tejedor, “Generation of a two-photon state from a quantum dot in a microcavity,” New J. Phys. 13, 113014 (2011).
[CrossRef]

Phys. Rev. B

G. Pfanner, M. Seliger, and U. Hohenester, “Entangled photon sources based on semiconductor quantum dots: the role of pure dephasing,” Phys. Rev. B 78, 195410 (2008).

F. Troiani, J. I. Perea, and C. Tejedor, “Cavity-assisted generation of entangled photon pairs by a quantum-dot cascade decay,” Phys. Rev. B 74, 235310 (2006).
[CrossRef]

A. Carmele, F. Milde, M.-R. Dachner, M. B. Harouni, R. Roknizadeh, M. Richter, and A. Knorr, “Formation dynamics of an entangled photon pair: a temperature-dependent analysis,” Phys. Rev. B 81, 195319 (2010).

A. Carmele and A. Knorr, “Analytical solution of the quantum-state tomography of the biexciton cascade in semiconductor quantum dots: pure dephasing does not affect entanglement,” Phys. Rev. B 84, 075328 (2011).
[CrossRef]

Phys. Rev. Lett.

L. He, M. Gong, C.-F. Li, G.-C. Guo, and A. Zunger, “Highly reduced fine-structure splitting in InAs/InP quantum dots offering an efficient on-demand entangled 1.55 – ?m photon emitter,” Phys. Rev. Lett. 101, 157405 (2008).
[CrossRef] [PubMed]

O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, “Regulated and entangled photons from a single quantum dot,” Phys. Rev. Lett. 84, 2513–2516 (2000).
[CrossRef] [PubMed]

Y. Ota, S. Iwamoto, N. Kumagai, and Y. Arakawa, “Spontaneous two-photon emission from a single quantum dot,” Phys. Rev. Lett. 107, 233602 (2011).
[CrossRef] [PubMed]

A. Laucht, N. Hauke, J. M. Villas-Boas, F. Hofbauer, M. Kaniber, G. Böhm, and J. J. Finley, “Dephasing of exciton polaritons in photoexcited InGaAs quantum dots in GaAs nanocavities,” Phys. Rev. Lett. 103, 087405 (2009).
[CrossRef] [PubMed]

T. Flissikowski, A. Betke, I. A. Akimov, and F. Henneberger, “Two-photon coherent control of a single quantum dot,” Phys. Rev. Lett. 92, 227401 (2004).
[CrossRef] [PubMed]

Rev. Mod. Phys.

R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,” Rev. Mod. Phys. 81, 865–942 (2009).
[CrossRef]

Other

H. J. Carmichael, Statistical Methods in Quantum Optics 1: Master Equations and Fokker-Planck Equations (Springer, 2002), 2nd ed.

U. Hohenester, T. Volz, M. Winger, and A. Imamoglu, “Cavity-assisted two-photon decay of biexcitons,” OECS12 Conference Proceedings, page 110 (2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Sketch of the quantum-dot cavity system. The optical transitions in a single QD are coupled to two orthogonal modes of a high-quality optical cavity with frequencies ωi. Electronic QD configurations considered are ground-state with energy EG, the two lowest exciton levels with possible fine-structure splitting with energies EH and EV, and the biexciton with energy EB. The cavity modes are tuned close to half the biexciton energy, h̄ωV = h̄ωH ≈ (EBEG)/2. The effects of pure dephasing of electronic coherences and the finite lifetime of photons inside the cavity are taken into account.

Fig. 2
Fig. 2

Dependence of polarization-entanglement on the fine-structure splitting δ for different-quality cavities. The concurrence C is shown ( oe-20-5-5335-i001.jpg), which in the system studied is given by C = 2|ρH,V|. Cavity modes are tuned to half the biexciton energy, h̄ωi = (EBEG)/2. Results shown are for (a) κ/h̄ = 5 ps−1, (b) κ/h̄ = 0.25 ps−1, and (c) κ/h̄ = 0.1 ps−1 using E B XX = 1 meV . In panel (b), the concurrence is also shown for increased biexciton binding energy E B XX = 3 meV ( oe-20-5-5335-i002). Clearly visible is that the higher the cavity quality and the larger the biexciton binding energy, the less sensitive the concurrence (and thus the polarization entanglement) is to the fine-structure splitting.

Fig. 3
Fig. 3

Sensitivity to detuning from two-photon resonance condition. The concurrence C is shown for different detuning of the cavity modes from the two-photon resonance condition for the high-quality cavity. Red: h̄ωi = (EB – EG)/2 [same as in Fig. 2(c)]. Blue: h̄ωi = (EBEG)/2 – 0.05 meV. Black: h̄ωi = (EBEG)/2 – 0.25 meV.

Fig. 4
Fig. 4

Statistics of the emitted photons. Second-order photon correlation function G VV , VV ( 2 ) ( t , τ ) averaged over all emission times t. Results are for g/κ = 0.4 (medium-quality cavity) and δ = 0.0; each set of data is normalized to its maximum. Strong photon “bunching” is visible for the cavity modes tuned to half the biexciton energy, h̄ωi = (EBEG)/2, (black, solid line). Clear “anti-bunching” is observed when the cavity modes are further detuned from the two-photon resonance condition for h̄ωi = (EBEG)/2 – 0.25 meV (red, dashed line) and h̄ωi = (EBEG)/2 – 0.5 meV (blue, dotted line), respectively.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

𝒣 = E G | G G | + E B | B B | + E H | X H X H | + E V | X V X V | + i = H , V ( h ¯ ω i b i b i [ g ( | G X i | b i + | X i B | b i ) + h.c. ] ) .
t ρ s = i h ¯ [ 𝒣 , ρ s ] + 𝒧 cavity ( ρ s ) + 𝒧 pure ( ρ s ) .
G i j , k l ( 2 ) ( t , τ ) = b i ( t ) b j ( t + τ ) b k ( t + τ ) b l ( t ) = tr { ρ s b i ( t ) b j ( t + τ ) b k ( t + τ ) b l ( t ) } ,

Metrics