Abstract

A laser-diode pumped Q-switched single-frequency Nd:YAG MOPA operating at 100 Hz was used to generate tunable mid-infrared radiation between 6.27 µm and 8.12 µm by employing a cascaded parametric arrangement consisting of degenerate parametric master-oscillator power amplifier using a large aperture periodically-poled Rb:KTiOPO4 which in turn pumped a ZnGeP2 (ZGP) nonplanar RISTRA OPO. The noncollinear ZGP RISTRA tuning behavior is elucidated. The device is aimed for minimally invasive surgery applications at 6.45 µm where the peak power of 193 kW in 5 ns pulses is demonstrated.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Lukac, T. Perhavec, K. Nemes, and U. Ahcan, “Ablation and thermal depths in VSP Er:YAG laser skin resurfacing,” J. Laser Health Acad. 2010, 56–71 (2010).
  2. W. B. Telfair, C. Bekker, H. J. Hoffman, P. R. Yoder, R. E. Nordquist, R. A. Eiferman, and H. H. Zenzie, “Histological comparison of corneal ablation with Er:YAG laser, Nd:YAG optical parametric oscillator, and excimer laser,” J. Refract. Surg. 16(1), 40–50 (2000).
    [PubMed]
  3. H. J. Hoffman and W. B. Telfair, “Photospallation: a new theory and mechanism for mid-infrared corneal ablations,” J. Refract. Surg. 16(1), 90–94 (2000).
    [PubMed]
  4. G. S. Edwards, R. H. Austin, F. E. Carroll, M. L. Copeland, M. E. Couprie, W. E. Gabella, R. F. Haglund, B. A. Hooper, M. S. Hutson, E. D. Jansen, K. M. Joos, D. P. Kiehart, I. Lindau, J. Miao, H. S. Pratisto, J. H. Shen, Y. Tokutake, A. F. G. van der Meer, and A. Xie, “Free-electron-laser-based biophysical and biome-dical instrumentation,” Rev. Sci. Instrum. 74(7), 3207–3245 (2003).
    [CrossRef]
  5. M. S. Hutson and G. S. Edwards, “Advances in the physical understanding of laser surgery at 6.45 microns,” 26th International Free Electron Laser Conference and 11th FEL User Workshop, pp. 648–653 (2004).
  6. K. M. Joos, J. H. Shen, D. J. Shetlar, and V. A. Casagrande, “Optic nerve sheath fenestration with a novel wavelength produced by the free electron laser (FEL),” Lasers Surg. Med. 27(3), 191–205 (2000).
    [CrossRef] [PubMed]
  7. M. A. Mackanos, D. Simanovskii, K. M. Joos, H. A. Schwettman, and E. D. Jansen, “Mid infrared optical parametric oscillator as a viable alternative to tissue ablation with the free electron laser,” Lasers Surg. Med. 39(3), 230–236 (2007).
    [CrossRef] [PubMed]
  8. K. L. Vodopyanov, F. Ganikhanov, J. P. Maffetone, I. Zwieback, and W. Ruderman, “ZnGeP2 optical parametric oscillator with 3.8-12.4-mum tunability,” Opt. Lett. 25(11), 841–843 (2000).
    [CrossRef] [PubMed]
  9. A. Dergachev, D. Armstrong, A. Smith, T. Drake, and M. Dubois, “3.4-mum ZGP RISTRA nanosecond optical parametric oscillator pumped by a 2.05-mum Ho:YLF MOPA system,” Opt. Express 15(22), 14404–14413 (2007).
    [CrossRef] [PubMed]
  10. A. Dergachev, P. F. Moulton, and T. E. Drake, “High-power, high-energy Ho:YLF laser pumped by Tm:fiber laser ” in Advanced Solid-State Photonics (ASSP),” OSA Trends in Optics and Photonics 98, 608–612 (2005) (Optical Society of America).
  11. M. Henriksson, M. Tiihonen, V. Pasiskevicius, and F. Laurell, “Mid-infrared ZGP OPO pumped by near-degenerate narrowband type-I PPKTP parametric oscillator,” Appl. Phys. B 88(1), 37–41 (2007).
    [CrossRef]
  12. M. W. Haakestad, G. Arisholm, E. Lippert, S. Nicolas, G. Rustad, and K. Stenersen, “High-pulse-energy 8 µm laser source based on optical parametric amplification in ZnGeP2,” Proc. SPIE 6998, 699812, 699812-7 (2008).
    [CrossRef]
  13. A. Zukauskas, N. Thilmann, V. Pasiskevicius, F. Laurell, and C. Canalias, “5 mm thick periodically poled Rb-doped KTP for high energy optical parametric frequency conversion,” Opt. Mater. Express 1(2), 201–206 (2011).
    [CrossRef]
  14. M. A. Mackanos, E. D. Jansen, B. L. Shaw, J. S. Sanghera, I. Aggarwal, and A. Katzir, “Delivery of midinfrared (6 to 7-microm) laser radiation in a liquid environment using infrared-transmitting optical fibers,” J. Biomed. Opt. 8(4), 583–593 (2003).
    [CrossRef] [PubMed]
  15. D. J. Armstrong and A. V. Smith, “Demonstration of improved beam quality in an image-rotating optical parametric oscillator,” Opt. Lett. 27(1), 40–42 (2002).
    [CrossRef] [PubMed]
  16. A. V. Smith and D. J. Armstrong, “Generation of vortex beams by an image-rotating optical parametric oscillator,” Opt. Express 11(8), 868–873 (2003).
    [CrossRef] [PubMed]
  17. A. V. Smith and D. J. Armstrong, “Nanosecond optical parametric oscillator with 90° image rotation: design and performance,” J. Opt. Soc. Am. B 19(8), 1801–1814 (2002).
    [CrossRef]
  18. M. Henriksson, L. Sjöqvist, V. Pasiskevicius, and F. Laurell, “Mode spectrum of multi-longitudinal mode pumped near-degenerate OPOs with volume Bragg grating output couplers,” Opt. Express 17(20), 17582–17589 (2009).
    [CrossRef] [PubMed]
  19. D. E. Zelmon, E. A. Hanning, and P. G. Schunemann, “Refractive-index measurements and Sellmeier coefficients for zinc germanium phosphide from 2 to 9 µm with implications for phase matching in optical frequency-conversion devices,” J. Opt. Soc. Am. B 18(9), 1307–1310 (2001).
    [CrossRef]
  20. S. Brosnan and R. Byer, “Optical parametric oscillator threshold and linewidth studies,” IEEE J. Quantum Electron. 15(6), 415–431 (1979).
    [CrossRef]

