Abstract

Rotational-level-dependent dephasing rates and nonresonant background can lead to significant uncertainties in coherent anti-Stokes Raman scattering (CARS) thermometry under high-pressure, low-temperature conditions if the gas composition is unknown. Hybrid femtosecond/picosecond rotational CARS is employed to minimize or eliminate the influence of collisions and nonresonant background for accurate, frequency-domain thermometry at elevated pressure. The ability to ignore these interferences and achieve thermometric errors of <5% is demonstrated for N2 and O2 at pressures up to 15 atm. Beyond 15 atm, the effects of collisions cannot be ignored but can be minimized using a short probe delay (~6.5 ps) after Raman excitation, thereby improving thermometric accuracy with a time- and frequency-resolved theoretical model.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: Fundamental developments and applications in reacting flows,” Prog. Energ. Combust. Sci. 36(2), 280–306 (2010).
    [CrossRef]
  2. T. Seeger, F. Beyrau, A. Brauer, and A. Leipertz, “High-pressure pure rotational CARS: comparison of temperature measurements with O2, N2 and synthetic air,” J. Raman Spectrosc. 34, 932–939 (2003).
    [CrossRef]
  3. F. Vestin, M. Afzelius, and P. E. Bengtsson, “Development of rotational CARS for combustion diagnostics using a polarization approach,” Proc. Combust. Inst. 31(1), 833–840 (2007).
    [CrossRef]
  4. F. M. Kamga and M. G. Sceats, “Pulse-sequenced coherent anti-Stokes Raman scattering: Method for suppression of the non-resonant background,” Opt. Lett. 5(3), 126–128 (1980).
    [CrossRef] [PubMed]
  5. H. M. Frey, P. Beaud, T. Gerber, B. Mischler, P. Radi, and A. P. Tzannis, “Femtosecond nonresonant degenerate four-wave mixing at atmospheric pressure and in a free jet,” Appl. Phys. B 68(4), 735–739 (1999).
    [CrossRef]
  6. P. Beaud, H. M. Frey, T. Lang, and M. Motzkus, “Flame thermometry by femtosecond CARS,” Chem. Phys. Lett. 344(3-4), 407–412 (2001).
    [CrossRef]
  7. T. R. Meyer, S. Roy, and J. R. Gord, “Improving signal-to-interference ratio in rich hydrocarbon-air flames using picosecond coherent anti-Stokes Raman scattering,” Appl. Spectrosc. 61(11), 1135–1140 (2007).
    [CrossRef] [PubMed]
  8. T. Seeger, J. Kiefer, A. Leipertz, B. D. Patterson, C. J. Kliewer, and T. B. Settersten, “Picosecond time-resolved pure-rotational coherent anti-Stokes Raman spectroscopy for N(2) thermometry,” Opt. Lett. 34(23), 3755–3757 (2009).
    [CrossRef] [PubMed]
  9. G. Knopp, P. Beaud, P. Radi, M. Tulej, B. Bougie, D. Cannavo, and T. Gerber, “Pressure-dependent N2 Q-branch fs-CARS measurements,” J. Raman Spectrosc. 33(11-12), 861–865 (2002).
    [CrossRef]
  10. T. Lang and M. Motzkus, “Determination of line shift coefficients with femtosecond time resolved CARS,” J. Raman Spectrosc. 31(1-2), 65–70 (2000).
    [CrossRef]
  11. T. Lang, M. Motzkus, H. M. Frey, and P. Beaud, “High resolution femtosecond coherent anti-Stokes Raman scattering: Determination of rotational constants, molecular anharmonicity, collisional line shifts, and temperature,” J. Chem. Phys. 115(12), 5418–5426 (2001).
    [CrossRef]
  12. P. Beaud and G. Knopp, “Scaling rotationally inelastic collisions with an effective angular momentum parameter,” Chem. Phys. Lett. 371(1-2), 194–201 (2003).
    [CrossRef]
  13. P. Beaud, T. Gerber, P. Radi, M. Tulej, and G. Knopp, “Rotationally inelastic collisions between N2 and rare gases: An extension of the angular momentum scaling law,” Chem. Phys. Lett. 373(3-4), 251–257 (2003).
    [CrossRef]
  14. G. Knopp, P. Radi, M. Tulej, T. Gerber, and P. Beaud, “Collision induced rotational energy transfer probed by time-resolved coherent anti-Stokes Raman scattering,” J. Chem. Phys. 118(18), 8223–8233 (2003).
    [CrossRef]
  15. T. Lang and M. Motzkus, “Single-shot femtosecond coherent anti-Stokes Raman scattering thermometry,” J. Opt. Soc. Am. B 19(2), 340–344 (2002).
    [CrossRef]
  16. R. P. Lucht, S. Roy, T. R. Meyer, and J. R. Gord, “Femtosecond coherent anti-Stokes Raman scattering measurement of gas temperatures from frequency-spread dephasing of the Raman coherence,” Appl. Phys. Lett. 89(25), 251112 (2006).
    [CrossRef]
  17. J. D. Miller, S. Roy, M. N. Slipchenko, J. R. Gord, and T. R. Meyer, “Single-shot gas-phase thermometry using pure-rotational hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering,” Opt. Express 19(16), 15627–15640 (2011).
    [CrossRef] [PubMed]
  18. J. D. Miller, M. N. Slipchenko, T. R. Meyer, H. U. Stauffer, and J. R. Gord, “Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering for high-speed gas-phase thermometry,” Opt. Lett. 35(14), 2430–2432 (2010).
    [CrossRef] [PubMed]
  19. J. D. Miller, M. N. Slipchenko, and T. R. Meyer, “Probe-pulse optimization for nonresonant suppression in hybrid fs/ps coherent anti-Stokes Raman scattering at high temperature,” Opt. Express 19(14), 13326–13333 (2011).
    [CrossRef] [PubMed]
  20. J. D. Miller, S. Roy, J. R. Gord, and T. R. Meyer, “Communication: Time-domain measurement of high-pressure N2 and O2 self-broadened linewidths using hybrid femtosecond?picosecond coherent anti-Stokes Raman scattering,” J. Chem. Phys. 135(20), 201104 (2011).
    [CrossRef] [PubMed]
  21. B. D. Prince, A. Chakraborty, B. M. Prince, and H. U. Stauffer, “Development of simultaneous frequency- and time-resolved coherent anti-Stokes Raman scattering for ultrafast detection of molecular Raman spectra,” J. Chem. Phys. 125(4), 044502 (2006).
    [CrossRef] [PubMed]
  22. L. A. Rahn and R. E. Palmer, “Studies of nitrogen self-broadening at high-temperature with inverse Raman-spectroscopy,” J. Opt. Soc. Am. B 3(9), 1164–1169 (1986).
    [CrossRef]
  23. B. Lavorel, H. Tran, E. Hertz, O. Faucher, P. Joubert, M. Motzkus, T. Buckup, T. Lang, H. Skenderovi, G. Knopp, P. Beaud, and H. M. Frey, “Femtosecond Raman time-resolved molecular spectroscopy,” C. R. Phys. 5, 215–229 (2004).
    [CrossRef]
  24. L. Martinsson, P. E. Bengtsson, M. Alden, S. Kroll, and J. Bonamy, “A test of different rotational Raman linewidth models: accuracy of rotational coherent anti-Stokes-Raman scattering thermometry in nitrogen from 295 to 1850 K,” J. Chem. Phys. 99(4), 2466–2477 (1993).
    [CrossRef]
  25. M. Afzelius, P. E. Bengtsson, J. Bood, J. Bonamy, F. Chaussard, H. Berger, and T. Dreier, “Dual-broadband rotational CARS modelling of nitrogen at pressures up to 9 MPa II. Rotaitonal Raman linewidths,” Appl. Phys. B 75(6-7), 771–778 (2002).
    [CrossRef]

