Abstract

We propose a new dispersion control scheme by introducing hollow ring defects having a central air hole and a GeO2-or F-doped silica ring with in a square lattice photonic crystal fiber. We confirmed the flexible dispersion controllability in the proposed structure in two aspects of dispersion managements: ultra-flattened near-zero dispersion in the 530nm-bandwidth over all communication bands and dispersion compensation in C, L, and U band with a high compensation ratio of 0.96~1.0 in reference to the standard single mode fiber. The proposed SLPCFs were also estimated to have an inherently low splice loss due to the index contrast between the doped-ring and silica that kept a good guidance even along with collapsed air holes, which cannot be achieved in conventional PCFs.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. M. Madani and K. Kikuchi, “Design theory of long-distance WDM dispersion-managed transmission system,” J. Lightwave Technol. 17(8), 1326–1335 (1999).
    [CrossRef]
  2. M. Bass and E. W. V. Stryland, Fiber Optics Handbook: Fiber, Devices, and Systems for Optical Communications (McGraw-Hill, 2002), Chap. 13.
  3. S. Yin, K. Chung, H. Liu, P. Kurtz, and K. Reichard, “A new design for non-zero dispersion-shifted fiber (NZ-DSF) with a large effective area over 100?m2 and low bending and splice loss,” Opt. Commun. 177(1-6), 225–232 (2000).
    [CrossRef]
  4. R. Lundin, “Dispersion flattening in a W fiber,” Appl. Opt. 33(6), 1011–1014 (1994).
    [PubMed]
  5. L. Gruner-Nielsen, S. N. Knudsen, B. Edvold, T. Veng, D. Magnussen, C. C. Larsen, and H. Damsgaard, “Dispersion compensating fibers,” Opt. Fiber Technol. 6(2), 164–180 (2000).
    [CrossRef]
  6. K. Saitoh, M. Koshiba, T. Hasegawa, and E. Sasaoka, “Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion,” Opt. Express 11(8), 843–852 (2003).
    [CrossRef] [PubMed]
  7. F. Poli, A. Cucinotta, M. Fuochi, S. Selleri, and L. Vincetti, “Characterization of microstructured optical fibers for wideband dispersion compensation,” J. Opt. Soc. Am. A 20(10), 1958–1962 (2003).
    [CrossRef] [PubMed]
  8. F. Begum, Y. Namihira, T. Kinjo, and S. Kaijage, “Supercontinuum generation in square photonic crystal fiber with nearly zero ultra-flattened chromatic dispersion and fabrication tolerance analysis,” Opt. Commun. 284(4), 965–970 (2011).
    [CrossRef]
  9. F. Begum, Y. Namihira, S. M. A. Razzak, S. F. Kaijage, N. H. Hai, K. Miyagi, H. Higa, and N. Zou, “Flattened chromatic dispersion in square photonic crystal fibers with low confinement losses,” Opt. Rev. 16(2), 54–58 (2009).
    [CrossRef]
  10. G. Renversez, B. Kuhlmey, and R. McPhedran, “Dispersion management with microstructured optical fibers: ultraflattened chromatic dispersion with low losses,” Opt. Lett. 28(12), 989–991 (2003).
    [CrossRef] [PubMed]
  11. F. Gérôme, J.-L. Auguste, and J.-M. Blondy, “Design of dispersion-compensating fibers based on a dual-concentric-core photonic crystal fiber,” Opt. Lett. 29(23), 2725–2727 (2004).
    [CrossRef] [PubMed]
  12. S. Kim, Y. Jung, K. Oh, J. Kobelke, K. Schuster, and J. Kirchhof, “Defect and lattice structure for air-silica index-guiding holey fibers,” Opt. Lett. 31(2), 164–166 (2006).
    [CrossRef] [PubMed]
