Abstract

We report on optical trapping in a weakly absorbing medium, hemin, an iron-containing porphyrin that is an important component of hemoglobin. By altering the hemin concentration we are able to control the amount of optical energy that is absorbed; changing the hemin concentration from <12 mg/ml to >45 mg/ml enables the onset of thermal trapping to be observed. By estimating the trap strength using two different methods we are readily able to differentiate between the optical trapping and thermal trapping regimes. We also deduce the rise in temperature that occurs within the laser focal volume: temperature changes of 5-24 K are observed for laser power values of 10-90 mW for hemin concentrations of 0-50 mg/ml.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
    [CrossRef] [PubMed]
  2. S. C. Kuo and M. P. Sheetz, “Optical tweezers in cell biology,” Trends Cell Biol. 2(4), 116–118 (1992).
    [CrossRef] [PubMed]
  3. K. Block and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23(1), 247–285 (1994).
    [CrossRef] [PubMed]
  4. K. Schütze and A. Clement-Sengewald, “Catch and move-cut or fuse,” Nature 368(6472), 667–669 (1994).
    [CrossRef] [PubMed]
  5. A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
    [CrossRef] [PubMed]
  6. A. Ashkin and J. M. Dziedzic, “Internal cell manipulation using infrared laser traps,” Proc. Natl. Acad. Sci. U.S.A. 86(20), 7914–7918 (1989).
    [CrossRef] [PubMed]
  7. A. Ashkin, J. M. Dziedzic, and T. M. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330(6150), 769–771 (1987).
    [CrossRef] [PubMed]
  8. Y. Liu, D. K. Cheng, G. J. Sonek, M. W. Berns, C. F. Chapman, and B. J. Tromberg, “Evidence for localized cell heating induced by infrared optical tweezers,” Biophys. J. 68(5), 2137–2144 (1995).
    [CrossRef] [PubMed]
  9. Y. Liu, G. J. Sonek, M. W. Berns, and B. J. Tromberg, “Physiological monitoring of optically trapped cells: assessing the effects of confinement by 1064-nm laser tweezers using microfluorometry,” Biophys. J. 71(4), 2158–2167 (1996).
    [CrossRef] [PubMed]
  10. K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to Escherichia coli in optical traps,” Biophys. J. 77(5), 2856–2863 (1999).
    [CrossRef] [PubMed]
  11. Y. Liu, D. K. Cheng, G. J. Sonek, M. W. Berns, C. F. Chapman, and B. J. Trombergt, “Evidence for localized cell heating induced by infrared optical tweezers,” Biophys. J. 68(5), 2137–2144 (1995).
    [CrossRef] [PubMed]
  12. M. B. Rasmussen, L. B. Oddershede, and H. Siegumfeldt, “Optical tweezers cause physiological damage to Escherichia coli and Listeria bacteria,” Appl. Environ. Microbiol. 74(8), 2441–2446 (2008).
    [CrossRef] [PubMed]
  13. P. M. Celliers and J. Conia, “Measurement of localized heating in the focus of an optical trap,” Appl. Opt. 39(19), 3396–3407 (2000).
    [CrossRef] [PubMed]
  14. A. Schönle and S. W. H. Hell, “Heating by absorption in the focus of an objective lens,” Opt. Lett. 23(5), 325–327 (1998).
    [CrossRef] [PubMed]
  15. E. J. G. Peterman, F. Gittes, and C. F. Schmidt, “Laser-induced heating in optical traps,” Biophys. J. 84(2), 1308–1316 (2003).
    [CrossRef] [PubMed]
  16. A. Kyrsting, P. M. Bendix, D. G. Stamou, and L. B. Oddershede, “Heat profiling of three-dimensionally optically trapped gold nanoparticles using vesicle cargo release,” Nano Lett. 11(2), 888–892 (2011).
    [CrossRef] [PubMed]
  17. Y. Seol, A. E. Carpenter, and T. T. Perkins, “Gold nanoparticles: enhanced optical trapping and sensitivity coupled with significant heating,” Opt. Lett. 31(16), 2429–2431 (2006).
    [CrossRef] [PubMed]
  18. G. Ramanandan, A. K. Dharmadhikari, J. A. Dharmadhikari, H. Ramachandran, and D. Mathur, “Bright visible emission from carbon nanotubes spatially constrained on a micro-bubble,” Opt. Express 17(12), 9614–9619 (2009).
    [CrossRef] [PubMed]
  19. H. Ramachandran, A. K. Dharmadhikari, K. Bambardekar, H. Basu, J. A. Dharmadhikari, S. Sharma, and D. Mathur, “Optical-tweezer-induced microbubbles as scavengers of carbon nanotubes,” Nanotechnology 21, 245102 (2010).
    [CrossRef] [PubMed]
  20. A. K. Dharmadhikari, J. A. Dharmadhikari, A. V. Mahulkar, G. Ramanandan, H. Ramachandran, A. B. Pandit, and D. Mathur, “Dynamics of photothermally created vaporous, gaseous, and mixed microbubbles,” J. Phys. Chem. C 115(14), 6611–6617 (2011).
    [CrossRef]
  21. D. R. Mason, D. K. Gramotnev, and G. Gramotnev, “Thermal tweezers for manipulation of adatoms and nanoparticles on surfaces heated by interfering laser pulses,” J. Appl. Phys. 104(6), 064320 (2008).
    [CrossRef]
  22. Y. Liu and A. W. Poon, “Flow-assisted single-beam optothermal manipulation of microparticles,” Opt. Express 18(17), 18483–18491 (2010).
    [CrossRef] [PubMed]
  23. J. A. Dharmadhikari and D. Mathur, “Using an optical trap to fold and align single red blood cells,” Curr. Sci. 86, 1432–1437 (2004).
  24. K. Bambardekar, A. K. Dharmadhikari, J. A. Dharmadhikari, D. Mathur, and S. Sharma, “Measuring erythrocyte deformability with fluorescence, fluid forces, and optical trapping,” J. Biomed. Opt. 13(6), 064021 (2008).
    [CrossRef] [PubMed]
  25. R. L. Sutherland, Handbook of Nonlinear Optics (Marcel Dekker, 1996).