2011 (3)

2010 (2)

J. D. Miller, M. N. Slipchenko, T. R. Meyer, H. U. Stauffer, and J. R. Gord, “Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering for high-speed gas-phase thermometry,” Opt. Lett. 35(14), 2430–2432 (2010).
[CrossRef] [PubMed]

S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: Fundamental developments and applications in reacting flows,” Prog. Energ. Combust. Sci. 36(2), 280–306 (2010).
[CrossRef]

2009 (1)

2007 (2)

F. Vestin, M. Afzelius, and P. E. Bengtsson, “Development of rotational CARS for combustion diagnostics using a polarization approach,” Proc. Combust. Inst. 31(1), 833–840 (2007).
[CrossRef]

T. R. Meyer, S. Roy, and J. R. Gord, “Improving signal-to-interference ratio in rich hydrocarbon-air flames using picosecond coherent anti-Stokes Raman scattering,” Appl. Spectrosc. 61(11), 1135–1140 (2007).
[CrossRef] [PubMed]

2006 (2)

B. D. Prince, A. Chakraborty, B. M. Prince, and H. U. Stauffer, “Development of simultaneous frequency- and time-resolved coherent anti-Stokes Raman scattering for ultrafast detection of molecular Raman spectra,” J. Chem. Phys. 125(4), 044502 (2006).
[CrossRef] [PubMed]

R. P. Lucht, S. Roy, T. R. Meyer, and J. R. Gord, “Femtosecond coherent anti-Stokes Raman scattering measurement of gas temperatures from frequency-spread dephasing of the Raman coherence,” Appl. Phys. Lett. 89(25), 251112 (2006).
[CrossRef]

2004 (1)

B. Lavorel, H. Tran, E. Hertz, O. Faucher, P. Joubert, M. Motzkus, T. Buckup, T. Lang, H. Skenderovi, G. Knopp, P. Beaud, and H. M. Frey, “Femtosecond Raman time-resolved molecular spectroscopy,” C. R. Phys. 5, 215–229 (2004).
[CrossRef]

2003 (4)

P. Beaud and G. Knopp, “Scaling rotationally inelastic collisions with an effective angular momentum parameter,” Chem. Phys. Lett. 371(1-2), 194–201 (2003).
[CrossRef]

P. Beaud, T. Gerber, P. Radi, M. Tulej, and G. Knopp, “Rotationally inelastic collisions between N2 and rare gases: An extension of the angular momentum scaling law,” Chem. Phys. Lett. 373(3-4), 251–257 (2003).
[CrossRef]

G. Knopp, P. Radi, M. Tulej, T. Gerber, and P. Beaud, “Collision induced rotational energy transfer probed by time-resolved coherent anti-Stokes Raman scattering,” J. Chem. Phys. 118(18), 8223–8233 (2003).
[CrossRef]

T. Seeger, F. Beyrau, A. Brauer, and A. Leipertz, “High-pressure pure rotational CARS: comparison of temperature measurements with O2, N2 and synthetic air,” J. Raman Spectrosc. 34, 932–939 (2003).
[CrossRef]

2002 (3)

G. Knopp, P. Beaud, P. Radi, M. Tulej, B. Bougie, D. Cannavo, and T. Gerber, “Pressure-dependent N2 Q-branch fs-CARS measurements,” J. Raman Spectrosc. 33(11-12), 861–865 (2002).
[CrossRef]

T. Lang and M. Motzkus, “Single-shot femtosecond coherent anti-Stokes Raman scattering thermometry,” J. Opt. Soc. Am. B 19(2), 340–344 (2002).
[CrossRef]

M. Afzelius, P. E. Bengtsson, J. Bood, J. Bonamy, F. Chaussard, H. Berger, and T. Dreier, “Dual-broadband rotational CARS modelling of nitrogen at pressures up to 9 MPa II. Rotaitonal Raman linewidths,” Appl. Phys. B 75(6-7), 771–778 (2002).
[CrossRef]

2001 (2)

T. Lang, M. Motzkus, H. M. Frey, and P. Beaud, “High resolution femtosecond coherent anti-Stokes Raman scattering: Determination of rotational constants, molecular anharmonicity, collisional line shifts, and temperature,” J. Chem. Phys. 115(12), 5418–5426 (2001).
[CrossRef]