  13. J. Park, S. Lee, S. Kim, and K. Oh, “Enhancement of chemical sensing capability in a photonic crystal fiber with a hollow high index ring defect at the center,” Opt. Express 19(3), 1921–1929 (2011).
    [CrossRef] [PubMed]
  14. T. Grujic, B. T. Kuhlmey, A. Argyros, S. Coen, and C. M. de Sterke, “Solid-core fiber with ultra-wide bandwidth transmission window due to inhibited coupling,” Opt. Express 18(25), 25556–25566 (2010).
    [CrossRef] [PubMed]
  15. K. Oh, S. Choi, Y. Jung, and J. W. Lee, “Novel hollow optical fibers and their applications in photonic devices for optical communications,” J. Lightwave Technol. 23(2), 524–532 (2005).
    [CrossRef]
  16. S. Lee, J. Park, Y. Jeong, H. Jung, and K. Oh, “Guided wave analysis of hollow optical fiber for mode coupling device applications,” J. Lightwave Technol. 27(22), 4919–4926 (2009).
    [CrossRef]
  17. VitroCom, Square Tubing in Borosilicate and Clear Fused Quartz glasses, http://www.vitrocom.com/categories/view/25/Square_Tubing
  18. A. Bouk, A. Cucinotta, F. Poli, and S. Selleri, “Dispersion properties of square-lattice photonic crystal fibers,” Opt. Express 12(5), 941–946 (2004).
    [CrossRef] [PubMed]
  19. K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers,” IEEE J. Quantum Electron. 38(7), 927–933 (2002).
    [CrossRef]
  20. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55(10), 1205–1209 (1965).
    [CrossRef]
  21. J. W. Fleming, “Dispersion in GeO2-SiO2 glasses,” Appl. Opt. 23(24), 4486–4493 (1984).
    [CrossRef] [PubMed]
  22. J. W. Fleming and D. L. Wood, “Refractive index dispersion and related properties in fluorine doped silica,” Appl. Opt. 22(19), 3102–3104 (1983).
    [CrossRef] [PubMed]
  23. Y. L. Hoo, W. Jin, J. Ju, and H. L. Ho, “Loss analysis of single-mode fiber/photonic-crystal fiber splice,” Microw. Opt. Technol. Lett. 40(5), 378–380 (2004).
    [CrossRef]
  24. B. Kuhlmey, G. Renversez, and D. Maystre, “Chromatic dispersion and losses of microstructured optical fibers,” Appl. Opt. 42(4), 634–639 (2003).
    [CrossRef] [PubMed]
  25. F. Poli, M. Foroni, M. Bottacini, M. Fuochi, N. Burani, L. Rosa, A. Cucinotta, and S. Selleri, “Single-mode regime of square-lattice photonic crystal fibers,” J. Opt. Soc. Am. A 22(8), 1655–1661 (2005).
    [CrossRef] [PubMed]
  26. Corning SMF-28 CPC6 Single-Mode Optical Fibre Product information (Corning, Ithaca, N.Y., 1998).
  27. V. Finazzi, T. M. Monro, and D. J. Richardson, “The role of confinement loss in highly nonlinear silica holey fibers,” IEEE Photon. Technol. Lett. 15(9), 1246–1248 (2003).
    [CrossRef]
  28. L. Dong, B. K. Thomas, and L. Fu, “Highly nonlinear silica suspended core fibers,” Opt. Express 16(21), 16423–16430 (2008).
    [CrossRef] [PubMed]
  29. J. Limpert, T. Schreiber, S. Nolte, H. Zellmer, T. Tunnermann, R. Iliew, F. Lederer, J. Broeng, G. Vienne, A. Petersson, and C. Jakobsen, “High-power air-clad large-mode-area photonic crystal fiber laser,” Opt. Express 11(7), 818–823 (2003).
    [CrossRef] [PubMed]
  30. K. Saito, M. Yamaguchi, H. Kakiuchida, A. J. Ikushima, K. Ohsono, and Y. Kurosawa, “Limit of the Rayleigh scattering loss in silica fiber,” Appl. Phys. Lett. 83(25), 5175–5177 (2003).
    [CrossRef]
  31. CorActive Passive Fibers for Component & Laser Delivery Applications Product information (CorActive High-Tech, Inc., Québec, Canada, 2010–2011)