2011 (1)

2010 (1)

M. Lukac, T. Perhavec, K. Nemes, and U. Ahcan, “Ablation and thermal depths in VSP Er:YAG laser skin resurfacing,” J. Laser Health Acad. 2010, 56–71 (2010).

2009 (1)

2008 (1)

M. W. Haakestad, G. Arisholm, E. Lippert, S. Nicolas, G. Rustad, and K. Stenersen, “High-pulse-energy 8 µm laser source based on optical parametric amplification in ZnGeP2,” Proc. SPIE 6998, 699812, 699812-7 (2008).
[CrossRef]

2007 (3)

M. A. Mackanos, D. Simanovskii, K. M. Joos, H. A. Schwettman, and E. D. Jansen, “Mid infrared optical parametric oscillator as a viable alternative to tissue ablation with the free electron laser,” Lasers Surg. Med. 39(3), 230–236 (2007).
[CrossRef] [PubMed]

A. Dergachev, D. Armstrong, A. Smith, T. Drake, and M. Dubois, “3.4-mum ZGP RISTRA nanosecond optical parametric oscillator pumped by a 2.05-mum Ho:YLF MOPA system,” Opt. Express 15(22), 14404–14413 (2007).
[CrossRef] [PubMed]

M. Henriksson, M. Tiihonen, V. Pasiskevicius, and F. Laurell, “Mid-infrared ZGP OPO pumped by near-degenerate narrowband type-I PPKTP parametric oscillator,” Appl. Phys. B 88(1), 37–41 (2007).
[CrossRef]

2005 (1)

A. Dergachev, P. F. Moulton, and T. E. Drake, “High-power, high-energy Ho:YLF laser pumped by Tm:fiber laser ” in Advanced Solid-State Photonics (ASSP),” OSA Trends in Optics and Photonics 98, 608–612 (2005) (Optical Society of America).

2003 (3)

M. A. Mackanos, E. D. Jansen, B. L. Shaw, J. S. Sanghera, I. Aggarwal, and A. Katzir, “Delivery of midinfrared (6 to 7-microm) laser radiation in a liquid environment using infrared-transmitting optical fibers,” J. Biomed. Opt. 8(4), 583–593 (2003).
[CrossRef] [PubMed]

G. S. Edwards, R. H. Austin, F. E. Carroll, M. L. Copeland, M. E. Couprie, W. E. Gabella, R. F. Haglund, B. A. Hooper, M. S. Hutson, E. D. Jansen, K. M. Joos, D. P. Kiehart, I. Lindau, J. Miao, H. S. Pratisto, J. H. Shen, Y. Tokutake, A. F. G. van der Meer, and A. Xie, “Free-electron-laser-based biophysical and biome-dical instrumentation,” Rev. Sci. Instrum. 74(7), 3207–3245 (2003).
[CrossRef]

A. V. Smith and D. J. Armstrong, “Generation of vortex beams by an image-rotating optical parametric oscillator,” Opt. Express 11(8), 868–873 (2003).
[CrossRef] [PubMed]

2002 (2)

2001 (1)

2000 (4)

