Abstract

A new method is demonstrated for optically trapping micron-sized absorbing particles in air and obtaining their single-particle Raman spectra. A 488-nm Gaussian beam from an Argon ion laser is transformed by conical lenses (axicons) and other optics into two counter-propagating hollow beams, which are then focused tightly to form hollow conical beams near the trapping region. The combination of the two coaxial conical beams, with focal points shifted relative to each other along the axis of the beams, generates a low-light-intensity biconical region totally enclosed by the high-intensity light at the surface of the bicone, which is a type of bottle beam. Particles within this region are trapped by the photophoretic forces that push particles toward the low-intensity center of this region. Raman spectra from individual trapped particles made from carbon nanotubes are measured. This trapping technique could lead to the development of an on-line real-time single-particle Raman spectrometer for characterization of absorbing aerosol particles.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
    [CrossRef]
  2. A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
    [CrossRef] [PubMed]
  3. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
    [CrossRef] [PubMed]
  4. R. E. Preston, T. R. Lettieri, and H. G. Semerjian, “Characterization of single leviatated droplets by Raman spectroscopy,” Langmuir 1(3), 365–367 (1985).
    [CrossRef]
  5. R. Thurn and W. Kiefer, “Structural resonances observed in the Raman spectra of optically levitated liquid droplets,” Appl. Opt. 24(10), 1515–1519 (1985).
    [CrossRef] [PubMed]
  6. A. Biswas, H. Latifi, R. L. Armstrong, and R. G. Pinnick, “Double-resonance stimulated Raman scattering from optically levitated glycerol droplets,” Phys. Rev. A 40(12), 7413–7416 (1989).
    [CrossRef] [PubMed]
  7. J. B. Wills, K. J. Knox, and J. P. Reid, “Optical control and characterization of aerosol,” Chem. Phys. Lett. 481(4-6), 153–165 (2009).
    [CrossRef]
  8. C. Xie and Y. Q. Li, “Confocal micro-Raman spectroscopy of single biological cells using optical trapping and shifted excitation difference techniques,” J. Appl. Phys. 93(5), 2982–2986 (2003).
    [CrossRef]
  9. D. Chen, S. S. Huang, and Y. Q. Li, “Real-time detection of kinetic germination and heterogeneity of single Bacillus spores by laser tweezers Raman spectroscopy,” Anal. Chem. 78(19), 6936–6941 (2006).
    [CrossRef] [PubMed]
  10. P. F. Zhang, L. B. Kong, P. Setlow, and Y. Q. Li, “Multiple-trap laser tweezers Raman spectroscopy for simultaneous monitoring of the biological dynamics of multiple individual cells,” Opt. Lett. 35(20), 3321–3323 (2010).
    [CrossRef] [PubMed]
  11. L. B. Kong, P. F. Zhang, G. W. Wang, J. Yu, P. Setlow, and Y. Q. Li, “Characterization of bacterial spore germination using phase-contrast and fluorescence microscopy, Raman spectroscopy and optical tweezers,” Nat. Protoc. 6(5), 625–639 (2011).
    [CrossRef] [PubMed]
  12. A. E. Carruthers, J. P. Reid, and A. J. Orr-Ewing, “Longitudinal optical trapping and sizing of aerosol droplets,” Opt. Express 18(13), 14238–14244 (2010).
    [CrossRef] [PubMed]
  13. D. R. Burnham and D. McGloin, “Holographic optical trapping of aerosol droplets,” Opt. Express 14(9), 4175–4181 (2006).
    [CrossRef] [PubMed]
  14. V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
    [CrossRef] [PubMed]
  15. B. Shao, S. C. Esener, J. M. Nascimento, M. W. Berns, E. L. Botvinick, and M. Ozkan, “Size tunable three-dimensional annular laser trap based on axicons,” Opt. Lett. 31(22), 3375–3377 (2006).
    [CrossRef] [PubMed]
  16. M. Lewittes, S. Arnold, and G. Oster, “Radiometric levitation of micron sized spheres,” Appl. Phys. Lett. 40(6), 455–457 (1982).
    [CrossRef]
  17. V. G. Shvedov, A. S. Desyatnikov, A. V. Rode, W. Krolikowski, and Y. S. Kivshar, “Optical guiding of absorbing nanoclusters in air,” Opt. Express 17(7), 5743–5757 (2009).
    [CrossRef] [PubMed]
  18. A. S. Desyatnikov, V. G. Shvedov, A. V. Rode, W. Krolikowski, and Y. S. Kivshar, “Photophoretic manipulation of absorbing aerosol particles with vortex beams: theory versus experiment,” Opt. Express 17(10), 8201–8211 (2009).
    [CrossRef] [PubMed]
  19. V. G. Shvedov, C. Hnatovsky, A. V. Rode, and W. Krolikowski, “Robust trapping and manipulation of airborne particles with a bottle beam,” Opt. Express 19(18), 17350–17356 (2011).
    [CrossRef] [PubMed]
  20. P. Zhang, Z. Zhang, J. Prakash, S. Huang, D. Hernandez, M. Salazar, D. N. Christodoulides, and Z. Chen, “Trapping and transporting aerosols with a single optical bottle beam generated by moiré techniques,” Opt. Lett. 36(8), 1491–1493 (2011).
    [CrossRef] [PubMed]
  21. K. S. Kalasinsky, T. Hadfield, A. A. Shea, V. F. Kalasinsky, M. P. Nelson, J. Neiss, A. J. Drauch, G. S. Vanni, and P. J. Treado, “Raman chemical imaging spectroscopy reagentless detection and identification of pathogens: signature development and evaluation,” Anal. Chem. 79(7), 2658–2673 (2007).
    [CrossRef] [PubMed]
  22. Z. Han and A. Fina, “Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review,” Prog. Polym. Sci. 36(7), 914–944 (2011).
    [CrossRef]
  23. Y. L. Pan, R. G. Pinnick, S. C. Hill, J. M. Rosen, and R. K. Chang, “Single-particle laser-induced fluorescence spectra of biological and other organic-carbon aerosols in the atmosphere: measurements at New Haven, Connecticut, and Las Cruces, New Mexico,” J. Geophys. Res. 112(D24), D24S19 (2007).
    [CrossRef]
  24. J. R. Finke, C. L. Jeffrey, and R. E. Spjut, “Measurement of the emissivity of small particles at elevated temperatures,” Opt. Eng. 27, 684–690 (1988).
  25. J. E. Bohn, P. G. Etchegoin, E. C. Le Ru, R. Xiang, S. Chiashi, and S. Maruyama, “Estimating the Raman cross sections of single carbon nanotubes,” ACS Nano 4(6), 3466–3470 (2010).
    [CrossRef] [PubMed]
  26. J. Guicheteau, S. Christesen, D. Emge, and A. Tripathi, “Bacterial mixture identification using Raman and surface-enhanced Raman chemical imaging,” J. Raman Spectrosc. 41(12), 1632–1637 (2010).
    [CrossRef]