2011

F. Begum, Y. Namihira, T. Kinjo, and S. Kaijage, “Supercontinuum generation in square photonic crystal fiber with nearly zero ultra-flattened chromatic dispersion and fabrication tolerance analysis,” Opt. Commun. 284(4), 965–970 (2011).
[CrossRef]

J. Park, S. Lee, S. Kim, and K. Oh, “Enhancement of chemical sensing capability in a photonic crystal fiber with a hollow high index ring defect at the center,” Opt. Express 19(3), 1921–1929 (2011).
[CrossRef] [PubMed]

2010

2009

S. Lee, J. Park, Y. Jeong, H. Jung, and K. Oh, “Guided wave analysis of hollow optical fiber for mode coupling device applications,” J. Lightwave Technol. 27(22), 4919–4926 (2009).
[CrossRef]

F. Begum, Y. Namihira, S. M. A. Razzak, S. F. Kaijage, N. H. Hai, K. Miyagi, H. Higa, and N. Zou, “Flattened chromatic dispersion in square photonic crystal fibers with low confinement losses,” Opt. Rev. 16(2), 54–58 (2009).
[CrossRef]

2008

2006

2005

2004

2003

2002

K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers,” IEEE J. Quantum Electron. 38(7), 927–933 (2002).
[CrossRef]

2000

S. Yin, K. Chung, H. Liu, P. Kurtz, and K. Reichard, “A new design for non-zero dispersion-shifted fiber (NZ-DSF) with a large effective area over 100?m2 and low bending and splice loss,” Opt. Commun. 177(1-6), 225–232 (2000).
[CrossRef]

L. Gruner-Nielsen, S. N. Knudsen, B. Edvold, T. Veng, D. Magnussen, C. C. Larsen, and H. Damsgaard, “Dispersion compensating fibers,” Opt. Fiber Technol. 6(2), 164–180 (2000).
[CrossRef]

1999

1994

1984

1983

1965

Argyros, A.

Auguste, J.-L.

Begum, F.

F. Begum, Y. Namihira, T. Kinjo, and S. Kaijage, “Supercontinuum generation in square photonic crystal fiber with nearly zero ultra-flattened chromatic dispersion and fabrication tolerance analysis,” Opt. Commun. 284(4), 965–970 (2011).
[CrossRef]

F. Begum, Y. Namihira, S. M. A. Razzak, S. F. Kaijage, N. H. Hai, K. Miyagi, H. Higa, and N. Zou, “Flattened chromatic dispersion in square photonic crystal fibers with low confinement losses,” Opt. Rev. 16(2), 54–58 (2009).
[CrossRef]

Blondy, J.-M.

Bottacini, M.

Bouk, A.

Broeng, J.

Burani, N.

Choi, S.

Chung, K.

S. Yin, K. Chung, H. Liu, P. Kurtz, and K. Reichard, “A new design for non-zero dispersion-shifted fiber (NZ-DSF) with a large effective area over 100?m2 and low bending and splice loss,” Opt. Commun. 177(1-6), 225–232 (2000).
[CrossRef]

Coen, S.

Cucinotta, A.

Damsgaard, H.

L. Gruner-Nielsen, S. N. Knudsen, B. Edvold, T. Veng, D. Magnussen, C. C. Larsen, and H. Damsgaard, “Dispersion compensating fibers,” Opt. Fiber Technol. 6(2), 164–180 (2000).
[CrossRef]

de Sterke, C. M.

Dong, L.

Edvold, B.

L. Gruner-Nielsen, S. N. Knudsen, B. Edvold, T. Veng, D. Magnussen, C. C. Larsen, and H. Damsgaard, “Dispersion compensating fibers,” Opt. Fiber Technol. 6(2), 164–180 (2000).
[CrossRef]

Finazzi, V.

V. Finazzi, T. M. Monro, and D. J. Richardson, “The role of confinement loss in highly nonlinear silica holey fibers,” IEEE Photon. Technol. Lett. 15(9), 1246–1248 (2003).
[CrossRef]

Fleming, J. W.

Foroni, M.

Fu, L.

Fuochi, M.

Gérôme, F.

Grujic, T.

Gruner-Nielsen, L.