P. Beaud, H. M. Frey, T. Lang, and M. Motzkus, “Flame thermometry by femtosecond CARS,” Chem. Phys. Lett. 344(3-4), 407–412 (2001).
[CrossRef]

2000 (1)

T. Lang and M. Motzkus, “Determination of line shift coefficients with femtosecond time resolved CARS,” J. Raman Spectrosc. 31(1-2), 65–70 (2000).
[CrossRef]

1999 (1)

H. M. Frey, P. Beaud, T. Gerber, B. Mischler, P. Radi, and A. P. Tzannis, “Femtosecond nonresonant degenerate four-wave mixing at atmospheric pressure and in a free jet,” Appl. Phys. B 68(4), 735–739 (1999).
[CrossRef]

1993 (1)

L. Martinsson, P. E. Bengtsson, M. Alden, S. Kroll, and J. Bonamy, “A test of different rotational Raman linewidth models: accuracy of rotational coherent anti-Stokes-Raman scattering thermometry in nitrogen from 295 to 1850 K,” J. Chem. Phys. 99(4), 2466–2477 (1993).
[CrossRef]

1986 (1)

1980 (1)

Afzelius, M.

F. Vestin, M. Afzelius, and P. E. Bengtsson, “Development of rotational CARS for combustion diagnostics using a polarization approach,” Proc. Combust. Inst. 31(1), 833–840 (2007).
[CrossRef]

M. Afzelius, P. E. Bengtsson, J. Bood, J. Bonamy, F. Chaussard, H. Berger, and T. Dreier, “Dual-broadband rotational CARS modelling of nitrogen at pressures up to 9 MPa II. Rotaitonal Raman linewidths,” Appl. Phys. B 75(6-7), 771–778 (2002).
[CrossRef]

Alden, M.

L. Martinsson, P. E. Bengtsson, M. Alden, S. Kroll, and J. Bonamy, “A test of different rotational Raman linewidth models: accuracy of rotational coherent anti-Stokes-Raman scattering thermometry in nitrogen from 295 to 1850 K,” J. Chem. Phys. 99(4), 2466–2477 (1993).
[CrossRef]

Beaud, P.

B. Lavorel, H. Tran, E. Hertz, O. Faucher, P. Joubert, M. Motzkus, T. Buckup, T. Lang, H. Skenderovi, G. Knopp, P. Beaud, and H. M. Frey, “Femtosecond Raman time-resolved molecular spectroscopy,” C. R. Phys. 5, 215–229 (2004).
[CrossRef]

P. Beaud and G. Knopp, “Scaling rotationally inelastic collisions with an effective angular momentum parameter,” Chem. Phys. Lett. 371(1-2), 194–201 (2003).
[CrossRef]

G. Knopp, P. Radi, M. Tulej, T. Gerber, and P. Beaud, “Collision induced rotational energy transfer probed by time-resolved coherent anti-Stokes Raman scattering,” J. Chem. Phys. 118(18), 8223–8233 (2003).
[CrossRef]

P. Beaud, T. Gerber, P. Radi, M. Tulej, and G. Knopp, “Rotationally inelastic collisions between N2 and rare gases: An extension of the angular momentum scaling law,” Chem. Phys. Lett. 373(3-4), 251–257 (2003).
[CrossRef]

G. Knopp, P. Beaud, P. Radi, M. Tulej, B. Bougie, D. Cannavo, and T. Gerber, “Pressure-dependent N2 Q-branch fs-CARS measurements,” J. Raman Spectrosc. 33(11-12), 861–865 (2002).
[CrossRef]

T. Lang, M. Motzkus, H. M. Frey, and P. Beaud, “High resolution femtosecond coherent anti-Stokes Raman scattering: Determination of rotational constants, molecular anharmonicity, collisional line shifts, and temperature,” J. Chem. Phys. 115(12), 5418–5426 (2001).
[CrossRef]

P. Beaud, H. M. Frey, T. Lang, and M. Motzkus, “Flame thermometry by femtosecond CARS,” Chem. Phys. Lett. 344(3-4), 407–412 (2001).
[CrossRef]

H. M. Frey, P. Beaud, T. Gerber, B. Mischler, P. Radi, and A. P. Tzannis, “Femtosecond nonresonant degenerate four-wave mixing at atmospheric pressure and in a free jet,” Appl. Phys. B 68(4), 735–739 (1999).
[CrossRef]

Bengtsson, P. E.

F. Vestin, M. Afzelius, and P. E. Bengtsson, “Development of rotational CARS for combustion diagnostics using a polarization approach,” Proc. Combust. Inst. 31(1), 833–840 (2007).
[CrossRef]

M. Afzelius, P. E. Bengtsson, J. Bood, J. Bonamy, F. Chaussard, H. Berger, and T. Dreier, “Dual-broadband rotational CARS modelling of nitrogen at pressures up to 9 MPa II. Rotaitonal Raman linewidths,” Appl. Phys. B 75(6-7), 771–778 (2002).
[CrossRef]

L. Martinsson, P. E. Bengtsson, M. Alden, S. Kroll, and J. Bonamy, “A test of different rotational Raman linewidth models: accuracy of rotational coherent anti-Stokes-Raman scattering thermometry in nitrogen from 295 to 1850 K,” J. Chem. Phys. 99(4), 2466–2477 (1993).
[CrossRef]

Berger, H.

M. Afzelius, P. E. Bengtsson, J. Bood, J. Bonamy, F. Chaussard, H. Berger, and T. Dreier, “Dual-broadband rotational CARS modelling of nitrogen at pressures up to 9 MPa II. Rotaitonal Raman linewidths,” Appl. Phys. B 75(6-7), 771–778 (2002).
[CrossRef]

Beyrau, F.

T. Seeger, F. Beyrau, A. Brauer, and A. Leipertz, “High-pressure pure rotational CARS: comparison of temperature measurements with O2, N2 and synthetic air,” J. Raman Spectrosc. 34, 932–939 (2003).
[CrossRef]

Bonamy, J.