2011 (4)

L. B. Kong, P. F. Zhang, G. W. Wang, J. Yu, P. Setlow, and Y. Q. Li, “Characterization of bacterial spore germination using phase-contrast and fluorescence microscopy, Raman spectroscopy and optical tweezers,” Nat. Protoc. 6(5), 625–639 (2011).
[CrossRef] [PubMed]

V. G. Shvedov, C. Hnatovsky, A. V. Rode, and W. Krolikowski, “Robust trapping and manipulation of airborne particles with a bottle beam,” Opt. Express 19(18), 17350–17356 (2011).
[CrossRef] [PubMed]

P. Zhang, Z. Zhang, J. Prakash, S. Huang, D. Hernandez, M. Salazar, D. N. Christodoulides, and Z. Chen, “Trapping and transporting aerosols with a single optical bottle beam generated by moiré techniques,” Opt. Lett. 36(8), 1491–1493 (2011).
[CrossRef] [PubMed]

Z. Han and A. Fina, “Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review,” Prog. Polym. Sci. 36(7), 914–944 (2011).
[CrossRef]

2010 (4)

J. E. Bohn, P. G. Etchegoin, E. C. Le Ru, R. Xiang, S. Chiashi, and S. Maruyama, “Estimating the Raman cross sections of single carbon nanotubes,” ACS Nano 4(6), 3466–3470 (2010).
[CrossRef] [PubMed]

J. Guicheteau, S. Christesen, D. Emge, and A. Tripathi, “Bacterial mixture identification using Raman and surface-enhanced Raman chemical imaging,” J. Raman Spectrosc. 41(12), 1632–1637 (2010).
[CrossRef]

P. F. Zhang, L. B. Kong, P. Setlow, and Y. Q. Li, “Multiple-trap laser tweezers Raman spectroscopy for simultaneous monitoring of the biological dynamics of multiple individual cells,” Opt. Lett. 35(20), 3321–3323 (2010).
[CrossRef] [PubMed]

A. E. Carruthers, J. P. Reid, and A. J. Orr-Ewing, “Longitudinal optical trapping and sizing of aerosol droplets,” Opt. Express 18(13), 14238–14244 (2010).
[CrossRef] [PubMed]