L. Gruner-Nielsen, S. N. Knudsen, B. Edvold, T. Veng, D. Magnussen, C. C. Larsen, and H. Damsgaard, “Dispersion compensating fibers,” Opt. Fiber Technol. 6(2), 164–180 (2000).
[CrossRef]

Hai, N. H.

F. Begum, Y. Namihira, S. M. A. Razzak, S. F. Kaijage, N. H. Hai, K. Miyagi, H. Higa, and N. Zou, “Flattened chromatic dispersion in square photonic crystal fibers with low confinement losses,” Opt. Rev. 16(2), 54–58 (2009).
[CrossRef]

Hasegawa, T.

Higa, H.

F. Begum, Y. Namihira, S. M. A. Razzak, S. F. Kaijage, N. H. Hai, K. Miyagi, H. Higa, and N. Zou, “Flattened chromatic dispersion in square photonic crystal fibers with low confinement losses,” Opt. Rev. 16(2), 54–58 (2009).
[CrossRef]

Ho, H. L.

Y. L. Hoo, W. Jin, J. Ju, and H. L. Ho, “Loss analysis of single-mode fiber/photonic-crystal fiber splice,” Microw. Opt. Technol. Lett. 40(5), 378–380 (2004).
[CrossRef]

Hoo, Y. L.

Y. L. Hoo, W. Jin, J. Ju, and H. L. Ho, “Loss analysis of single-mode fiber/photonic-crystal fiber splice,” Microw. Opt. Technol. Lett. 40(5), 378–380 (2004).
[CrossRef]

Ikushima, A. J.

K. Saito, M. Yamaguchi, H. Kakiuchida, A. J. Ikushima, K. Ohsono, and Y. Kurosawa, “Limit of the Rayleigh scattering loss in silica fiber,” Appl. Phys. Lett. 83(25), 5175–5177 (2003).
[CrossRef]

Iliew, R.

Jakobsen, C.

Jeong, Y.

Jin, W.

Y. L. Hoo, W. Jin, J. Ju, and H. L. Ho, “Loss analysis of single-mode fiber/photonic-crystal fiber splice,” Microw. Opt. Technol. Lett. 40(5), 378–380 (2004).
[CrossRef]

Ju, J.

Y. L. Hoo, W. Jin, J. Ju, and H. L. Ho, “Loss analysis of single-mode fiber/photonic-crystal fiber splice,” Microw. Opt. Technol. Lett. 40(5), 378–380 (2004).
[CrossRef]

Jung, H.

Jung, Y.

Kaijage, S.

F. Begum, Y. Namihira, T. Kinjo, and S. Kaijage, “Supercontinuum generation in square photonic crystal fiber with nearly zero ultra-flattened chromatic dispersion and fabrication tolerance analysis,” Opt. Commun. 284(4), 965–970 (2011).
[CrossRef]

Kaijage, S. F.

F. Begum, Y. Namihira, S. M. A. Razzak, S. F. Kaijage, N. H. Hai, K. Miyagi, H. Higa, and N. Zou, “Flattened chromatic dispersion in square photonic crystal fibers with low confinement losses,” Opt. Rev. 16(2), 54–58 (2009).
[CrossRef]

Kakiuchida, H.

K. Saito, M. Yamaguchi, H. Kakiuchida, A. J. Ikushima, K. Ohsono, and Y. Kurosawa, “Limit of the Rayleigh scattering loss in silica fiber,” Appl. Phys. Lett. 83(25), 5175–5177 (2003).
[CrossRef]

Kikuchi, K.

Kim, S.

Kinjo, T.

F. Begum, Y. Namihira, T. Kinjo, and S. Kaijage, “Supercontinuum generation in square photonic crystal fiber with nearly zero ultra-flattened chromatic dispersion and fabrication tolerance analysis,” Opt. Commun. 284(4), 965–970 (2011).
[CrossRef]

Kirchhof, J.

Knudsen, S. N.

L. Gruner-Nielsen, S. N. Knudsen, B. Edvold, T. Veng, D. Magnussen, C. C. Larsen, and H. Damsgaard, “Dispersion compensating fibers,” Opt. Fiber Technol. 6(2), 164–180 (2000).
[CrossRef]

Kobelke, J.