K. L. Vodopyanov, F. Ganikhanov, J. P. Maffetone, I. Zwieback, and W. Ruderman, “ZnGeP2 optical parametric oscillator with 3.8-12.4-mum tunability,” Opt. Lett. 25(11), 841–843 (2000).
[CrossRef] [PubMed]

K. M. Joos, J. H. Shen, D. J. Shetlar, and V. A. Casagrande, “Optic nerve sheath fenestration with a novel wavelength produced by the free electron laser (FEL),” Lasers Surg. Med. 27(3), 191–205 (2000).
[CrossRef] [PubMed]

W. B. Telfair, C. Bekker, H. J. Hoffman, P. R. Yoder, R. E. Nordquist, R. A. Eiferman, and H. H. Zenzie, “Histological comparison of corneal ablation with Er:YAG laser, Nd:YAG optical parametric oscillator, and excimer laser,” J. Refract. Surg. 16(1), 40–50 (2000).
[PubMed]

H. J. Hoffman and W. B. Telfair, “Photospallation: a new theory and mechanism for mid-infrared corneal ablations,” J. Refract. Surg. 16(1), 90–94 (2000).
[PubMed]

1979 (1)

S. Brosnan and R. Byer, “Optical parametric oscillator threshold and linewidth studies,” IEEE J. Quantum Electron. 15(6), 415–431 (1979).
[CrossRef]

Aggarwal, I.

M. A. Mackanos, E. D. Jansen, B. L. Shaw, J. S. Sanghera, I. Aggarwal, and A. Katzir, “Delivery of midinfrared (6 to 7-microm) laser radiation in a liquid environment using infrared-transmitting optical fibers,” J. Biomed. Opt. 8(4), 583–593 (2003).
[CrossRef] [PubMed]

Ahcan, U.

M. Lukac, T. Perhavec, K. Nemes, and U. Ahcan, “Ablation and thermal depths in VSP Er:YAG laser skin resurfacing,” J. Laser Health Acad. 2010, 56–71 (2010).

Arisholm, G.

M. W. Haakestad, G. Arisholm, E. Lippert, S. Nicolas, G. Rustad, and K. Stenersen, “High-pulse-energy 8 µm laser source based on optical parametric amplification in ZnGeP2,” Proc. SPIE 6998, 699812, 699812-7 (2008).
[CrossRef]

Armstrong, D.

Armstrong, D. J.

Austin, R. H.

G. S. Edwards, R. H. Austin, F. E. Carroll, M. L. Copeland, M. E. Couprie, W. E. Gabella, R. F. Haglund, B. A. Hooper, M. S. Hutson, E. D. Jansen, K. M. Joos, D. P. Kiehart, I. Lindau, J. Miao, H. S. Pratisto, J. H. Shen, Y. Tokutake, A. F. G. van der Meer, and A. Xie, “Free-electron-laser-based biophysical and biome-dical instrumentation,” Rev. Sci. Instrum. 74(7), 3207–3245 (2003).
[CrossRef]

Bekker, C.

W. B. Telfair, C. Bekker, H. J. Hoffman, P. R. Yoder, R. E. Nordquist, R. A. Eiferman, and H. H. Zenzie, “Histological comparison of corneal ablation with Er:YAG laser, Nd:YAG optical parametric oscillator, and excimer laser,” J. Refract. Surg. 16(1), 40–50 (2000).
[PubMed]

Brosnan, S.

S. Brosnan and R. Byer, “Optical parametric oscillator threshold and linewidth studies,” IEEE J. Quantum Electron. 15(6), 415–431 (1979).
[CrossRef]

Byer, R.

S. Brosnan and R. Byer, “Optical parametric oscillator threshold and linewidth studies,” IEEE J. Quantum Electron. 15(6), 415–431 (1979).
[CrossRef]

Canalias, C.

Carroll, F. E.

G. S. Edwards, R. H. Austin, F. E. Carroll, M. L. Copeland, M. E. Couprie, W. E. Gabella, R. F. Haglund, B. A. Hooper, M. S. Hutson, E. D. Jansen, K. M. Joos, D. P. Kiehart, I. Lindau, J. Miao, H. S. Pratisto, J. H. Shen, Y. Tokutake, A. F. G. van der Meer, and A. Xie, “Free-electron-laser-based biophysical and biome-dical instrumentation,” Rev. Sci. Instrum. 74(7), 3207–3245 (2003).
[CrossRef]

Casagrande, V. A.

K. M. Joos, J. H. Shen, D. J. Shetlar, and V. A. Casagrande, “Optic nerve sheath fenestration with a novel wavelength produced by the free electron laser (FEL),” Lasers Surg. Med. 27(3), 191–205 (2000).
[CrossRef] [PubMed]

Copeland, M. L.

G. S. Edwards, R. H. Austin, F. E. Carroll, M. L. Copeland, M. E. Couprie, W. E. Gabella, R. F. Haglund, B. A. Hooper, M. S. Hutson, E. D. Jansen, K. M. Joos, D. P. Kiehart, I. Lindau, J. Miao, H. S. Pratisto, J. H. Shen, Y. Tokutake, A. F. G. van der Meer, and A. Xie, “Free-electron-laser-based biophysical and biome-dical instrumentation,” Rev. Sci. Instrum. 74(7), 3207–3245 (2003).
[CrossRef]

Couprie, M. E.