2009 (3)

2007 (2)

Y. L. Pan, R. G. Pinnick, S. C. Hill, J. M. Rosen, and R. K. Chang, “Single-particle laser-induced fluorescence spectra of biological and other organic-carbon aerosols in the atmosphere: measurements at New Haven, Connecticut, and Las Cruces, New Mexico,” J. Geophys. Res. 112(D24), D24S19 (2007).
[CrossRef]

K. S. Kalasinsky, T. Hadfield, A. A. Shea, V. F. Kalasinsky, M. P. Nelson, J. Neiss, A. J. Drauch, G. S. Vanni, and P. J. Treado, “Raman chemical imaging spectroscopy reagentless detection and identification of pathogens: signature development and evaluation,” Anal. Chem. 79(7), 2658–2673 (2007).
[CrossRef] [PubMed]

2006 (3)

2003 (2)

C. Xie and Y. Q. Li, “Confocal micro-Raman spectroscopy of single biological cells using optical trapping and shifted excitation difference techniques,” J. Appl. Phys. 93(5), 2982–2986 (2003).
[CrossRef]

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[CrossRef] [PubMed]

2002 (1)

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
[CrossRef] [PubMed]

1989 (1)

A. Biswas, H. Latifi, R. L. Armstrong, and R. G. Pinnick, “Double-resonance stimulated Raman scattering from optically levitated glycerol droplets,” Phys. Rev. A 40(12), 7413–7416 (1989).
[CrossRef] [PubMed]

1988 (1)

J. R. Finke, C. L. Jeffrey, and R. E. Spjut, “Measurement of the emissivity of small particles at elevated temperatures,” Opt. Eng. 27, 684–690 (1988).

1987 (1)

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
[CrossRef] [PubMed]

1985 (2)

R. E. Preston, T. R. Lettieri, and H. G. Semerjian, “Characterization of single leviatated droplets by Raman spectroscopy,” Langmuir 1(3), 365–367 (1985).
[CrossRef]

R. Thurn and W. Kiefer, “Structural resonances observed in the Raman spectra of optically levitated liquid droplets,” Appl. Opt. 24(10), 1515–1519 (1985).
[CrossRef] [PubMed]

1982 (1)

M. Lewittes, S. Arnold, and G. Oster, “Radiometric levitation of micron sized spheres,” Appl. Phys. Lett. 40(6), 455–457 (1982).
[CrossRef]

1970 (1)

P. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[CrossRef]

Armstrong, R. L.

A. Biswas, H. Latifi, R. L. Armstrong, and R. G. Pinnick, “Double-resonance stimulated Raman scattering from optically levitated glycerol droplets,” Phys. Rev. A 40(12), 7413–7416 (1989).
[CrossRef] [PubMed]

Arnold, S.

M. Lewittes, S. Arnold, and G. Oster, “Radiometric levitation of micron sized spheres,” Appl. Phys. Lett. 40(6), 455–457 (1982).
[CrossRef]

Ashkin, A.

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
[CrossRef] [PubMed]

Ashkin, P. A.

P. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[CrossRef]

Berns, M. W.

Biswas, A.

A. Biswas, H. Latifi, R. L. Armstrong, and R. G. Pinnick, “Double-resonance stimulated Raman scattering from optically levitated glycerol droplets,” Phys. Rev. A 40(12), 7413–7416 (1989).
[CrossRef] [PubMed]

Bohn, J. E.

J. E. Bohn, P. G. Etchegoin, E. C. Le Ru, R. Xiang, S. Chiashi, and S. Maruyama, “Estimating the Raman cross sections of single carbon nanotubes,” ACS Nano 4(6), 3466–3470 (2010).
[CrossRef] [PubMed]

Botvinick, E. L.

Burnham, D. R.

Carruthers, A. E.

Chang, R. K.

Y. L. Pan, R. G. Pinnick, S. C. Hill, J. M. Rosen, and R. K. Chang, “Single-particle laser-induced fluorescence spectra of biological and other organic-carbon aerosols in the atmosphere: measurements at New Haven, Connecticut, and Las Cruces, New Mexico,” J. Geophys. Res. 112(D24), D24S19 (2007).
[CrossRef]

Chen, D.

D. Chen, S. S. Huang, and Y. Q. Li, “Real-time detection of kinetic germination and heterogeneity of single Bacillus spores by laser tweezers Raman spectroscopy,” Anal. Chem. 78(19), 6936–6941 (2006).
[CrossRef] [PubMed]

Chen, Z.

Chiashi, S.