2011

A. Kyrsting, P. M. Bendix, D. G. Stamou, and L. B. Oddershede, “Heat profiling of three-dimensionally optically trapped gold nanoparticles using vesicle cargo release,” Nano Lett. 11(2), 888–892 (2011).
[CrossRef] [PubMed]

A. K. Dharmadhikari, J. A. Dharmadhikari, A. V. Mahulkar, G. Ramanandan, H. Ramachandran, A. B. Pandit, and D. Mathur, “Dynamics of photothermally created vaporous, gaseous, and mixed microbubbles,” J. Phys. Chem. C 115(14), 6611–6617 (2011).
[CrossRef]

2010

H. Ramachandran, A. K. Dharmadhikari, K. Bambardekar, H. Basu, J. A. Dharmadhikari, S. Sharma, and D. Mathur, “Optical-tweezer-induced microbubbles as scavengers of carbon nanotubes,” Nanotechnology 21, 245102 (2010).
[CrossRef] [PubMed]

Y. Liu and A. W. Poon, “Flow-assisted single-beam optothermal manipulation of microparticles,” Opt. Express 18(17), 18483–18491 (2010).
[CrossRef] [PubMed]

2009

2008

M. B. Rasmussen, L. B. Oddershede, and H. Siegumfeldt, “Optical tweezers cause physiological damage to Escherichia coli and Listeria bacteria,” Appl. Environ. Microbiol. 74(8), 2441–2446 (2008).
[CrossRef] [PubMed]

D. R. Mason, D. K. Gramotnev, and G. Gramotnev, “Thermal tweezers for manipulation of adatoms and nanoparticles on surfaces heated by interfering laser pulses,” J. Appl. Phys. 104(6), 064320 (2008).
[CrossRef]

K. Bambardekar, A. K. Dharmadhikari, J. A. Dharmadhikari, D. Mathur, and S. Sharma, “Measuring erythrocyte deformability with fluorescence, fluid forces, and optical trapping,” J. Biomed. Opt. 13(6), 064021 (2008).
[CrossRef] [PubMed]

2006

2004

J. A. Dharmadhikari and D. Mathur, “Using an optical trap to fold and align single red blood cells,” Curr. Sci. 86, 1432–1437 (2004).

2003

E. J. G. Peterman, F. Gittes, and C. F. Schmidt, “Laser-induced heating in optical traps,” Biophys. J. 84(2), 1308–1316 (2003).
[CrossRef] [PubMed]

2000

1999

K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to Escherichia coli in optical traps,” Biophys. J. 77(5), 2856–2863 (1999).
[CrossRef] [PubMed]

1998

1996

Y. Liu, G. J. Sonek, M. W. Berns, and B. J. Tromberg, “Physiological monitoring of optically trapped cells: assessing the effects of confinement by 1064-nm laser tweezers using microfluorometry,” Biophys. J. 71(4), 2158–2167 (1996).
[CrossRef] [PubMed]