G. S. Edwards, R. H. Austin, F. E. Carroll, M. L. Copeland, M. E. Couprie, W. E. Gabella, R. F. Haglund, B. A. Hooper, M. S. Hutson, E. D. Jansen, K. M. Joos, D. P. Kiehart, I. Lindau, J. Miao, H. S. Pratisto, J. H. Shen, Y. Tokutake, A. F. G. van der Meer, and A. Xie, “Free-electron-laser-based biophysical and biome-dical instrumentation,” Rev. Sci. Instrum. 74(7), 3207–3245 (2003).
[CrossRef]

Dergachev, A.

A. Dergachev, D. Armstrong, A. Smith, T. Drake, and M. Dubois, “3.4-mum ZGP RISTRA nanosecond optical parametric oscillator pumped by a 2.05-mum Ho:YLF MOPA system,” Opt. Express 15(22), 14404–14413 (2007).
[CrossRef] [PubMed]

A. Dergachev, P. F. Moulton, and T. E. Drake, “High-power, high-energy Ho:YLF laser pumped by Tm:fiber laser ” in Advanced Solid-State Photonics (ASSP),” OSA Trends in Optics and Photonics 98, 608–612 (2005) (Optical Society of America).

Drake, T.

Drake, T. E.

A. Dergachev, P. F. Moulton, and T. E. Drake, “High-power, high-energy Ho:YLF laser pumped by Tm:fiber laser ” in Advanced Solid-State Photonics (ASSP),” OSA Trends in Optics and Photonics 98, 608–612 (2005) (Optical Society of America).

Dubois, M.

Edwards, G. S.

G. S. Edwards, R. H. Austin, F. E. Carroll, M. L. Copeland, M. E. Couprie, W. E. Gabella, R. F. Haglund, B. A. Hooper, M. S. Hutson, E. D. Jansen, K. M. Joos, D. P. Kiehart, I. Lindau, J. Miao, H. S. Pratisto, J. H. Shen, Y. Tokutake, A. F. G. van der Meer, and A. Xie, “Free-electron-laser-based biophysical and biome-dical instrumentation,” Rev. Sci. Instrum. 74(7), 3207–3245 (2003).
[CrossRef]

Eiferman, R. A.

W. B. Telfair, C. Bekker, H. J. Hoffman, P. R. Yoder, R. E. Nordquist, R. A. Eiferman, and H. H. Zenzie, “Histological comparison of corneal ablation with Er:YAG laser, Nd:YAG optical parametric oscillator, and excimer laser,” J. Refract. Surg. 16(1), 40–50 (2000).
[PubMed]

Gabella, W. E.

G. S. Edwards, R. H. Austin, F. E. Carroll, M. L. Copeland, M. E. Couprie, W. E. Gabella, R. F. Haglund, B. A. Hooper, M. S. Hutson, E. D. Jansen, K. M. Joos, D. P. Kiehart, I. Lindau, J. Miao, H. S. Pratisto, J. H. Shen, Y. Tokutake, A. F. G. van der Meer, and A. Xie, “Free-electron-laser-based biophysical and biome-dical instrumentation,” Rev. Sci. Instrum. 74(7), 3207–3245 (2003).
[CrossRef]

Ganikhanov, F.

Haakestad, M. W.

M. W. Haakestad, G. Arisholm, E. Lippert, S. Nicolas, G. Rustad, and K. Stenersen, “High-pulse-energy 8 µm laser source based on optical parametric amplification in ZnGeP2,” Proc. SPIE 6998, 699812, 699812-7 (2008).
[CrossRef]

Haglund, R. F.

G. S. Edwards, R. H. Austin, F. E. Carroll, M. L. Copeland, M. E. Couprie, W. E. Gabella, R. F. Haglund, B. A. Hooper, M. S. Hutson, E. D. Jansen, K. M. Joos, D. P. Kiehart, I. Lindau, J. Miao, H. S. Pratisto, J. H. Shen, Y. Tokutake, A. F. G. van der Meer, and A. Xie, “Free-electron-laser-based biophysical and biome-dical instrumentation,” Rev. Sci. Instrum. 74(7), 3207–3245 (2003).
[CrossRef]

Hanning, E. A.

Henriksson, M.

M. Henriksson, L. Sjöqvist, V. Pasiskevicius, and F. Laurell, “Mode spectrum of multi-longitudinal mode pumped near-degenerate OPOs with volume Bragg grating output couplers,” Opt. Express 17(20), 17582–17589 (2009).
[CrossRef] [PubMed]

M. Henriksson, M. Tiihonen, V. Pasiskevicius, and F. Laurell, “Mid-infrared ZGP OPO pumped by near-degenerate narrowband type-I PPKTP parametric oscillator,” Appl. Phys. B 88(1), 37–41 (2007).
[CrossRef]

Hoffman, H. J.