J. E. Bohn, P. G. Etchegoin, E. C. Le Ru, R. Xiang, S. Chiashi, and S. Maruyama, “Estimating the Raman cross sections of single carbon nanotubes,” ACS Nano 4(6), 3466–3470 (2010).
[CrossRef] [PubMed]

Christesen, S.

J. Guicheteau, S. Christesen, D. Emge, and A. Tripathi, “Bacterial mixture identification using Raman and surface-enhanced Raman chemical imaging,” J. Raman Spectrosc. 41(12), 1632–1637 (2010).
[CrossRef]

Christodoulides, D. N.

Desyatnikov, A. S.

Dholakia, K.

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
[CrossRef] [PubMed]

Drauch, A. J.

K. S. Kalasinsky, T. Hadfield, A. A. Shea, V. F. Kalasinsky, M. P. Nelson, J. Neiss, A. J. Drauch, G. S. Vanni, and P. J. Treado, “Raman chemical imaging spectroscopy reagentless detection and identification of pathogens: signature development and evaluation,” Anal. Chem. 79(7), 2658–2673 (2007).
[CrossRef] [PubMed]

Dziedzic, J. M.

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
[CrossRef] [PubMed]

Emge, D.

J. Guicheteau, S. Christesen, D. Emge, and A. Tripathi, “Bacterial mixture identification using Raman and surface-enhanced Raman chemical imaging,” J. Raman Spectrosc. 41(12), 1632–1637 (2010).
[CrossRef]

Esener, S. C.

Etchegoin, P. G.

J. E. Bohn, P. G. Etchegoin, E. C. Le Ru, R. Xiang, S. Chiashi, and S. Maruyama, “Estimating the Raman cross sections of single carbon nanotubes,” ACS Nano 4(6), 3466–3470 (2010).
[CrossRef] [PubMed]

Fina, A.

Z. Han and A. Fina, “Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review,” Prog. Polym. Sci. 36(7), 914–944 (2011).
[CrossRef]

Finke, J. R.

J. R. Finke, C. L. Jeffrey, and R. E. Spjut, “Measurement of the emissivity of small particles at elevated temperatures,” Opt. Eng. 27, 684–690 (1988).

Garcés-Chávez, V.

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
[CrossRef] [PubMed]

Grier, D. G.

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[CrossRef] [PubMed]

Guicheteau, J.

J. Guicheteau, S. Christesen, D. Emge, and A. Tripathi, “Bacterial mixture identification using Raman and surface-enhanced Raman chemical imaging,” J. Raman Spectrosc. 41(12), 1632–1637 (2010).
[CrossRef]

Hadfield, T.

K. S. Kalasinsky, T. Hadfield, A. A. Shea, V. F. Kalasinsky, M. P. Nelson, J. Neiss, A. J. Drauch, G. S. Vanni, and P. J. Treado, “Raman chemical imaging spectroscopy reagentless detection and identification of pathogens: signature development and evaluation,” Anal. Chem. 79(7), 2658–2673 (2007).
[CrossRef] [PubMed]

Han, Z.

Z. Han and A. Fina, “Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review,” Prog. Polym. Sci. 36(7), 914–944 (2011).
[CrossRef]

Hernandez, D.

Hill, S. C.

Y. L. Pan, R. G. Pinnick, S. C. Hill, J. M. Rosen, and R. K. Chang, “Single-particle laser-induced fluorescence spectra of biological and other organic-carbon aerosols in the atmosphere: measurements at New Haven, Connecticut, and Las Cruces, New Mexico,” J. Geophys. Res. 112(D24), D24S19 (2007).
[CrossRef]

Hnatovsky, C.

Huang, S.

Huang, S. S.

D. Chen, S. S. Huang, and Y. Q. Li, “Real-time detection of kinetic germination and heterogeneity of single Bacillus spores by laser tweezers Raman spectroscopy,” Anal. Chem. 78(19), 6936–6941 (2006).
[CrossRef] [PubMed]

Jeffrey, C. L.

J. R. Finke, C. L. Jeffrey, and R. E. Spjut, “Measurement of the emissivity of small particles at elevated temperatures,” Opt. Eng. 27, 684–690 (1988).

Kalasinsky, K. S.

K. S. Kalasinsky, T. Hadfield, A. A. Shea, V. F. Kalasinsky, M. P. Nelson, J. Neiss, A. J. Drauch, G. S. Vanni, and P. J. Treado, “Raman chemical imaging spectroscopy reagentless detection and identification of pathogens: signature development and evaluation,” Anal. Chem. 79(7), 2658–2673 (2007).
[CrossRef] [PubMed]

Kalasinsky, V. F.