1995

Y. Liu, D. K. Cheng, G. J. Sonek, M. W. Berns, C. F. Chapman, and B. J. Trombergt, “Evidence for localized cell heating induced by infrared optical tweezers,” Biophys. J. 68(5), 2137–2144 (1995).
[CrossRef] [PubMed]

Y. Liu, D. K. Cheng, G. J. Sonek, M. W. Berns, C. F. Chapman, and B. J. Tromberg, “Evidence for localized cell heating induced by infrared optical tweezers,” Biophys. J. 68(5), 2137–2144 (1995).
[CrossRef] [PubMed]

1994

K. Block and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23(1), 247–285 (1994).
[CrossRef] [PubMed]

K. Schütze and A. Clement-Sengewald, “Catch and move-cut or fuse,” Nature 368(6472), 667–669 (1994).
[CrossRef] [PubMed]

1992

S. C. Kuo and M. P. Sheetz, “Optical tweezers in cell biology,” Trends Cell Biol. 2(4), 116–118 (1992).
[CrossRef] [PubMed]

1989

A. Ashkin and J. M. Dziedzic, “Internal cell manipulation using infrared laser traps,” Proc. Natl. Acad. Sci. U.S.A. 86(20), 7914–7918 (1989).
[CrossRef] [PubMed]

1987

A. Ashkin, J. M. Dziedzic, and T. M. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330(6150), 769–771 (1987).
[CrossRef] [PubMed]

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
[CrossRef] [PubMed]

1986

Ashkin, A.

A. Ashkin and J. M. Dziedzic, “Internal cell manipulation using infrared laser traps,” Proc. Natl. Acad. Sci. U.S.A. 86(20), 7914–7918 (1989).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, and T. M. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330(6150), 769–771 (1987).
[CrossRef] [PubMed]

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
[CrossRef] [PubMed]

Bambardekar, K.

H. Ramachandran, A. K. Dharmadhikari, K. Bambardekar, H. Basu, J. A. Dharmadhikari, S. Sharma, and D. Mathur, “Optical-tweezer-induced microbubbles as scavengers of carbon nanotubes,” Nanotechnology 21, 245102 (2010).
[CrossRef] [PubMed]

K. Bambardekar, A. K. Dharmadhikari, J. A. Dharmadhikari, D. Mathur, and S. Sharma, “Measuring erythrocyte deformability with fluorescence, fluid forces, and optical trapping,” J. Biomed. Opt. 13(6), 064021 (2008).
[CrossRef] [PubMed]

Basu, H.

H. Ramachandran, A. K. Dharmadhikari, K. Bambardekar, H. Basu, J. A. Dharmadhikari, S. Sharma, and D. Mathur, “Optical-tweezer-induced microbubbles as scavengers of carbon nanotubes,” Nanotechnology 21, 245102 (2010).
[CrossRef] [PubMed]

Bendix, P. M.

A. Kyrsting, P. M. Bendix, D. G. Stamou, and L. B. Oddershede, “Heat profiling of three-dimensionally optically trapped gold nanoparticles using vesicle cargo release,” Nano Lett. 11(2), 888–892 (2011).
[CrossRef] [PubMed]

Bergman, K.

K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to Escherichia coli in optical traps,” Biophys. J. 77(5), 2856–2863 (1999).
[CrossRef] [PubMed]

Berns, M. W.

Y. Liu, G. J. Sonek, M. W. Berns, and B. J. Tromberg, “Physiological monitoring of optically trapped cells: assessing the effects of confinement by 1064-nm laser tweezers using microfluorometry,” Biophys. J. 71(4), 2158–2167 (1996).
[CrossRef] [PubMed]

Y. Liu, D. K. Cheng, G. J. Sonek, M. W. Berns, C. F. Chapman, and B. J. Tromberg, “Evidence for localized cell heating induced by infrared optical tweezers,” Biophys. J. 68(5), 2137–2144 (1995).
[CrossRef] [PubMed]

Y. Liu, D. K. Cheng, G. J. Sonek, M. W. Berns, C. F. Chapman, and B. J. Trombergt, “Evidence for localized cell heating induced by infrared optical tweezers,” Biophys. J. 68(5), 2137–2144 (1995).
[CrossRef] [PubMed]

Bjorkholm, J. E.

Block, K.

K. Block and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23(1), 247–285 (1994).
[CrossRef] [PubMed]

Block, S. M.

K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to Escherichia coli in optical traps,” Biophys. J. 77(5), 2856–2863 (1999).
[CrossRef] [PubMed]

K. Block and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23(1), 247–285 (1994).
[CrossRef] [PubMed]

Carpenter, A. E.