H. J. Hoffman and W. B. Telfair, “Photospallation: a new theory and mechanism for mid-infrared corneal ablations,” J. Refract. Surg. 16(1), 90–94 (2000).
[PubMed]

W. B. Telfair, C. Bekker, H. J. Hoffman, P. R. Yoder, R. E. Nordquist, R. A. Eiferman, and H. H. Zenzie, “Histological comparison of corneal ablation with Er:YAG laser, Nd:YAG optical parametric oscillator, and excimer laser,” J. Refract. Surg. 16(1), 40–50 (2000).
[PubMed]

Hooper, B. A.

G. S. Edwards, R. H. Austin, F. E. Carroll, M. L. Copeland, M. E. Couprie, W. E. Gabella, R. F. Haglund, B. A. Hooper, M. S. Hutson, E. D. Jansen, K. M. Joos, D. P. Kiehart, I. Lindau, J. Miao, H. S. Pratisto, J. H. Shen, Y. Tokutake, A. F. G. van der Meer, and A. Xie, “Free-electron-laser-based biophysical and biome-dical instrumentation,” Rev. Sci. Instrum. 74(7), 3207–3245 (2003).
[CrossRef]

Hutson, M. S.

G. S. Edwards, R. H. Austin, F. E. Carroll, M. L. Copeland, M. E. Couprie, W. E. Gabella, R. F. Haglund, B. A. Hooper, M. S. Hutson, E. D. Jansen, K. M. Joos, D. P. Kiehart, I. Lindau, J. Miao, H. S. Pratisto, J. H. Shen, Y. Tokutake, A. F. G. van der Meer, and A. Xie, “Free-electron-laser-based biophysical and biome-dical instrumentation,” Rev. Sci. Instrum. 74(7), 3207–3245 (2003).
[CrossRef]

Jansen, E. D.

M. A. Mackanos, D. Simanovskii, K. M. Joos, H. A. Schwettman, and E. D. Jansen, “Mid infrared optical parametric oscillator as a viable alternative to tissue ablation with the free electron laser,” Lasers Surg. Med. 39(3), 230–236 (2007).
[CrossRef] [PubMed]

M. A. Mackanos, E. D. Jansen, B. L. Shaw, J. S. Sanghera, I. Aggarwal, and A. Katzir, “Delivery of midinfrared (6 to 7-microm) laser radiation in a liquid environment using infrared-transmitting optical fibers,” J. Biomed. Opt. 8(4), 583–593 (2003).
[CrossRef] [PubMed]

G. S. Edwards, R. H. Austin, F. E. Carroll, M. L. Copeland, M. E. Couprie, W. E. Gabella, R. F. Haglund, B. A. Hooper, M. S. Hutson, E. D. Jansen, K. M. Joos, D. P. Kiehart, I. Lindau, J. Miao, H. S. Pratisto, J. H. Shen, Y. Tokutake, A. F. G. van der Meer, and A. Xie, “Free-electron-laser-based biophysical and biome-dical instrumentation,” Rev. Sci. Instrum. 74(7), 3207–3245 (2003).
[CrossRef]

Joos, K. M.

M. A. Mackanos, D. Simanovskii, K. M. Joos, H. A. Schwettman, and E. D. Jansen, “Mid infrared optical parametric oscillator as a viable alternative to tissue ablation with the free electron laser,” Lasers Surg. Med. 39(3), 230–236 (2007).
[CrossRef] [PubMed]

G. S. Edwards, R. H. Austin, F. E. Carroll, M. L. Copeland, M. E. Couprie, W. E. Gabella, R. F. Haglund, B. A. Hooper, M. S. Hutson, E. D. Jansen, K. M. Joos, D. P. Kiehart, I. Lindau, J. Miao, H. S. Pratisto, J. H. Shen, Y. Tokutake, A. F. G. van der Meer, and A. Xie, “Free-electron-laser-based biophysical and biome-dical instrumentation,” Rev. Sci. Instrum. 74(7), 3207–3245 (2003).
[CrossRef]

K. M. Joos, J. H. Shen, D. J. Shetlar, and V. A. Casagrande, “Optic nerve sheath fenestration with a novel wavelength produced by the free electron laser (FEL),” Lasers Surg. Med. 27(3), 191–205 (2000).
[CrossRef] [PubMed]

Katzir, A.

M. A. Mackanos, E. D. Jansen, B. L. Shaw, J. S. Sanghera, I. Aggarwal, and A. Katzir, “Delivery of midinfrared (6 to 7-microm) laser radiation in a liquid environment using infrared-transmitting optical fibers,” J. Biomed. Opt. 8(4), 583–593 (2003).
[CrossRef] [PubMed]

Kiehart, D. P.