Koshiba, M.

K. Saitoh, M. Koshiba, T. Hasegawa, and E. Sasaoka, “Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion,” Opt. Express 11(8), 843–852 (2003).
[CrossRef] [PubMed]

K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers,” IEEE J. Quantum Electron. 38(7), 927–933 (2002).
[CrossRef]

Kuhlmey, B.

Kuhlmey, B. T.

Kurosawa, Y.

K. Saito, M. Yamaguchi, H. Kakiuchida, A. J. Ikushima, K. Ohsono, and Y. Kurosawa, “Limit of the Rayleigh scattering loss in silica fiber,” Appl. Phys. Lett. 83(25), 5175–5177 (2003).
[CrossRef]

Kurtz, P.

S. Yin, K. Chung, H. Liu, P. Kurtz, and K. Reichard, “A new design for non-zero dispersion-shifted fiber (NZ-DSF) with a large effective area over 100?m2 and low bending and splice loss,” Opt. Commun. 177(1-6), 225–232 (2000).
[CrossRef]

Larsen, C. C.

L. Gruner-Nielsen, S. N. Knudsen, B. Edvold, T. Veng, D. Magnussen, C. C. Larsen, and H. Damsgaard, “Dispersion compensating fibers,” Opt. Fiber Technol. 6(2), 164–180 (2000).
[CrossRef]

Lederer, F.

Lee, J. W.

Lee, S.

Limpert, J.

Liu, H.

S. Yin, K. Chung, H. Liu, P. Kurtz, and K. Reichard, “A new design for non-zero dispersion-shifted fiber (NZ-DSF) with a large effective area over 100?m2 and low bending and splice loss,” Opt. Commun. 177(1-6), 225–232 (2000).
[CrossRef]

Lundin, R.

Madani, F. M.

Magnussen, D.

L. Gruner-Nielsen, S. N. Knudsen, B. Edvold, T. Veng, D. Magnussen, C. C. Larsen, and H. Damsgaard, “Dispersion compensating fibers,” Opt. Fiber Technol. 6(2), 164–180 (2000).
[CrossRef]

Malitson, I. H.

Maystre, D.

McPhedran, R.

Miyagi, K.

F. Begum, Y. Namihira, S. M. A. Razzak, S. F. Kaijage, N. H. Hai, K. Miyagi, H. Higa, and N. Zou, “Flattened chromatic dispersion in square photonic crystal fibers with low confinement losses,” Opt. Rev. 16(2), 54–58 (2009).
[CrossRef]

Monro, T. M.

V. Finazzi, T. M. Monro, and D. J. Richardson, “The role of confinement loss in highly nonlinear silica holey fibers,” IEEE Photon. Technol. Lett. 15(9), 1246–1248 (2003).
[CrossRef]

Namihira, Y.

F. Begum, Y. Namihira, T. Kinjo, and S. Kaijage, “Supercontinuum generation in square photonic crystal fiber with nearly zero ultra-flattened chromatic dispersion and fabrication tolerance analysis,” Opt. Commun. 284(4), 965–970 (2011).
[CrossRef]

F. Begum, Y. Namihira, S. M. A. Razzak, S. F. Kaijage, N. H. Hai, K. Miyagi, H. Higa, and N. Zou, “Flattened chromatic dispersion in square photonic crystal fibers with low confinement losses,” Opt. Rev. 16(2), 54–58 (2009).
[CrossRef]

Nolte, S.

Oh, K.

Ohsono, K.

K. Saito, M. Yamaguchi, H. Kakiuchida, A. J. Ikushima, K. Ohsono, and Y. Kurosawa, “Limit of the Rayleigh scattering loss in silica fiber,” Appl. Phys. Lett. 83(25), 5175–5177 (2003).
[CrossRef]

Park, J.

Petersson, A.

Poli, F.

Razzak, S. M. A.

F. Begum, Y. Namihira, S. M. A. Razzak, S. F. Kaijage, N. H. Hai, K. Miyagi, H. Higa, and N. Zou, “Flattened chromatic dispersion in square photonic crystal fibers with low confinement losses,” Opt. Rev. 16(2), 54–58 (2009).
[CrossRef]

Reichard, K.