M. Afzelius, P. E. Bengtsson, J. Bood, J. Bonamy, F. Chaussard, H. Berger, and T. Dreier, “Dual-broadband rotational CARS modelling of nitrogen at pressures up to 9 MPa II. Rotaitonal Raman linewidths,” Appl. Phys. B 75(6-7), 771–778 (2002).
[CrossRef]

L. Martinsson, P. E. Bengtsson, M. Alden, S. Kroll, and J. Bonamy, “A test of different rotational Raman linewidth models: accuracy of rotational coherent anti-Stokes-Raman scattering thermometry in nitrogen from 295 to 1850 K,” J. Chem. Phys. 99(4), 2466–2477 (1993).
[CrossRef]

Bood, J.

M. Afzelius, P. E. Bengtsson, J. Bood, J. Bonamy, F. Chaussard, H. Berger, and T. Dreier, “Dual-broadband rotational CARS modelling of nitrogen at pressures up to 9 MPa II. Rotaitonal Raman linewidths,” Appl. Phys. B 75(6-7), 771–778 (2002).
[CrossRef]

Bougie, B.

G. Knopp, P. Beaud, P. Radi, M. Tulej, B. Bougie, D. Cannavo, and T. Gerber, “Pressure-dependent N2 Q-branch fs-CARS measurements,” J. Raman Spectrosc. 33(11-12), 861–865 (2002).
[CrossRef]

Brauer, A.

T. Seeger, F. Beyrau, A. Brauer, and A. Leipertz, “High-pressure pure rotational CARS: comparison of temperature measurements with O2, N2 and synthetic air,” J. Raman Spectrosc. 34, 932–939 (2003).
[CrossRef]

Buckup, T.

B. Lavorel, H. Tran, E. Hertz, O. Faucher, P. Joubert, M. Motzkus, T. Buckup, T. Lang, H. Skenderovi, G. Knopp, P. Beaud, and H. M. Frey, “Femtosecond Raman time-resolved molecular spectroscopy,” C. R. Phys. 5, 215–229 (2004).
[CrossRef]

Cannavo, D.

G. Knopp, P. Beaud, P. Radi, M. Tulej, B. Bougie, D. Cannavo, and T. Gerber, “Pressure-dependent N2 Q-branch fs-CARS measurements,” J. Raman Spectrosc. 33(11-12), 861–865 (2002).
[CrossRef]

Chakraborty, A.

B. D. Prince, A. Chakraborty, B. M. Prince, and H. U. Stauffer, “Development of simultaneous frequency- and time-resolved coherent anti-Stokes Raman scattering for ultrafast detection of molecular Raman spectra,” J. Chem. Phys. 125(4), 044502 (2006).
[CrossRef] [PubMed]

Chaussard, F.

M. Afzelius, P. E. Bengtsson, J. Bood, J. Bonamy, F. Chaussard, H. Berger, and T. Dreier, “Dual-broadband rotational CARS modelling of nitrogen at pressures up to 9 MPa II. Rotaitonal Raman linewidths,” Appl. Phys. B 75(6-7), 771–778 (2002).
[CrossRef]

Dreier, T.

M. Afzelius, P. E. Bengtsson, J. Bood, J. Bonamy, F. Chaussard, H. Berger, and T. Dreier, “Dual-broadband rotational CARS modelling of nitrogen at pressures up to 9 MPa II. Rotaitonal Raman linewidths,” Appl. Phys. B 75(6-7), 771–778 (2002).
[CrossRef]

Faucher, O.

B. Lavorel, H. Tran, E. Hertz, O. Faucher, P. Joubert, M. Motzkus, T. Buckup, T. Lang, H. Skenderovi, G. Knopp, P. Beaud, and H. M. Frey, “Femtosecond Raman time-resolved molecular spectroscopy,” C. R. Phys. 5, 215–229 (2004).
[CrossRef]

Frey, H. M.

B. Lavorel, H. Tran, E. Hertz, O. Faucher, P. Joubert, M. Motzkus, T. Buckup, T. Lang, H. Skenderovi, G. Knopp, P. Beaud, and H. M. Frey, “Femtosecond Raman time-resolved molecular spectroscopy,” C. R. Phys. 5, 215–229 (2004).
[CrossRef]

P. Beaud, H. M. Frey, T. Lang, and M. Motzkus, “Flame thermometry by femtosecond CARS,” Chem. Phys. Lett. 344(3-4), 407–412 (2001).
[CrossRef]

T. Lang, M. Motzkus, H. M. Frey, and P. Beaud, “High resolution femtosecond coherent anti-Stokes Raman scattering: Determination of rotational constants, molecular anharmonicity, collisional line shifts, and temperature,” J. Chem. Phys. 115(12), 5418–5426 (2001).
[CrossRef]

H. M. Frey, P. Beaud, T. Gerber, B. Mischler, P. Radi, and A. P. Tzannis, “Femtosecond nonresonant degenerate four-wave mixing at atmospheric pressure and in a free jet,” Appl. Phys. B 68(4), 735–739 (1999).
[CrossRef]

Gerber, T.

P. Beaud, T. Gerber, P. Radi, M. Tulej, and G. Knopp, “Rotationally inelastic collisions between N2 and rare gases: An extension of the angular momentum scaling law,” Chem. Phys. Lett. 373(3-4), 251–257 (2003).
[CrossRef]

G. Knopp, P. Radi, M. Tulej, T. Gerber, and P. Beaud, “Collision induced rotational energy transfer probed by time-resolved coherent anti-Stokes Raman scattering,” J. Chem. Phys. 118(18), 8223–8233 (2003).
[CrossRef]

G. Knopp, P. Beaud, P. Radi, M. Tulej, B. Bougie, D. Cannavo, and T. Gerber, “Pressure-dependent N2 Q-branch fs-CARS measurements,” J. Raman Spectrosc. 33(11-12), 861–865 (2002).
[CrossRef]

H. M. Frey, P. Beaud, T. Gerber, B. Mischler, P. Radi, and A. P. Tzannis, “Femtosecond nonresonant degenerate four-wave mixing at atmospheric pressure and in a free jet,” Appl. Phys. B 68(4), 735–739 (1999).
[CrossRef]

Gord, J. R.