G. S. Edwards, R. H. Austin, F. E. Carroll, M. L. Copeland, M. E. Couprie, W. E. Gabella, R. F. Haglund, B. A. Hooper, M. S. Hutson, E. D. Jansen, K. M. Joos, D. P. Kiehart, I. Lindau, J. Miao, H. S. Pratisto, J. H. Shen, Y. Tokutake, A. F. G. van der Meer, and A. Xie, “Free-electron-laser-based biophysical and biome-dical instrumentation,” Rev. Sci. Instrum. 74(7), 3207–3245 (2003).
[CrossRef]

Laurell, F.

Lindau, I.

G. S. Edwards, R. H. Austin, F. E. Carroll, M. L. Copeland, M. E. Couprie, W. E. Gabella, R. F. Haglund, B. A. Hooper, M. S. Hutson, E. D. Jansen, K. M. Joos, D. P. Kiehart, I. Lindau, J. Miao, H. S. Pratisto, J. H. Shen, Y. Tokutake, A. F. G. van der Meer, and A. Xie, “Free-electron-laser-based biophysical and biome-dical instrumentation,” Rev. Sci. Instrum. 74(7), 3207–3245 (2003).
[CrossRef]

Lippert, E.

M. W. Haakestad, G. Arisholm, E. Lippert, S. Nicolas, G. Rustad, and K. Stenersen, “High-pulse-energy 8 µm laser source based on optical parametric amplification in ZnGeP2,” Proc. SPIE 6998, 699812, 699812-7 (2008).
[CrossRef]

Lukac, M.

M. Lukac, T. Perhavec, K. Nemes, and U. Ahcan, “Ablation and thermal depths in VSP Er:YAG laser skin resurfacing,” J. Laser Health Acad. 2010, 56–71 (2010).

Mackanos, M. A.

M. A. Mackanos, D. Simanovskii, K. M. Joos, H. A. Schwettman, and E. D. Jansen, “Mid infrared optical parametric oscillator as a viable alternative to tissue ablation with the free electron laser,” Lasers Surg. Med. 39(3), 230–236 (2007).
[CrossRef] [PubMed]

M. A. Mackanos, E. D. Jansen, B. L. Shaw, J. S. Sanghera, I. Aggarwal, and A. Katzir, “Delivery of midinfrared (6 to 7-microm) laser radiation in a liquid environment using infrared-transmitting optical fibers,” J. Biomed. Opt. 8(4), 583–593 (2003).
[CrossRef] [PubMed]

Maffetone, J. P.

Miao, J.

G. S. Edwards, R. H. Austin, F. E. Carroll, M. L. Copeland, M. E. Couprie, W. E. Gabella, R. F. Haglund, B. A. Hooper, M. S. Hutson, E. D. Jansen, K. M. Joos, D. P. Kiehart, I. Lindau, J. Miao, H. S. Pratisto, J. H. Shen, Y. Tokutake, A. F. G. van der Meer, and A. Xie, “Free-electron-laser-based biophysical and biome-dical instrumentation,” Rev. Sci. Instrum. 74(7), 3207–3245 (2003).
[CrossRef]

Moulton, P. F.

A. Dergachev, P. F. Moulton, and T. E. Drake, “High-power, high-energy Ho:YLF laser pumped by Tm:fiber laser ” in Advanced Solid-State Photonics (ASSP),” OSA Trends in Optics and Photonics 98, 608–612 (2005) (Optical Society of America).

Nemes, K.

M. Lukac, T. Perhavec, K. Nemes, and U. Ahcan, “Ablation and thermal depths in VSP Er:YAG laser skin resurfacing,” J. Laser Health Acad. 2010, 56–71 (2010).

Nicolas, S.

M. W. Haakestad, G. Arisholm, E. Lippert, S. Nicolas, G. Rustad, and K. Stenersen, “High-pulse-energy 8 µm laser source based on optical parametric amplification in ZnGeP2,” Proc. SPIE 6998, 699812, 699812-7 (2008).
[CrossRef]

Nordquist, R. E.

W. B. Telfair, C. Bekker, H. J. Hoffman, P. R. Yoder, R. E. Nordquist, R. A. Eiferman, and H. H. Zenzie, “Histological comparison of corneal ablation with Er:YAG laser, Nd:YAG optical parametric oscillator, and excimer laser,” J. Refract. Surg. 16(1), 40–50 (2000).
[PubMed]

Pasiskevicius, V.

Perhavec, T.

M. Lukac, T. Perhavec, K. Nemes, and U. Ahcan, “Ablation and thermal depths in VSP Er:YAG laser skin resurfacing,” J. Laser Health Acad. 2010, 56–71 (2010).

Pratisto, H. S.

G. S. Edwards, R. H. Austin, F. E. Carroll, M. L. Copeland, M. E. Couprie, W. E. Gabella, R. F. Haglund, B. A. Hooper, M. S. Hutson, E. D. Jansen, K. M. Joos, D. P. Kiehart, I. Lindau, J. Miao, H. S. Pratisto, J. H. Shen, Y. Tokutake, A. F. G. van der Meer, and A. Xie, “Free-electron-laser-based biophysical and biome-dical instrumentation,” Rev. Sci. Instrum. 74(7), 3207–3245 (2003).
[CrossRef]

Ruderman, W.