K. S. Kalasinsky, T. Hadfield, A. A. Shea, V. F. Kalasinsky, M. P. Nelson, J. Neiss, A. J. Drauch, G. S. Vanni, and P. J. Treado, “Raman chemical imaging spectroscopy reagentless detection and identification of pathogens: signature development and evaluation,” Anal. Chem. 79(7), 2658–2673 (2007).
[CrossRef] [PubMed]

Kiefer, W.

Kivshar, Y. S.

Knox, K. J.

J. B. Wills, K. J. Knox, and J. P. Reid, “Optical control and characterization of aerosol,” Chem. Phys. Lett. 481(4-6), 153–165 (2009).
[CrossRef]

Kong, L. B.

L. B. Kong, P. F. Zhang, G. W. Wang, J. Yu, P. Setlow, and Y. Q. Li, “Characterization of bacterial spore germination using phase-contrast and fluorescence microscopy, Raman spectroscopy and optical tweezers,” Nat. Protoc. 6(5), 625–639 (2011).
[CrossRef] [PubMed]

P. F. Zhang, L. B. Kong, P. Setlow, and Y. Q. Li, “Multiple-trap laser tweezers Raman spectroscopy for simultaneous monitoring of the biological dynamics of multiple individual cells,” Opt. Lett. 35(20), 3321–3323 (2010).
[CrossRef] [PubMed]

Krolikowski, W.

Latifi, H.

A. Biswas, H. Latifi, R. L. Armstrong, and R. G. Pinnick, “Double-resonance stimulated Raman scattering from optically levitated glycerol droplets,” Phys. Rev. A 40(12), 7413–7416 (1989).
[CrossRef] [PubMed]

Le Ru, E. C.

J. E. Bohn, P. G. Etchegoin, E. C. Le Ru, R. Xiang, S. Chiashi, and S. Maruyama, “Estimating the Raman cross sections of single carbon nanotubes,” ACS Nano 4(6), 3466–3470 (2010).
[CrossRef] [PubMed]

Lettieri, T. R.

R. E. Preston, T. R. Lettieri, and H. G. Semerjian, “Characterization of single leviatated droplets by Raman spectroscopy,” Langmuir 1(3), 365–367 (1985).
[CrossRef]

Lewittes, M.

M. Lewittes, S. Arnold, and G. Oster, “Radiometric levitation of micron sized spheres,” Appl. Phys. Lett. 40(6), 455–457 (1982).
[CrossRef]

Li, Y. Q.

L. B. Kong, P. F. Zhang, G. W. Wang, J. Yu, P. Setlow, and Y. Q. Li, “Characterization of bacterial spore germination using phase-contrast and fluorescence microscopy, Raman spectroscopy and optical tweezers,” Nat. Protoc. 6(5), 625–639 (2011).
[CrossRef] [PubMed]

P. F. Zhang, L. B. Kong, P. Setlow, and Y. Q. Li, “Multiple-trap laser tweezers Raman spectroscopy for simultaneous monitoring of the biological dynamics of multiple individual cells,” Opt. Lett. 35(20), 3321–3323 (2010).
[CrossRef] [PubMed]

D. Chen, S. S. Huang, and Y. Q. Li, “Real-time detection of kinetic germination and heterogeneity of single Bacillus spores by laser tweezers Raman spectroscopy,” Anal. Chem. 78(19), 6936–6941 (2006).
[CrossRef] [PubMed]

C. Xie and Y. Q. Li, “Confocal micro-Raman spectroscopy of single biological cells using optical trapping and shifted excitation difference techniques,” J. Appl. Phys. 93(5), 2982–2986 (2003).
[CrossRef]

Maruyama, S.

J. E. Bohn, P. G. Etchegoin, E. C. Le Ru, R. Xiang, S. Chiashi, and S. Maruyama, “Estimating the Raman cross sections of single carbon nanotubes,” ACS Nano 4(6), 3466–3470 (2010).
[CrossRef] [PubMed]

McGloin, D.

D. R. Burnham and D. McGloin, “Holographic optical trapping of aerosol droplets,” Opt. Express 14(9), 4175–4181 (2006).
[CrossRef] [PubMed]

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
[CrossRef] [PubMed]

Melville, H.

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
[CrossRef] [PubMed]

Nascimento, J. M.

Neiss, J.