J. D. Miller, S. Roy, J. R. Gord, and T. R. Meyer, “Communication: Time-domain measurement of high-pressure N2 and O2 self-broadened linewidths using hybrid femtosecond?picosecond coherent anti-Stokes Raman scattering,” J. Chem. Phys. 135(20), 201104 (2011).
[CrossRef] [PubMed]

J. D. Miller, S. Roy, M. N. Slipchenko, J. R. Gord, and T. R. Meyer, “Single-shot gas-phase thermometry using pure-rotational hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering,” Opt. Express 19(16), 15627–15640 (2011).
[CrossRef] [PubMed]

S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: Fundamental developments and applications in reacting flows,” Prog. Energ. Combust. Sci. 36(2), 280–306 (2010).
[CrossRef]

J. D. Miller, M. N. Slipchenko, T. R. Meyer, H. U. Stauffer, and J. R. Gord, “Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering for high-speed gas-phase thermometry,” Opt. Lett. 35(14), 2430–2432 (2010).
[CrossRef] [PubMed]

T. R. Meyer, S. Roy, and J. R. Gord, “Improving signal-to-interference ratio in rich hydrocarbon-air flames using picosecond coherent anti-Stokes Raman scattering,” Appl. Spectrosc. 61(11), 1135–1140 (2007).
[CrossRef] [PubMed]

R. P. Lucht, S. Roy, T. R. Meyer, and J. R. Gord, “Femtosecond coherent anti-Stokes Raman scattering measurement of gas temperatures from frequency-spread dephasing of the Raman coherence,” Appl. Phys. Lett. 89(25), 251112 (2006).
[CrossRef]

Hertz, E.

B. Lavorel, H. Tran, E. Hertz, O. Faucher, P. Joubert, M. Motzkus, T. Buckup, T. Lang, H. Skenderovi, G. Knopp, P. Beaud, and H. M. Frey, “Femtosecond Raman time-resolved molecular spectroscopy,” C. R. Phys. 5, 215–229 (2004).
[CrossRef]

Joubert, P.

B. Lavorel, H. Tran, E. Hertz, O. Faucher, P. Joubert, M. Motzkus, T. Buckup, T. Lang, H. Skenderovi, G. Knopp, P. Beaud, and H. M. Frey, “Femtosecond Raman time-resolved molecular spectroscopy,” C. R. Phys. 5, 215–229 (2004).
[CrossRef]

Kamga, F. M.

Kiefer, J.

Kliewer, C. J.

Knopp, G.

B. Lavorel, H. Tran, E. Hertz, O. Faucher, P. Joubert, M. Motzkus, T. Buckup, T. Lang, H. Skenderovi, G. Knopp, P. Beaud, and H. M. Frey, “Femtosecond Raman time-resolved molecular spectroscopy,” C. R. Phys. 5, 215–229 (2004).
[CrossRef]

P. Beaud and G. Knopp, “Scaling rotationally inelastic collisions with an effective angular momentum parameter,” Chem. Phys. Lett. 371(1-2), 194–201 (2003).
[CrossRef]

G. Knopp, P. Radi, M. Tulej, T. Gerber, and P. Beaud, “Collision induced rotational energy transfer probed by time-resolved coherent anti-Stokes Raman scattering,” J. Chem. Phys. 118(18), 8223–8233 (2003).
[CrossRef]

P. Beaud, T. Gerber, P. Radi, M. Tulej, and G. Knopp, “Rotationally inelastic collisions between N2 and rare gases: An extension of the angular momentum scaling law,” Chem. Phys. Lett. 373(3-4), 251–257 (2003).
[CrossRef]

G. Knopp, P. Beaud, P. Radi, M. Tulej, B. Bougie, D. Cannavo, and T. Gerber, “Pressure-dependent N2 Q-branch fs-CARS measurements,” J. Raman Spectrosc. 33(11-12), 861–865 (2002).
[CrossRef]

Kroll, S.

L. Martinsson, P. E. Bengtsson, M. Alden, S. Kroll, and J. Bonamy, “A test of different rotational Raman linewidth models: accuracy of rotational coherent anti-Stokes-Raman scattering thermometry in nitrogen from 295 to 1850 K,” J. Chem. Phys. 99(4), 2466–2477 (1993).
[CrossRef]

Lang, T.

B. Lavorel, H. Tran, E. Hertz, O. Faucher, P. Joubert, M. Motzkus, T. Buckup, T. Lang, H. Skenderovi, G. Knopp, P. Beaud, and H. M. Frey, “Femtosecond Raman time-resolved molecular spectroscopy,” C. R. Phys. 5, 215–229 (2004).
[CrossRef]

T. Lang and M. Motzkus, “Single-shot femtosecond coherent anti-Stokes Raman scattering thermometry,” J. Opt. Soc. Am. B 19(2), 340–344 (2002).
[CrossRef]

T. Lang, M. Motzkus, H. M. Frey, and P. Beaud, “High resolution femtosecond coherent anti-Stokes Raman scattering: Determination of rotational constants, molecular anharmonicity, collisional line shifts, and temperature,” J. Chem. Phys. 115(12), 5418–5426 (2001).
[CrossRef]

P. Beaud, H. M. Frey, T. Lang, and M. Motzkus, “Flame thermometry by femtosecond CARS,” Chem. Phys. Lett. 344(3-4), 407–412 (2001).
[CrossRef]

T. Lang and M. Motzkus, “Determination of line shift coefficients with femtosecond time resolved CARS,” J. Raman Spectrosc. 31(1-2), 65–70 (2000).
[CrossRef]

Lavorel, B.

B. Lavorel, H. Tran, E. Hertz, O. Faucher, P. Joubert, M. Motzkus, T. Buckup, T. Lang, H. Skenderovi, G. Knopp, P. Beaud, and H. M. Frey, “Femtosecond Raman time-resolved molecular spectroscopy,” C. R. Phys. 5, 215–229 (2004).
[CrossRef]

Leipertz, A.