Rustad, G.

M. W. Haakestad, G. Arisholm, E. Lippert, S. Nicolas, G. Rustad, and K. Stenersen, “High-pulse-energy 8 µm laser source based on optical parametric amplification in ZnGeP2,” Proc. SPIE 6998, 699812, 699812-7 (2008).
[CrossRef]

Sanghera, J. S.

M. A. Mackanos, E. D. Jansen, B. L. Shaw, J. S. Sanghera, I. Aggarwal, and A. Katzir, “Delivery of midinfrared (6 to 7-microm) laser radiation in a liquid environment using infrared-transmitting optical fibers,” J. Biomed. Opt. 8(4), 583–593 (2003).
[CrossRef] [PubMed]

Schunemann, P. G.

Schwettman, H. A.

M. A. Mackanos, D. Simanovskii, K. M. Joos, H. A. Schwettman, and E. D. Jansen, “Mid infrared optical parametric oscillator as a viable alternative to tissue ablation with the free electron laser,” Lasers Surg. Med. 39(3), 230–236 (2007).
[CrossRef] [PubMed]

Shaw, B. L.

M. A. Mackanos, E. D. Jansen, B. L. Shaw, J. S. Sanghera, I. Aggarwal, and A. Katzir, “Delivery of midinfrared (6 to 7-microm) laser radiation in a liquid environment using infrared-transmitting optical fibers,” J. Biomed. Opt. 8(4), 583–593 (2003).
[CrossRef] [PubMed]

Shen, J. H.

G. S. Edwards, R. H. Austin, F. E. Carroll, M. L. Copeland, M. E. Couprie, W. E. Gabella, R. F. Haglund, B. A. Hooper, M. S. Hutson, E. D. Jansen, K. M. Joos, D. P. Kiehart, I. Lindau, J. Miao, H. S. Pratisto, J. H. Shen, Y. Tokutake, A. F. G. van der Meer, and A. Xie, “Free-electron-laser-based biophysical and biome-dical instrumentation,” Rev. Sci. Instrum. 74(7), 3207–3245 (2003).
[CrossRef]

K. M. Joos, J. H. Shen, D. J. Shetlar, and V. A. Casagrande, “Optic nerve sheath fenestration with a novel wavelength produced by the free electron laser (FEL),” Lasers Surg. Med. 27(3), 191–205 (2000).
[CrossRef] [PubMed]

Shetlar, D. J.

K. M. Joos, J. H. Shen, D. J. Shetlar, and V. A. Casagrande, “Optic nerve sheath fenestration with a novel wavelength produced by the free electron laser (FEL),” Lasers Surg. Med. 27(3), 191–205 (2000).
[CrossRef] [PubMed]

Simanovskii, D.

M. A. Mackanos, D. Simanovskii, K. M. Joos, H. A. Schwettman, and E. D. Jansen, “Mid infrared optical parametric oscillator as a viable alternative to tissue ablation with the free electron laser,” Lasers Surg. Med. 39(3), 230–236 (2007).
[CrossRef] [PubMed]

Sjöqvist, L.

Smith, A.

Smith, A. V.

Stenersen, K.

M. W. Haakestad, G. Arisholm, E. Lippert, S. Nicolas, G. Rustad, and K. Stenersen, “High-pulse-energy 8 µm laser source based on optical parametric amplification in ZnGeP2,” Proc. SPIE 6998, 699812, 699812-7 (2008).
[CrossRef]

Telfair, W. B.

H. J. Hoffman and W. B. Telfair, “Photospallation: a new theory and mechanism for mid-infrared corneal ablations,” J. Refract. Surg. 16(1), 90–94 (2000).
[PubMed]

W. B. Telfair, C. Bekker, H. J. Hoffman, P. R. Yoder, R. E. Nordquist, R. A. Eiferman, and H. H. Zenzie, “Histological comparison of corneal ablation with Er:YAG laser, Nd:YAG optical parametric oscillator, and excimer laser,” J. Refract. Surg. 16(1), 40–50 (2000).
[PubMed]

Thilmann, N.

Tiihonen, M.

M. Henriksson, M. Tiihonen, V. Pasiskevicius, and F. Laurell, “Mid-infrared ZGP OPO pumped by near-degenerate narrowband type-I PPKTP parametric oscillator,” Appl. Phys. B 88(1), 37–41 (2007).
[CrossRef]

Tokutake, Y.