Celliers, P. M.

Chadd, E. H.

K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to Escherichia coli in optical traps,” Biophys. J. 77(5), 2856–2863 (1999).
[CrossRef] [PubMed]

Chapman, C. F.

Y. Liu, D. K. Cheng, G. J. Sonek, M. W. Berns, C. F. Chapman, and B. J. Trombergt, “Evidence for localized cell heating induced by infrared optical tweezers,” Biophys. J. 68(5), 2137–2144 (1995).
[CrossRef] [PubMed]

Y. Liu, D. K. Cheng, G. J. Sonek, M. W. Berns, C. F. Chapman, and B. J. Tromberg, “Evidence for localized cell heating induced by infrared optical tweezers,” Biophys. J. 68(5), 2137–2144 (1995).
[CrossRef] [PubMed]

Cheng, D. K.

Y. Liu, D. K. Cheng, G. J. Sonek, M. W. Berns, C. F. Chapman, and B. J. Tromberg, “Evidence for localized cell heating induced by infrared optical tweezers,” Biophys. J. 68(5), 2137–2144 (1995).
[CrossRef] [PubMed]

Y. Liu, D. K. Cheng, G. J. Sonek, M. W. Berns, C. F. Chapman, and B. J. Trombergt, “Evidence for localized cell heating induced by infrared optical tweezers,” Biophys. J. 68(5), 2137–2144 (1995).
[CrossRef] [PubMed]

Chu, S.

Clement-Sengewald, A.

K. Schütze and A. Clement-Sengewald, “Catch and move-cut or fuse,” Nature 368(6472), 667–669 (1994).
[CrossRef] [PubMed]

Conia, J.

Dharmadhikari, A. K.

A. K. Dharmadhikari, J. A. Dharmadhikari, A. V. Mahulkar, G. Ramanandan, H. Ramachandran, A. B. Pandit, and D. Mathur, “Dynamics of photothermally created vaporous, gaseous, and mixed microbubbles,” J. Phys. Chem. C 115(14), 6611–6617 (2011).
[CrossRef]

H. Ramachandran, A. K. Dharmadhikari, K. Bambardekar, H. Basu, J. A. Dharmadhikari, S. Sharma, and D. Mathur, “Optical-tweezer-induced microbubbles as scavengers of carbon nanotubes,” Nanotechnology 21, 245102 (2010).
[CrossRef] [PubMed]

G. Ramanandan, A. K. Dharmadhikari, J. A. Dharmadhikari, H. Ramachandran, and D. Mathur, “Bright visible emission from carbon nanotubes spatially constrained on a micro-bubble,” Opt. Express 17(12), 9614–9619 (2009).
[CrossRef] [PubMed]

K. Bambardekar, A. K. Dharmadhikari, J. A. Dharmadhikari, D. Mathur, and S. Sharma, “Measuring erythrocyte deformability with fluorescence, fluid forces, and optical trapping,” J. Biomed. Opt. 13(6), 064021 (2008).
[CrossRef] [PubMed]

Dharmadhikari, J. A.

A. K. Dharmadhikari, J. A. Dharmadhikari, A. V. Mahulkar, G. Ramanandan, H. Ramachandran, A. B. Pandit, and D. Mathur, “Dynamics of photothermally created vaporous, gaseous, and mixed microbubbles,” J. Phys. Chem. C 115(14), 6611–6617 (2011).
[CrossRef]

H. Ramachandran, A. K. Dharmadhikari, K. Bambardekar, H. Basu, J. A. Dharmadhikari, S. Sharma, and D. Mathur, “Optical-tweezer-induced microbubbles as scavengers of carbon nanotubes,” Nanotechnology 21, 245102 (2010).
[CrossRef] [PubMed]

G. Ramanandan, A. K. Dharmadhikari, J. A. Dharmadhikari, H. Ramachandran, and D. Mathur, “Bright visible emission from carbon nanotubes spatially constrained on a micro-bubble,” Opt. Express 17(12), 9614–9619 (2009).
[CrossRef] [PubMed]

K. Bambardekar, A. K. Dharmadhikari, J. A. Dharmadhikari, D. Mathur, and S. Sharma, “Measuring erythrocyte deformability with fluorescence, fluid forces, and optical trapping,” J. Biomed. Opt. 13(6), 064021 (2008).
[CrossRef] [PubMed]

J. A. Dharmadhikari and D. Mathur, “Using an optical trap to fold and align single red blood cells,” Curr. Sci. 86, 1432–1437 (2004).

Dziedzic, J. M.