T. Seeger, J. Kiefer, A. Leipertz, B. D. Patterson, C. J. Kliewer, and T. B. Settersten, “Picosecond time-resolved pure-rotational coherent anti-Stokes Raman spectroscopy for N(2) thermometry,” Opt. Lett. 34(23), 3755–3757 (2009).
[CrossRef] [PubMed]

T. Seeger, F. Beyrau, A. Brauer, and A. Leipertz, “High-pressure pure rotational CARS: comparison of temperature measurements with O2, N2 and synthetic air,” J. Raman Spectrosc. 34, 932–939 (2003).
[CrossRef]

Lucht, R. P.

R. P. Lucht, S. Roy, T. R. Meyer, and J. R. Gord, “Femtosecond coherent anti-Stokes Raman scattering measurement of gas temperatures from frequency-spread dephasing of the Raman coherence,” Appl. Phys. Lett. 89(25), 251112 (2006).
[CrossRef]

Martinsson, L.

L. Martinsson, P. E. Bengtsson, M. Alden, S. Kroll, and J. Bonamy, “A test of different rotational Raman linewidth models: accuracy of rotational coherent anti-Stokes-Raman scattering thermometry in nitrogen from 295 to 1850 K,” J. Chem. Phys. 99(4), 2466–2477 (1993).
[CrossRef]

Meyer, T. R.

J. D. Miller, S. Roy, M. N. Slipchenko, J. R. Gord, and T. R. Meyer, “Single-shot gas-phase thermometry using pure-rotational hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering,” Opt. Express 19(16), 15627–15640 (2011).
[CrossRef] [PubMed]

J. D. Miller, S. Roy, J. R. Gord, and T. R. Meyer, “Communication: Time-domain measurement of high-pressure N2 and O2 self-broadened linewidths using hybrid femtosecond?picosecond coherent anti-Stokes Raman scattering,” J. Chem. Phys. 135(20), 201104 (2011).
[CrossRef] [PubMed]

J. D. Miller, M. N. Slipchenko, and T. R. Meyer, “Probe-pulse optimization for nonresonant suppression in hybrid fs/ps coherent anti-Stokes Raman scattering at high temperature,” Opt. Express 19(14), 13326–13333 (2011).
[CrossRef] [PubMed]

J. D. Miller, M. N. Slipchenko, T. R. Meyer, H. U. Stauffer, and J. R. Gord, “Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering for high-speed gas-phase thermometry,” Opt. Lett. 35(14), 2430–2432 (2010).
[CrossRef] [PubMed]

T. R. Meyer, S. Roy, and J. R. Gord, “Improving signal-to-interference ratio in rich hydrocarbon-air flames using picosecond coherent anti-Stokes Raman scattering,” Appl. Spectrosc. 61(11), 1135–1140 (2007).
[CrossRef] [PubMed]

R. P. Lucht, S. Roy, T. R. Meyer, and J. R. Gord, “Femtosecond coherent anti-Stokes Raman scattering measurement of gas temperatures from frequency-spread dephasing of the Raman coherence,” Appl. Phys. Lett. 89(25), 251112 (2006).
[CrossRef]

Miller, J. D.

Mischler, B.

H. M. Frey, P. Beaud, T. Gerber, B. Mischler, P. Radi, and A. P. Tzannis, “Femtosecond nonresonant degenerate four-wave mixing at atmospheric pressure and in a free jet,” Appl. Phys. B 68(4), 735–739 (1999).
[CrossRef]

Motzkus, M.

B. Lavorel, H. Tran, E. Hertz, O. Faucher, P. Joubert, M. Motzkus, T. Buckup, T. Lang, H. Skenderovi, G. Knopp, P. Beaud, and H. M. Frey, “Femtosecond Raman time-resolved molecular spectroscopy,” C. R. Phys. 5, 215–229 (2004).
[CrossRef]

T. Lang and M. Motzkus, “Single-shot femtosecond coherent anti-Stokes Raman scattering thermometry,” J. Opt. Soc. Am. B 19(2), 340–344 (2002).
[CrossRef]

T. Lang, M. Motzkus, H. M. Frey, and P. Beaud, “High resolution femtosecond coherent anti-Stokes Raman scattering: Determination of rotational constants, molecular anharmonicity, collisional line shifts, and temperature,” J. Chem. Phys. 115(12), 5418–5426 (2001).
[CrossRef]

P. Beaud, H. M. Frey, T. Lang, and M. Motzkus, “Flame thermometry by femtosecond CARS,” Chem. Phys. Lett. 344(3-4), 407–412 (2001).
[CrossRef]

T. Lang and M. Motzkus, “Determination of line shift coefficients with femtosecond time resolved CARS,” J. Raman Spectrosc. 31(1-2), 65–70 (2000).
[CrossRef]

Palmer, R. E.

Patnaik, A. K.

S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: Fundamental developments and applications in reacting flows,” Prog. Energ. Combust. Sci. 36(2), 280–306 (2010).
[CrossRef]

Patterson, B. D.

Prince, B. D.

B. D. Prince, A. Chakraborty, B. M. Prince, and H. U. Stauffer, “Development of simultaneous frequency- and time-resolved coherent anti-Stokes Raman scattering for ultrafast detection of molecular Raman spectra,” J. Chem. Phys. 125(4), 044502 (2006).
[CrossRef] [PubMed]

Prince, B. M.

B. D. Prince, A. Chakraborty, B. M. Prince, and H. U. Stauffer, “Development of simultaneous frequency- and time-resolved coherent anti-Stokes Raman scattering for ultrafast detection of molecular Raman spectra,” J. Chem. Phys. 125(4), 044502 (2006).
[CrossRef] [PubMed]

Radi, P.