K. S. Kalasinsky, T. Hadfield, A. A. Shea, V. F. Kalasinsky, M. P. Nelson, J. Neiss, A. J. Drauch, G. S. Vanni, and P. J. Treado, “Raman chemical imaging spectroscopy reagentless detection and identification of pathogens: signature development and evaluation,” Anal. Chem. 79(7), 2658–2673 (2007).
[CrossRef] [PubMed]

Nelson, M. P.

K. S. Kalasinsky, T. Hadfield, A. A. Shea, V. F. Kalasinsky, M. P. Nelson, J. Neiss, A. J. Drauch, G. S. Vanni, and P. J. Treado, “Raman chemical imaging spectroscopy reagentless detection and identification of pathogens: signature development and evaluation,” Anal. Chem. 79(7), 2658–2673 (2007).
[CrossRef] [PubMed]

Orr-Ewing, A. J.

Oster, G.

M. Lewittes, S. Arnold, and G. Oster, “Radiometric levitation of micron sized spheres,” Appl. Phys. Lett. 40(6), 455–457 (1982).
[CrossRef]

Ozkan, M.

Pan, Y. L.

Y. L. Pan, R. G. Pinnick, S. C. Hill, J. M. Rosen, and R. K. Chang, “Single-particle laser-induced fluorescence spectra of biological and other organic-carbon aerosols in the atmosphere: measurements at New Haven, Connecticut, and Las Cruces, New Mexico,” J. Geophys. Res. 112(D24), D24S19 (2007).
[CrossRef]

Pinnick, R. G.

Y. L. Pan, R. G. Pinnick, S. C. Hill, J. M. Rosen, and R. K. Chang, “Single-particle laser-induced fluorescence spectra of biological and other organic-carbon aerosols in the atmosphere: measurements at New Haven, Connecticut, and Las Cruces, New Mexico,” J. Geophys. Res. 112(D24), D24S19 (2007).
[CrossRef]

A. Biswas, H. Latifi, R. L. Armstrong, and R. G. Pinnick, “Double-resonance stimulated Raman scattering from optically levitated glycerol droplets,” Phys. Rev. A 40(12), 7413–7416 (1989).
[CrossRef] [PubMed]

Prakash, J.

Preston, R. E.

R. E. Preston, T. R. Lettieri, and H. G. Semerjian, “Characterization of single leviatated droplets by Raman spectroscopy,” Langmuir 1(3), 365–367 (1985).
[CrossRef]

Reid, J. P.

A. E. Carruthers, J. P. Reid, and A. J. Orr-Ewing, “Longitudinal optical trapping and sizing of aerosol droplets,” Opt. Express 18(13), 14238–14244 (2010).
[CrossRef] [PubMed]

J. B. Wills, K. J. Knox, and J. P. Reid, “Optical control and characterization of aerosol,” Chem. Phys. Lett. 481(4-6), 153–165 (2009).
[CrossRef]

Rode, A. V.

Rosen, J. M.

Y. L. Pan, R. G. Pinnick, S. C. Hill, J. M. Rosen, and R. K. Chang, “Single-particle laser-induced fluorescence spectra of biological and other organic-carbon aerosols in the atmosphere: measurements at New Haven, Connecticut, and Las Cruces, New Mexico,” J. Geophys. Res. 112(D24), D24S19 (2007).
[CrossRef]

Salazar, M.

Semerjian, H. G.

R. E. Preston, T. R. Lettieri, and H. G. Semerjian, “Characterization of single leviatated droplets by Raman spectroscopy,” Langmuir 1(3), 365–367 (1985).
[CrossRef]

Setlow, P.

L. B. Kong, P. F. Zhang, G. W. Wang, J. Yu, P. Setlow, and Y. Q. Li, “Characterization of bacterial spore germination using phase-contrast and fluorescence microscopy, Raman spectroscopy and optical tweezers,” Nat. Protoc. 6(5), 625–639 (2011).
[CrossRef] [PubMed]

P. F. Zhang, L. B. Kong, P. Setlow, and Y. Q. Li, “Multiple-trap laser tweezers Raman spectroscopy for simultaneous monitoring of the biological dynamics of multiple individual cells,” Opt. Lett. 35(20), 3321–3323 (2010).
[CrossRef] [PubMed]

Shao, B.

Shea, A. A.

K. S. Kalasinsky, T. Hadfield, A. A. Shea, V. F. Kalasinsky, M. P. Nelson, J. Neiss, A. J. Drauch, G. S. Vanni, and P. J. Treado, “Raman chemical imaging spectroscopy reagentless detection and identification of pathogens: signature development and evaluation,” Anal. Chem. 79(7), 2658–2673 (2007).
[CrossRef] [PubMed]

Shvedov, V. G.

Sibbett, W.