A. Ashkin and J. M. Dziedzic, “Internal cell manipulation using infrared laser traps,” Proc. Natl. Acad. Sci. U.S.A. 86(20), 7914–7918 (1989).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, and T. M. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330(6150), 769–771 (1987).
[CrossRef] [PubMed]

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
[CrossRef] [PubMed]

Gittes, F.

E. J. G. Peterman, F. Gittes, and C. F. Schmidt, “Laser-induced heating in optical traps,” Biophys. J. 84(2), 1308–1316 (2003).
[CrossRef] [PubMed]

Gramotnev, D. K.

D. R. Mason, D. K. Gramotnev, and G. Gramotnev, “Thermal tweezers for manipulation of adatoms and nanoparticles on surfaces heated by interfering laser pulses,” J. Appl. Phys. 104(6), 064320 (2008).
[CrossRef]

Gramotnev, G.

D. R. Mason, D. K. Gramotnev, and G. Gramotnev, “Thermal tweezers for manipulation of adatoms and nanoparticles on surfaces heated by interfering laser pulses,” J. Appl. Phys. 104(6), 064320 (2008).
[CrossRef]

Hell, S. W. H.

Kuo, S. C.

S. C. Kuo and M. P. Sheetz, “Optical tweezers in cell biology,” Trends Cell Biol. 2(4), 116–118 (1992).
[CrossRef] [PubMed]

Kyrsting, A.

A. Kyrsting, P. M. Bendix, D. G. Stamou, and L. B. Oddershede, “Heat profiling of three-dimensionally optically trapped gold nanoparticles using vesicle cargo release,” Nano Lett. 11(2), 888–892 (2011).
[CrossRef] [PubMed]

Liou, G. F.

K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to Escherichia coli in optical traps,” Biophys. J. 77(5), 2856–2863 (1999).
[CrossRef] [PubMed]

Liu, Y.

Y. Liu and A. W. Poon, “Flow-assisted single-beam optothermal manipulation of microparticles,” Opt. Express 18(17), 18483–18491 (2010).
[CrossRef] [PubMed]

Y. Liu, G. J. Sonek, M. W. Berns, and B. J. Tromberg, “Physiological monitoring of optically trapped cells: assessing the effects of confinement by 1064-nm laser tweezers using microfluorometry,” Biophys. J. 71(4), 2158–2167 (1996).
[CrossRef] [PubMed]

Y. Liu, D. K. Cheng, G. J. Sonek, M. W. Berns, C. F. Chapman, and B. J. Tromberg, “Evidence for localized cell heating induced by infrared optical tweezers,” Biophys. J. 68(5), 2137–2144 (1995).
[CrossRef] [PubMed]

Y. Liu, D. K. Cheng, G. J. Sonek, M. W. Berns, C. F. Chapman, and B. J. Trombergt, “Evidence for localized cell heating induced by infrared optical tweezers,” Biophys. J. 68(5), 2137–2144 (1995).
[CrossRef] [PubMed]

Mahulkar, A. V.

A. K. Dharmadhikari, J. A. Dharmadhikari, A. V. Mahulkar, G. Ramanandan, H. Ramachandran, A. B. Pandit, and D. Mathur, “Dynamics of photothermally created vaporous, gaseous, and mixed microbubbles,” J. Phys. Chem. C 115(14), 6611–6617 (2011).
[CrossRef]

Mason, D. R.

D. R. Mason, D. K. Gramotnev, and G. Gramotnev, “Thermal tweezers for manipulation of adatoms and nanoparticles on surfaces heated by interfering laser pulses,” J. Appl. Phys. 104(6), 064320 (2008).
[CrossRef]

Mathur, D.

A. K. Dharmadhikari, J. A. Dharmadhikari, A. V. Mahulkar, G. Ramanandan, H. Ramachandran, A. B. Pandit, and D. Mathur, “Dynamics of photothermally created vaporous, gaseous, and mixed microbubbles,” J. Phys. Chem. C 115(14), 6611–6617 (2011).
[CrossRef]

H. Ramachandran, A. K. Dharmadhikari, K. Bambardekar, H. Basu, J. A. Dharmadhikari, S. Sharma, and D. Mathur, “Optical-tweezer-induced microbubbles as scavengers of carbon nanotubes,” Nanotechnology 21, 245102 (2010).
[CrossRef] [PubMed]

G. Ramanandan, A. K. Dharmadhikari, J. A. Dharmadhikari, H. Ramachandran, and D. Mathur, “Bright visible emission from carbon nanotubes spatially constrained on a micro-bubble,” Opt. Express 17(12), 9614–9619 (2009).
[CrossRef] [PubMed]

K. Bambardekar, A. K. Dharmadhikari, J. A. Dharmadhikari, D. Mathur, and S. Sharma, “Measuring erythrocyte deformability with fluorescence, fluid forces, and optical trapping,” J. Biomed. Opt. 13(6), 064021 (2008).
[CrossRef] [PubMed]

J. A. Dharmadhikari and D. Mathur, “Using an optical trap to fold and align single red blood cells,” Curr. Sci. 86, 1432–1437 (2004).