G. Knopp, P. Radi, M. Tulej, T. Gerber, and P. Beaud, “Collision induced rotational energy transfer probed by time-resolved coherent anti-Stokes Raman scattering,” J. Chem. Phys. 118(18), 8223–8233 (2003).
[CrossRef]

P. Beaud, T. Gerber, P. Radi, M. Tulej, and G. Knopp, “Rotationally inelastic collisions between N2 and rare gases: An extension of the angular momentum scaling law,” Chem. Phys. Lett. 373(3-4), 251–257 (2003).
[CrossRef]

G. Knopp, P. Beaud, P. Radi, M. Tulej, B. Bougie, D. Cannavo, and T. Gerber, “Pressure-dependent N2 Q-branch fs-CARS measurements,” J. Raman Spectrosc. 33(11-12), 861–865 (2002).
[CrossRef]

H. M. Frey, P. Beaud, T. Gerber, B. Mischler, P. Radi, and A. P. Tzannis, “Femtosecond nonresonant degenerate four-wave mixing at atmospheric pressure and in a free jet,” Appl. Phys. B 68(4), 735–739 (1999).
[CrossRef]

Rahn, L. A.

Roy, S.

J. D. Miller, S. Roy, J. R. Gord, and T. R. Meyer, “Communication: Time-domain measurement of high-pressure N2 and O2 self-broadened linewidths using hybrid femtosecond?picosecond coherent anti-Stokes Raman scattering,” J. Chem. Phys. 135(20), 201104 (2011).
[CrossRef] [PubMed]

J. D. Miller, S. Roy, M. N. Slipchenko, J. R. Gord, and T. R. Meyer, “Single-shot gas-phase thermometry using pure-rotational hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering,” Opt. Express 19(16), 15627–15640 (2011).
[CrossRef] [PubMed]

S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: Fundamental developments and applications in reacting flows,” Prog. Energ. Combust. Sci. 36(2), 280–306 (2010).
[CrossRef]

T. R. Meyer, S. Roy, and J. R. Gord, “Improving signal-to-interference ratio in rich hydrocarbon-air flames using picosecond coherent anti-Stokes Raman scattering,” Appl. Spectrosc. 61(11), 1135–1140 (2007).
[CrossRef] [PubMed]

R. P. Lucht, S. Roy, T. R. Meyer, and J. R. Gord, “Femtosecond coherent anti-Stokes Raman scattering measurement of gas temperatures from frequency-spread dephasing of the Raman coherence,” Appl. Phys. Lett. 89(25), 251112 (2006).
[CrossRef]

Sceats, M. G.

Seeger, T.

T. Seeger, J. Kiefer, A. Leipertz, B. D. Patterson, C. J. Kliewer, and T. B. Settersten, “Picosecond time-resolved pure-rotational coherent anti-Stokes Raman spectroscopy for N(2) thermometry,” Opt. Lett. 34(23), 3755–3757 (2009).
[CrossRef] [PubMed]

T. Seeger, F. Beyrau, A. Brauer, and A. Leipertz, “High-pressure pure rotational CARS: comparison of temperature measurements with O2, N2 and synthetic air,” J. Raman Spectrosc. 34, 932–939 (2003).
[CrossRef]

Settersten, T. B.

Skenderovi, H.

B. Lavorel, H. Tran, E. Hertz, O. Faucher, P. Joubert, M. Motzkus, T. Buckup, T. Lang, H. Skenderovi, G. Knopp, P. Beaud, and H. M. Frey, “Femtosecond Raman time-resolved molecular spectroscopy,” C. R. Phys. 5, 215–229 (2004).
[CrossRef]

Slipchenko, M. N.

Stauffer, H. U.

J. D. Miller, M. N. Slipchenko, T. R. Meyer, H. U. Stauffer, and J. R. Gord, “Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering for high-speed gas-phase thermometry,” Opt. Lett. 35(14), 2430–2432 (2010).
[CrossRef] [PubMed]

B. D. Prince, A. Chakraborty, B. M. Prince, and H. U. Stauffer, “Development of simultaneous frequency- and time-resolved coherent anti-Stokes Raman scattering for ultrafast detection of molecular Raman spectra,” J. Chem. Phys. 125(4), 044502 (2006).
[CrossRef] [PubMed]

Tran, H.

B. Lavorel, H. Tran, E. Hertz, O. Faucher, P. Joubert, M. Motzkus, T. Buckup, T. Lang, H. Skenderovi, G. Knopp, P. Beaud, and H. M. Frey, “Femtosecond Raman time-resolved molecular spectroscopy,” C. R. Phys. 5, 215–229 (2004).
[CrossRef]

Tulej, M.

G. Knopp, P. Radi, M. Tulej, T. Gerber, and P. Beaud, “Collision induced rotational energy transfer probed by time-resolved coherent anti-Stokes Raman scattering,” J. Chem. Phys. 118(18), 8223–8233 (2003).
[CrossRef]

P. Beaud, T. Gerber, P. Radi, M. Tulej, and G. Knopp, “Rotationally inelastic collisions between N2 and rare gases: An extension of the angular momentum scaling law,” Chem. Phys. Lett. 373(3-4), 251–257 (2003).
[CrossRef]

G. Knopp, P. Beaud, P. Radi, M. Tulej, B. Bougie, D. Cannavo, and T. Gerber, “Pressure-dependent N2 Q-branch fs-CARS measurements,” J. Raman Spectrosc. 33(11-12), 861–865 (2002).
[CrossRef]

Tzannis, A. P.

H. M. Frey, P. Beaud, T. Gerber, B. Mischler, P. Radi, and A. P. Tzannis, “Femtosecond nonresonant degenerate four-wave mixing at atmospheric pressure and in a free jet,” Appl. Phys. B 68(4), 735–739 (1999).
[CrossRef]

Vestin, F.