S. Yin, K. Chung, H. Liu, P. Kurtz, and K. Reichard, “A new design for non-zero dispersion-shifted fiber (NZ-DSF) with a large effective area over 100?m2 and low bending and splice loss,” Opt. Commun. 177(1-6), 225–232 (2000).
[CrossRef]

Renversez, G.

Richardson, D. J.

V. Finazzi, T. M. Monro, and D. J. Richardson, “The role of confinement loss in highly nonlinear silica holey fibers,” IEEE Photon. Technol. Lett. 15(9), 1246–1248 (2003).
[CrossRef]

Rosa, L.

Saito, K.

K. Saito, M. Yamaguchi, H. Kakiuchida, A. J. Ikushima, K. Ohsono, and Y. Kurosawa, “Limit of the Rayleigh scattering loss in silica fiber,” Appl. Phys. Lett. 83(25), 5175–5177 (2003).
[CrossRef]

Saitoh, K.

K. Saitoh, M. Koshiba, T. Hasegawa, and E. Sasaoka, “Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion,” Opt. Express 11(8), 843–852 (2003).
[CrossRef] [PubMed]

K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers,” IEEE J. Quantum Electron. 38(7), 927–933 (2002).
[CrossRef]

Sasaoka, E.

Schreiber, T.

Schuster, K.

Selleri, S.

Thomas, B. K.

Tunnermann, T.

Veng, T.

L. Gruner-Nielsen, S. N. Knudsen, B. Edvold, T. Veng, D. Magnussen, C. C. Larsen, and H. Damsgaard, “Dispersion compensating fibers,” Opt. Fiber Technol. 6(2), 164–180 (2000).
[CrossRef]

Vienne, G.

Vincetti, L.

Wood, D. L.

Yamaguchi, M.

K. Saito, M. Yamaguchi, H. Kakiuchida, A. J. Ikushima, K. Ohsono, and Y. Kurosawa, “Limit of the Rayleigh scattering loss in silica fiber,” Appl. Phys. Lett. 83(25), 5175–5177 (2003).
[CrossRef]

Yin, S.

S. Yin, K. Chung, H. Liu, P. Kurtz, and K. Reichard, “A new design for non-zero dispersion-shifted fiber (NZ-DSF) with a large effective area over 100?m2 and low bending and splice loss,” Opt. Commun. 177(1-6), 225–232 (2000).
[CrossRef]

Zellmer, H.

Zou, N.

F. Begum, Y. Namihira, S. M. A. Razzak, S. F. Kaijage, N. H. Hai, K. Miyagi, H. Higa, and N. Zou, “Flattened chromatic dispersion in square photonic crystal fibers with low confinement losses,” Opt. Rev. 16(2), 54–58 (2009).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

K. Saito, M. Yamaguchi, H. Kakiuchida, A. J. Ikushima, K. Ohsono, and Y. Kurosawa, “Limit of the Rayleigh scattering loss in silica fiber,” Appl. Phys. Lett. 83(25), 5175–5177 (2003).
[CrossRef]

IEEE J. Quantum Electron.

K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers,” IEEE J. Quantum Electron. 38(7), 927–933 (2002).
[CrossRef]

IEEE Photon. Technol. Lett.

V. Finazzi, T. M. Monro, and D. J. Richardson, “The role of confinement loss in highly nonlinear silica holey fibers,” IEEE Photon. Technol. Lett. 15(9), 1246–1248 (2003).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

Microw. Opt. Technol. Lett.

Y. L. Hoo, W. Jin, J. Ju, and H. L. Ho, “Loss analysis of single-mode fiber/photonic-crystal fiber splice,” Microw. Opt. Technol. Lett. 40(5), 378–380 (2004).
[CrossRef]

Opt. Commun.