Neuman, K. C.

K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to Escherichia coli in optical traps,” Biophys. J. 77(5), 2856–2863 (1999).
[CrossRef] [PubMed]

Oddershede, L. B.

A. Kyrsting, P. M. Bendix, D. G. Stamou, and L. B. Oddershede, “Heat profiling of three-dimensionally optically trapped gold nanoparticles using vesicle cargo release,” Nano Lett. 11(2), 888–892 (2011).
[CrossRef] [PubMed]

M. B. Rasmussen, L. B. Oddershede, and H. Siegumfeldt, “Optical tweezers cause physiological damage to Escherichia coli and Listeria bacteria,” Appl. Environ. Microbiol. 74(8), 2441–2446 (2008).
[CrossRef] [PubMed]

Pandit, A. B.

A. K. Dharmadhikari, J. A. Dharmadhikari, A. V. Mahulkar, G. Ramanandan, H. Ramachandran, A. B. Pandit, and D. Mathur, “Dynamics of photothermally created vaporous, gaseous, and mixed microbubbles,” J. Phys. Chem. C 115(14), 6611–6617 (2011).
[CrossRef]

Perkins, T. T.

Peterman, E. J. G.

E. J. G. Peterman, F. Gittes, and C. F. Schmidt, “Laser-induced heating in optical traps,” Biophys. J. 84(2), 1308–1316 (2003).
[CrossRef] [PubMed]

Poon, A. W.

Ramachandran, H.

A. K. Dharmadhikari, J. A. Dharmadhikari, A. V. Mahulkar, G. Ramanandan, H. Ramachandran, A. B. Pandit, and D. Mathur, “Dynamics of photothermally created vaporous, gaseous, and mixed microbubbles,” J. Phys. Chem. C 115(14), 6611–6617 (2011).
[CrossRef]

H. Ramachandran, A. K. Dharmadhikari, K. Bambardekar, H. Basu, J. A. Dharmadhikari, S. Sharma, and D. Mathur, “Optical-tweezer-induced microbubbles as scavengers of carbon nanotubes,” Nanotechnology 21, 245102 (2010).
[CrossRef] [PubMed]

G. Ramanandan, A. K. Dharmadhikari, J. A. Dharmadhikari, H. Ramachandran, and D. Mathur, “Bright visible emission from carbon nanotubes spatially constrained on a micro-bubble,” Opt. Express 17(12), 9614–9619 (2009).
[CrossRef] [PubMed]

Ramanandan, G.

A. K. Dharmadhikari, J. A. Dharmadhikari, A. V. Mahulkar, G. Ramanandan, H. Ramachandran, A. B. Pandit, and D. Mathur, “Dynamics of photothermally created vaporous, gaseous, and mixed microbubbles,” J. Phys. Chem. C 115(14), 6611–6617 (2011).
[CrossRef]

G. Ramanandan, A. K. Dharmadhikari, J. A. Dharmadhikari, H. Ramachandran, and D. Mathur, “Bright visible emission from carbon nanotubes spatially constrained on a micro-bubble,” Opt. Express 17(12), 9614–9619 (2009).
[CrossRef] [PubMed]

Rasmussen, M. B.

M. B. Rasmussen, L. B. Oddershede, and H. Siegumfeldt, “Optical tweezers cause physiological damage to Escherichia coli and Listeria bacteria,” Appl. Environ. Microbiol. 74(8), 2441–2446 (2008).
[CrossRef] [PubMed]

Schmidt, C. F.

E. J. G. Peterman, F. Gittes, and C. F. Schmidt, “Laser-induced heating in optical traps,” Biophys. J. 84(2), 1308–1316 (2003).
[CrossRef] [PubMed]

Schönle, A.

Schütze, K.

K. Schütze and A. Clement-Sengewald, “Catch and move-cut or fuse,” Nature 368(6472), 667–669 (1994).
[CrossRef] [PubMed]

Seol, Y.

Sharma, S.