F. Vestin, M. Afzelius, and P. E. Bengtsson, “Development of rotational CARS for combustion diagnostics using a polarization approach,” Proc. Combust. Inst. 31(1), 833–840 (2007).
[CrossRef]

Appl. Phys. B (2)

H. M. Frey, P. Beaud, T. Gerber, B. Mischler, P. Radi, and A. P. Tzannis, “Femtosecond nonresonant degenerate four-wave mixing at atmospheric pressure and in a free jet,” Appl. Phys. B 68(4), 735–739 (1999).
[CrossRef]

M. Afzelius, P. E. Bengtsson, J. Bood, J. Bonamy, F. Chaussard, H. Berger, and T. Dreier, “Dual-broadband rotational CARS modelling of nitrogen at pressures up to 9 MPa II. Rotaitonal Raman linewidths,” Appl. Phys. B 75(6-7), 771–778 (2002).
[CrossRef]

Appl. Phys. Lett. (1)

R. P. Lucht, S. Roy, T. R. Meyer, and J. R. Gord, “Femtosecond coherent anti-Stokes Raman scattering measurement of gas temperatures from frequency-spread dephasing of the Raman coherence,” Appl. Phys. Lett. 89(25), 251112 (2006).
[CrossRef]

Appl. Spectrosc. (1)

C. R. Phys. (1)

B. Lavorel, H. Tran, E. Hertz, O. Faucher, P. Joubert, M. Motzkus, T. Buckup, T. Lang, H. Skenderovi, G. Knopp, P. Beaud, and H. M. Frey, “Femtosecond Raman time-resolved molecular spectroscopy,” C. R. Phys. 5, 215–229 (2004).
[CrossRef]

Chem. Phys. Lett. (3)

P. Beaud and G. Knopp, “Scaling rotationally inelastic collisions with an effective angular momentum parameter,” Chem. Phys. Lett. 371(1-2), 194–201 (2003).
[CrossRef]

P. Beaud, T. Gerber, P. Radi, M. Tulej, and G. Knopp, “Rotationally inelastic collisions between N2 and rare gases: An extension of the angular momentum scaling law,” Chem. Phys. Lett. 373(3-4), 251–257 (2003).
[CrossRef]

P. Beaud, H. M. Frey, T. Lang, and M. Motzkus, “Flame thermometry by femtosecond CARS,” Chem. Phys. Lett. 344(3-4), 407–412 (2001).
[CrossRef]

J. Chem. Phys. (5)

T. Lang, M. Motzkus, H. M. Frey, and P. Beaud, “High resolution femtosecond coherent anti-Stokes Raman scattering: Determination of rotational constants, molecular anharmonicity, collisional line shifts, and temperature,” J. Chem. Phys. 115(12), 5418–5426 (2001).
[CrossRef]

G. Knopp, P. Radi, M. Tulej, T. Gerber, and P. Beaud, “Collision induced rotational energy transfer probed by time-resolved coherent anti-Stokes Raman scattering,” J. Chem. Phys. 118(18), 8223–8233 (2003).
[CrossRef]

J. D. Miller, S. Roy, J. R. Gord, and T. R. Meyer, “Communication: Time-domain measurement of high-pressure N2 and O2 self-broadened linewidths using hybrid femtosecond?picosecond coherent anti-Stokes Raman scattering,” J. Chem. Phys. 135(20), 201104 (2011).
[CrossRef] [PubMed]

B. D. Prince, A. Chakraborty, B. M. Prince, and H. U. Stauffer, “Development of simultaneous frequency- and time-resolved coherent anti-Stokes Raman scattering for ultrafast detection of molecular Raman spectra,” J. Chem. Phys. 125(4), 044502 (2006).
[CrossRef] [PubMed]

L. Martinsson, P. E. Bengtsson, M. Alden, S. Kroll, and J. Bonamy, “A test of different rotational Raman linewidth models: accuracy of rotational coherent anti-Stokes-Raman scattering thermometry in nitrogen from 295 to 1850 K,” J. Chem. Phys. 99(4), 2466–2477 (1993).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Raman Spectrosc. (3)

T. Seeger, F. Beyrau, A. Brauer, and A. Leipertz, “High-pressure pure rotational CARS: comparison of temperature measurements with O2, N2 and synthetic air,” J. Raman Spectrosc. 34, 932–939 (2003).
[CrossRef]

G. Knopp, P. Beaud, P. Radi, M. Tulej, B. Bougie, D. Cannavo, and T. Gerber, “Pressure-dependent N2 Q-branch fs-CARS measurements,” J. Raman Spectrosc. 33(11-12), 861–865 (2002).
[CrossRef]

T. Lang and M. Motzkus, “Determination of line shift coefficients with femtosecond time resolved CARS,” J. Raman Spectrosc. 31(1-2), 65–70 (2000).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Proc. Combust. Inst. (1)

F. Vestin, M. Afzelius, and P. E. Bengtsson, “Development of rotational CARS for combustion diagnostics using a polarization approach,” Proc. Combust. Inst. 31(1), 833–840 (2007).
[CrossRef]

Prog. Energ. Combust. Sci. (1)

S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: Fundamental developments and applications in reacting flows,” Prog. Energ. Combust. Sci. 36(2), 280–306 (2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Spectrally integrated hybrid fs/ps RCARS signals from 1 to 20 atm for N2–N2 collisions at 298 K, and O2–O2 collisions at 295 K. The solid lines are theoretical simulations and the data are normalized to the nonresonant background.

Fig. 2
Fig. 2

Spectrally resolved hybrid fs/ps RCARS spectra of O2 at 1 atm and 10 atm and probe delays of (a) 6.5 ps and (b) 25 ps. The best fit temperatures neglecting collisional energy transfer are given and the solid line represents the best fit spectra at 1 atm.

Fig. 3
Fig. 3

(a) Best-fit temperatures from experimental spectra of N2 (at 298 K) neglecting collisional linewidths at pressures from 1 to 20 atm. Solid curve fits are based on Eq. (2) and dashed lines represent errors of ± 5%. (b) Corrected temperatures using MEG linewidths.

Fig. 4
Fig. 4

(a) Best-fit temperatures from experimental spectra of O2 (at 295 K) neglecting collisional linewidths at pressures from 1 to 20 atm. Solid curve fits are based on Eq. (2) and dashed lines represent errors of ± 5%. (b) Corrected temperatures using MEG linewidths.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

R( t )= I J+2,J ( T ) e i ω J+2,J t Γ J+2,J t
T App ( τ 23 ,P )=( 1 a 1 P ) T o exp[ ( a 2 P 2 + a 3 P ) τ 23 ]

Metrics