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
[CrossRef] [PubMed]

Spjut, R. E.

J. R. Finke, C. L. Jeffrey, and R. E. Spjut, “Measurement of the emissivity of small particles at elevated temperatures,” Opt. Eng. 27, 684–690 (1988).

Thurn, R.

Treado, P. J.

K. S. Kalasinsky, T. Hadfield, A. A. Shea, V. F. Kalasinsky, M. P. Nelson, J. Neiss, A. J. Drauch, G. S. Vanni, and P. J. Treado, “Raman chemical imaging spectroscopy reagentless detection and identification of pathogens: signature development and evaluation,” Anal. Chem. 79(7), 2658–2673 (2007).
[CrossRef] [PubMed]

Tripathi, A.

J. Guicheteau, S. Christesen, D. Emge, and A. Tripathi, “Bacterial mixture identification using Raman and surface-enhanced Raman chemical imaging,” J. Raman Spectrosc. 41(12), 1632–1637 (2010).
[CrossRef]

Vanni, G. S.

K. S. Kalasinsky, T. Hadfield, A. A. Shea, V. F. Kalasinsky, M. P. Nelson, J. Neiss, A. J. Drauch, G. S. Vanni, and P. J. Treado, “Raman chemical imaging spectroscopy reagentless detection and identification of pathogens: signature development and evaluation,” Anal. Chem. 79(7), 2658–2673 (2007).
[CrossRef] [PubMed]

Wang, G. W.

L. B. Kong, P. F. Zhang, G. W. Wang, J. Yu, P. Setlow, and Y. Q. Li, “Characterization of bacterial spore germination using phase-contrast and fluorescence microscopy, Raman spectroscopy and optical tweezers,” Nat. Protoc. 6(5), 625–639 (2011).
[CrossRef] [PubMed]

Wills, J. B.

J. B. Wills, K. J. Knox, and J. P. Reid, “Optical control and characterization of aerosol,” Chem. Phys. Lett. 481(4-6), 153–165 (2009).
[CrossRef]

Xiang, R.

J. E. Bohn, P. G. Etchegoin, E. C. Le Ru, R. Xiang, S. Chiashi, and S. Maruyama, “Estimating the Raman cross sections of single carbon nanotubes,” ACS Nano 4(6), 3466–3470 (2010).
[CrossRef] [PubMed]

Xie, C.

C. Xie and Y. Q. Li, “Confocal micro-Raman spectroscopy of single biological cells using optical trapping and shifted excitation difference techniques,” J. Appl. Phys. 93(5), 2982–2986 (2003).
[CrossRef]

Yu, J.

L. B. Kong, P. F. Zhang, G. W. Wang, J. Yu, P. Setlow, and Y. Q. Li, “Characterization of bacterial spore germination using phase-contrast and fluorescence microscopy, Raman spectroscopy and optical tweezers,” Nat. Protoc. 6(5), 625–639 (2011).
[CrossRef] [PubMed]

Zhang, P.

Zhang, P. F.

L. B. Kong, P. F. Zhang, G. W. Wang, J. Yu, P. Setlow, and Y. Q. Li, “Characterization of bacterial spore germination using phase-contrast and fluorescence microscopy, Raman spectroscopy and optical tweezers,” Nat. Protoc. 6(5), 625–639 (2011).
[CrossRef] [PubMed]

P. F. Zhang, L. B. Kong, P. Setlow, and Y. Q. Li, “Multiple-trap laser tweezers Raman spectroscopy for simultaneous monitoring of the biological dynamics of multiple individual cells,” Opt. Lett. 35(20), 3321–3323 (2010).
[CrossRef] [PubMed]

Zhang, Z.

ACS Nano (1)

J. E. Bohn, P. G. Etchegoin, E. C. Le Ru, R. Xiang, S. Chiashi, and S. Maruyama, “Estimating the Raman cross sections of single carbon nanotubes,” ACS Nano 4(6), 3466–3470 (2010).
[CrossRef] [PubMed]

Anal. Chem. (2)

K. S. Kalasinsky, T. Hadfield, A. A. Shea, V. F. Kalasinsky, M. P. Nelson, J. Neiss, A. J. Drauch, G. S. Vanni, and P. J. Treado, “Raman chemical imaging spectroscopy reagentless detection and identification of pathogens: signature development and evaluation,” Anal. Chem. 79(7), 2658–2673 (2007).
[CrossRef] [PubMed]

D. Chen, S. S. Huang, and Y. Q. Li, “Real-time detection of kinetic germination and heterogeneity of single Bacillus spores by laser tweezers Raman spectroscopy,” Anal. Chem. 78(19), 6936–6941 (2006).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