H. Ramachandran, A. K. Dharmadhikari, K. Bambardekar, H. Basu, J. A. Dharmadhikari, S. Sharma, and D. Mathur, “Optical-tweezer-induced microbubbles as scavengers of carbon nanotubes,” Nanotechnology 21, 245102 (2010).
[CrossRef] [PubMed]

K. Bambardekar, A. K. Dharmadhikari, J. A. Dharmadhikari, D. Mathur, and S. Sharma, “Measuring erythrocyte deformability with fluorescence, fluid forces, and optical trapping,” J. Biomed. Opt. 13(6), 064021 (2008).
[CrossRef] [PubMed]

Sheetz, M. P.

S. C. Kuo and M. P. Sheetz, “Optical tweezers in cell biology,” Trends Cell Biol. 2(4), 116–118 (1992).
[CrossRef] [PubMed]

Siegumfeldt, H.

M. B. Rasmussen, L. B. Oddershede, and H. Siegumfeldt, “Optical tweezers cause physiological damage to Escherichia coli and Listeria bacteria,” Appl. Environ. Microbiol. 74(8), 2441–2446 (2008).
[CrossRef] [PubMed]

Sonek, G. J.

Y. Liu, G. J. Sonek, M. W. Berns, and B. J. Tromberg, “Physiological monitoring of optically trapped cells: assessing the effects of confinement by 1064-nm laser tweezers using microfluorometry,” Biophys. J. 71(4), 2158–2167 (1996).
[CrossRef] [PubMed]

Y. Liu, D. K. Cheng, G. J. Sonek, M. W. Berns, C. F. Chapman, and B. J. Tromberg, “Evidence for localized cell heating induced by infrared optical tweezers,” Biophys. J. 68(5), 2137–2144 (1995).
[CrossRef] [PubMed]

Y. Liu, D. K. Cheng, G. J. Sonek, M. W. Berns, C. F. Chapman, and B. J. Trombergt, “Evidence for localized cell heating induced by infrared optical tweezers,” Biophys. J. 68(5), 2137–2144 (1995).
[CrossRef] [PubMed]

Stamou, D. G.

A. Kyrsting, P. M. Bendix, D. G. Stamou, and L. B. Oddershede, “Heat profiling of three-dimensionally optically trapped gold nanoparticles using vesicle cargo release,” Nano Lett. 11(2), 888–892 (2011).
[CrossRef] [PubMed]

Tromberg, B. J.

Y. Liu, G. J. Sonek, M. W. Berns, and B. J. Tromberg, “Physiological monitoring of optically trapped cells: assessing the effects of confinement by 1064-nm laser tweezers using microfluorometry,” Biophys. J. 71(4), 2158–2167 (1996).
[CrossRef] [PubMed]

Y. Liu, D. K. Cheng, G. J. Sonek, M. W. Berns, C. F. Chapman, and B. J. Tromberg, “Evidence for localized cell heating induced by infrared optical tweezers,” Biophys. J. 68(5), 2137–2144 (1995).
[CrossRef] [PubMed]

Trombergt, B. J.

Y. Liu, D. K. Cheng, G. J. Sonek, M. W. Berns, C. F. Chapman, and B. J. Trombergt, “Evidence for localized cell heating induced by infrared optical tweezers,” Biophys. J. 68(5), 2137–2144 (1995).
[CrossRef] [PubMed]

Yamane, T. M.

A. Ashkin, J. M. Dziedzic, and T. M. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330(6150), 769–771 (1987).
[CrossRef] [PubMed]

Annu. Rev. Biophys. Biomol. Struct.

K. Block and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23(1), 247–285 (1994).
[CrossRef] [PubMed]

Appl. Environ. Microbiol.

M. B. Rasmussen, L. B. Oddershede, and H. Siegumfeldt, “Optical tweezers cause physiological damage to Escherichia coli and Listeria bacteria,” Appl. Environ. Microbiol. 74(8), 2441–2446 (2008).
[CrossRef] [PubMed]

Appl. Opt.

Biophys. J.

E. J. G. Peterman, F. Gittes, and C. F. Schmidt, “Laser-induced heating in optical traps,” Biophys. J. 84(2), 1308–1316 (2003).
[CrossRef] [PubMed]

Y. Liu, D. K. Cheng, G. J. Sonek, M. W. Berns, C. F. Chapman, and B. J. Tromberg, “Evidence for localized cell heating induced by infrared optical tweezers,” Biophys. J. 68(5), 2137–2144 (1995).
[CrossRef] [PubMed]

Y. Liu, G. J. Sonek, M. W. Berns, and B. J. Tromberg, “Physiological monitoring of optically trapped cells: assessing the effects of confinement by 1064-nm laser tweezers using microfluorometry,” Biophys. J. 71(4), 2158–2167 (1996).
[CrossRef] [PubMed]

K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to Escherichia coli in optical traps,” Biophys. J. 77(5), 2856–2863 (1999).
[CrossRef] [PubMed]

Y. Liu, D. K. Cheng, G. J. Sonek, M. W. Berns, C. F. Chapman, and B. J. Trombergt, “Evidence for localized cell heating induced by infrared optical tweezers,” Biophys. J. 68(5), 2137–2144 (1995).
[CrossRef] [PubMed]

Curr. Sci.