F. Begum, Y. Namihira, T. Kinjo, and S. Kaijage, “Supercontinuum generation in square photonic crystal fiber with nearly zero ultra-flattened chromatic dispersion and fabrication tolerance analysis,” Opt. Commun. 284(4), 965–970 (2011).
[CrossRef]

S. Yin, K. Chung, H. Liu, P. Kurtz, and K. Reichard, “A new design for non-zero dispersion-shifted fiber (NZ-DSF) with a large effective area over 100?m2 and low bending and splice loss,” Opt. Commun. 177(1-6), 225–232 (2000).
[CrossRef]

Opt. Express

Opt. Fiber Technol.

L. Gruner-Nielsen, S. N. Knudsen, B. Edvold, T. Veng, D. Magnussen, C. C. Larsen, and H. Damsgaard, “Dispersion compensating fibers,” Opt. Fiber Technol. 6(2), 164–180 (2000).
[CrossRef]

Opt. Lett.

Opt. Rev.

F. Begum, Y. Namihira, S. M. A. Razzak, S. F. Kaijage, N. H. Hai, K. Miyagi, H. Higa, and N. Zou, “Flattened chromatic dispersion in square photonic crystal fibers with low confinement losses,” Opt. Rev. 16(2), 54–58 (2009).
[CrossRef]

Other

M. Bass and E. W. V. Stryland, Fiber Optics Handbook: Fiber, Devices, and Systems for Optical Communications (McGraw-Hill, 2002), Chap. 13.

VitroCom, Square Tubing in Borosilicate and Clear Fused Quartz glasses, http://www.vitrocom.com/categories/view/25/Square_Tubing

CorActive Passive Fibers for Component & Laser Delivery Applications Product information (CorActive High-Tech, Inc., Québec, Canada, 2010–2011)

Corning SMF-28 CPC6 Single-Mode Optical Fibre Product information (Corning, Ithaca, N.Y., 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic cross-section of the proposed SLPCF along with its geometrical parameters: air-hole diameter d and its pitch Λ. (b) Enlarged view of GeO2-doped silica high-index hollow ring defect (HRD) on the top and F-doped silica low-index HRD with the relative index difference Δring and the ring thickness tring. (c) Commercially available silica tube with a square hole [17]. (d) Schematic diagram of modified chemical vapor deposition (MCVD) process for GeO2- or F-doped silica ring tube, which is the preform for HRDs in (b).

Fig. 2
Fig. 2

(a) Optimization of the relative index differences, ΔL1, ΔL2, and ΔL3 of HRD for the ultra-flattened zero dispersion. (b) Enlarged view of chromatic dispersion (red) and its slope (blue) of the optimized SLPCF. (c) Modal intensity distribution of the fundamental mode at λ = 1.55μm.

Fig. 3
Fig. 3

Optimization of the relative index differences, ΔL1, ΔL2, and ΔL3, for efficient wide band dispersion compensation: (a) compensation ratio and (b) chromatic dispersion. (c) The modal intensity distribution of the fundamental mode at λ = 1.55μm.

Fig. 4
Fig. 4

Estimated splice loss (red) and effective mode area (blue) for (a) ultra-flattened zero dispersion SLPCF, (b) dispersion compensating SLPCF. (c) Comparison of hole-collapsed splicing condition between the conventional SLPCF and proposed SLPCF with GeO2/F-doped HRDs. (d) Comparison of intensity distribution at the hole-collapsed region for each case.

Fig. 5
Fig. 5

Impacts of deviation in (a), (b) the relative index differences δΔLi of HRD, (c), (d) in the air hole fraction δ(d/Λ), and (e), (f) the combined deviation in δΔLi and δ(d/Λ) on chromatic dispersion of ultra-flattened zero dispersion SLPCF and dispersion compensation ratio of the dispersion compensating SLPCF respectively.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

×( n 2 ( ω )× H ) k 0 2 H =0
D( λ )= λ c 2 Re[ n eff ( λ ) ] λ 2
A eff = ( | E t | 2 dxdy ) 2 | E t | 4 dxdy .
L splice =10log | ( E p E s dxdy | E p | 2 dxdy | E s | 2 dxdy ) | 2 ,
L c =( 20 / ln10 ) k 0 Im[ n eff ].
D SSMF L SSMF + D PCF L PCF =0,
CR( λ )=| D SSMF ( λ ) L SSMF D PCF ( λ ) L PCF |

Metrics