M. Lewittes, S. Arnold, and G. Oster, “Radiometric levitation of micron sized spheres,” Appl. Phys. Lett. 40(6), 455–457 (1982).
[CrossRef]

Chem. Phys. Lett. (1)

J. B. Wills, K. J. Knox, and J. P. Reid, “Optical control and characterization of aerosol,” Chem. Phys. Lett. 481(4-6), 153–165 (2009).
[CrossRef]

J. Appl. Phys. (1)

C. Xie and Y. Q. Li, “Confocal micro-Raman spectroscopy of single biological cells using optical trapping and shifted excitation difference techniques,” J. Appl. Phys. 93(5), 2982–2986 (2003).
[CrossRef]

J. Geophys. Res. (1)

Y. L. Pan, R. G. Pinnick, S. C. Hill, J. M. Rosen, and R. K. Chang, “Single-particle laser-induced fluorescence spectra of biological and other organic-carbon aerosols in the atmosphere: measurements at New Haven, Connecticut, and Las Cruces, New Mexico,” J. Geophys. Res. 112(D24), D24S19 (2007).
[CrossRef]

J. Raman Spectrosc. (1)

J. Guicheteau, S. Christesen, D. Emge, and A. Tripathi, “Bacterial mixture identification using Raman and surface-enhanced Raman chemical imaging,” J. Raman Spectrosc. 41(12), 1632–1637 (2010).
[CrossRef]

Langmuir (1)

R. E. Preston, T. R. Lettieri, and H. G. Semerjian, “Characterization of single leviatated droplets by Raman spectroscopy,” Langmuir 1(3), 365–367 (1985).
[CrossRef]

Nat. Protoc. (1)

L. B. Kong, P. F. Zhang, G. W. Wang, J. Yu, P. Setlow, and Y. Q. Li, “Characterization of bacterial spore germination using phase-contrast and fluorescence microscopy, Raman spectroscopy and optical tweezers,” Nat. Protoc. 6(5), 625–639 (2011).
[CrossRef] [PubMed]

Nature (2)

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
[CrossRef] [PubMed]

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[CrossRef] [PubMed]

Opt. Eng. (1)

J. R. Finke, C. L. Jeffrey, and R. E. Spjut, “Measurement of the emissivity of small particles at elevated temperatures,” Opt. Eng. 27, 684–690 (1988).

Opt. Express (5)

Opt. Lett. (3)

Phys. Rev. A (1)

A. Biswas, H. Latifi, R. L. Armstrong, and R. G. Pinnick, “Double-resonance stimulated Raman scattering from optically levitated glycerol droplets,” Phys. Rev. A 40(12), 7413–7416 (1989).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

P. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[CrossRef]

Prog. Polym. Sci. (1)

Z. Han and A. Fina, “Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review,” Prog. Polym. Sci. 36(7), 914–944 (2011).
[CrossRef]

Science (1)

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the experimental setup for: 1) trapping an absorbing particle in air by photophoretic forces; and 2) measuring the trapped particle’s Raman spectrum. This system is termed a single-particle Raman spectrometer (SPRS). The trapping region is formed by two counter-propagating hollow conical beams (see inset in the middle). ND: neutral density filter; M: mirror with high reflection at 488 nm; BS: beam splitter; PM: power meter; DP: diaphragm; L: lens; PH: pinhole; AL: axicon; WP: half-wave plate; PBS: polarizing beam splitter; SP: spatial filter; DL: diode laser; MO: microscope objective; DBS: dichromatic beam splitter; LP: long-pass filter.

Fig. 2
Fig. 2

The transverse light intensity distribution for one of the conical beams, measured near the trapping region.

Fig. 3
Fig. 3

Top: Image of a single particle trapped in air. Microscope objectives (MOs) are visible, as are the glass cover slips used to protect the MOs from particles and to reduce air currents in the trapping region. MO3 was used to image the fiber and particles in the lower part of this figure. Bottom: Images recorded by the CCD (Fig. 1): left, a 100-μm diameter fiber used for alignment; right three panels, trapped particles with diameters around 5 μm, 20 μm, and 35 μm.

Fig. 4
Fig. 4

Raman spectra from one ~20-μm diameter aggregate of multi-walled carbon nanotubes trapped in the SPRS illustrated in Fig. 1. The spectra were obtained using different data acquisition times (30 s, 10 s and 0.5 s), gains (2, 5, and 100) of the EMCCD, and slit widths (500 μm, 100 μm, and 500 μm) of the spectrograph. The 488-nm laser power is 50 mW.

Metrics