J. A. Dharmadhikari and D. Mathur, “Using an optical trap to fold and align single red blood cells,” Curr. Sci. 86, 1432–1437 (2004).

J. Appl. Phys.

D. R. Mason, D. K. Gramotnev, and G. Gramotnev, “Thermal tweezers for manipulation of adatoms and nanoparticles on surfaces heated by interfering laser pulses,” J. Appl. Phys. 104(6), 064320 (2008).
[CrossRef]

J. Biomed. Opt.

K. Bambardekar, A. K. Dharmadhikari, J. A. Dharmadhikari, D. Mathur, and S. Sharma, “Measuring erythrocyte deformability with fluorescence, fluid forces, and optical trapping,” J. Biomed. Opt. 13(6), 064021 (2008).
[CrossRef] [PubMed]

J. Phys. Chem. C

A. K. Dharmadhikari, J. A. Dharmadhikari, A. V. Mahulkar, G. Ramanandan, H. Ramachandran, A. B. Pandit, and D. Mathur, “Dynamics of photothermally created vaporous, gaseous, and mixed microbubbles,” J. Phys. Chem. C 115(14), 6611–6617 (2011).
[CrossRef]

Nano Lett.

A. Kyrsting, P. M. Bendix, D. G. Stamou, and L. B. Oddershede, “Heat profiling of three-dimensionally optically trapped gold nanoparticles using vesicle cargo release,” Nano Lett. 11(2), 888–892 (2011).
[CrossRef] [PubMed]

Nanotechnology

H. Ramachandran, A. K. Dharmadhikari, K. Bambardekar, H. Basu, J. A. Dharmadhikari, S. Sharma, and D. Mathur, “Optical-tweezer-induced microbubbles as scavengers of carbon nanotubes,” Nanotechnology 21, 245102 (2010).
[CrossRef] [PubMed]

Nature

A. Ashkin, J. M. Dziedzic, and T. M. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330(6150), 769–771 (1987).
[CrossRef] [PubMed]

K. Schütze and A. Clement-Sengewald, “Catch and move-cut or fuse,” Nature 368(6472), 667–669 (1994).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Proc. Natl. Acad. Sci. U.S.A.

A. Ashkin and J. M. Dziedzic, “Internal cell manipulation using infrared laser traps,” Proc. Natl. Acad. Sci. U.S.A. 86(20), 7914–7918 (1989).
[CrossRef] [PubMed]

Science

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
[CrossRef] [PubMed]

Trends Cell Biol.

S. C. Kuo and M. P. Sheetz, “Optical tweezers in cell biology,” Trends Cell Biol. 2(4), 116–118 (1992).
[CrossRef] [PubMed]

Other

R. L. Sutherland, Handbook of Nonlinear Optics (Marcel Dekker, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Typical power spectral density (PSD) deduced from a recording of the displacement of a trapped 2 µm diameter polystyrene bead in NaOH. The inset shows the bead’s displacement over a period of 2 s. Measurements were made at a rate of 250 kilosamples per second.

Fig. 2
Fig. 2

(a). Concentration-dependent absorption spectrum of hemin in NaOH. Inset shows the variation in transmission of 1064 nm light as a function of hemin concentration. (b) Normalized transmission of at incident power levels of 207 mW, 412 mW, and 509 mW.

Fig. 3
Fig. 3

Power spectra measured for three different hemin concentrations, all at a laser power of 83 mW. fc denotes the corner frequency deduced from fitting Eq. (1) to each of the measured spectra; the appropriate fitting parameters are shown in the equations below each of the power spectra.

Fig. 4
Fig. 4

Temperature change as a function of incident laser power for different hemin concentrations.

Fig. 5
Fig. 5

Variation of trap strength, k, with incident laser power in NaOH and for different concentrations of hemin. kps and keq denote, respectively, the trap strength deduced from the power spectrum and the equipartition theorem.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

S x (f)= k B T π 2 γ( f c 2 + f 2 ) ,
ΔT=b×[ln(2πR/λ)1]×P,

Metrics