G. S. Edwards, R. H. Austin, F. E. Carroll, M. L. Copeland, M. E. Couprie, W. E. Gabella, R. F. Haglund, B. A. Hooper, M. S. Hutson, E. D. Jansen, K. M. Joos, D. P. Kiehart, I. Lindau, J. Miao, H. S. Pratisto, J. H. Shen, Y. Tokutake, A. F. G. van der Meer, and A. Xie, “Free-electron-laser-based biophysical and biome-dical instrumentation,” Rev. Sci. Instrum. 74(7), 3207–3245 (2003).
[CrossRef]

van der Meer, A. F. G.

G. S. Edwards, R. H. Austin, F. E. Carroll, M. L. Copeland, M. E. Couprie, W. E. Gabella, R. F. Haglund, B. A. Hooper, M. S. Hutson, E. D. Jansen, K. M. Joos, D. P. Kiehart, I. Lindau, J. Miao, H. S. Pratisto, J. H. Shen, Y. Tokutake, A. F. G. van der Meer, and A. Xie, “Free-electron-laser-based biophysical and biome-dical instrumentation,” Rev. Sci. Instrum. 74(7), 3207–3245 (2003).
[CrossRef]

Vodopyanov, K. L.

Xie, A.

G. S. Edwards, R. H. Austin, F. E. Carroll, M. L. Copeland, M. E. Couprie, W. E. Gabella, R. F. Haglund, B. A. Hooper, M. S. Hutson, E. D. Jansen, K. M. Joos, D. P. Kiehart, I. Lindau, J. Miao, H. S. Pratisto, J. H. Shen, Y. Tokutake, A. F. G. van der Meer, and A. Xie, “Free-electron-laser-based biophysical and biome-dical instrumentation,” Rev. Sci. Instrum. 74(7), 3207–3245 (2003).
[CrossRef]

Yoder, P. R.

W. B. Telfair, C. Bekker, H. J. Hoffman, P. R. Yoder, R. E. Nordquist, R. A. Eiferman, and H. H. Zenzie, “Histological comparison of corneal ablation with Er:YAG laser, Nd:YAG optical parametric oscillator, and excimer laser,” J. Refract. Surg. 16(1), 40–50 (2000).
[PubMed]

Zelmon, D. E.

Zenzie, H. H.

W. B. Telfair, C. Bekker, H. J. Hoffman, P. R. Yoder, R. E. Nordquist, R. A. Eiferman, and H. H. Zenzie, “Histological comparison of corneal ablation with Er:YAG laser, Nd:YAG optical parametric oscillator, and excimer laser,” J. Refract. Surg. 16(1), 40–50 (2000).
[PubMed]

Zukauskas, A.

Zwieback, I.

Appl. Phys. B (1)

M. Henriksson, M. Tiihonen, V. Pasiskevicius, and F. Laurell, “Mid-infrared ZGP OPO pumped by near-degenerate narrowband type-I PPKTP parametric oscillator,” Appl. Phys. B 88(1), 37–41 (2007).
[CrossRef]

IEEE J. Quantum Electron. (1)

S. Brosnan and R. Byer, “Optical parametric oscillator threshold and linewidth studies,” IEEE J. Quantum Electron. 15(6), 415–431 (1979).
[CrossRef]

J. Biomed. Opt. (1)

M. A. Mackanos, E. D. Jansen, B. L. Shaw, J. S. Sanghera, I. Aggarwal, and A. Katzir, “Delivery of midinfrared (6 to 7-microm) laser radiation in a liquid environment using infrared-transmitting optical fibers,” J. Biomed. Opt. 8(4), 583–593 (2003).
[CrossRef] [PubMed]

J. Laser Health Acad. (1)

M. Lukac, T. Perhavec, K. Nemes, and U. Ahcan, “Ablation and thermal depths in VSP Er:YAG laser skin resurfacing,” J. Laser Health Acad. 2010, 56–71 (2010).

J. Opt. Soc. Am. B (2)

J. Refract. Surg. (2)

W. B. Telfair, C. Bekker, H. J. Hoffman, P. R. Yoder, R. E. Nordquist, R. A. Eiferman, and H. H. Zenzie, “Histological comparison of corneal ablation with Er:YAG laser, Nd:YAG optical parametric oscillator, and excimer laser,” J. Refract. Surg. 16(1), 40–50 (2000).
[PubMed]

H. J. Hoffman and W. B. Telfair, “Photospallation: a new theory and mechanism for mid-infrared corneal ablations,” J. Refract. Surg. 16(1), 90–94 (2000).
[PubMed]

Lasers Surg. Med. (2)

K. M. Joos, J. H. Shen, D. J. Shetlar, and V. A. Casagrande, “Optic nerve sheath fenestration with a novel wavelength produced by the free electron laser (FEL),” Lasers Surg. Med. 27(3), 191–205 (2000).
[CrossRef] [PubMed]

M. A. Mackanos, D. Simanovskii, K. M. Joos, H. A. Schwettman, and E. D. Jansen, “Mid infrared optical parametric oscillator as a viable alternative to tissue ablation with the free electron laser,” Lasers Surg. Med. 39(3), 230–236 (2007).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (2)

Opt. Mater. Express (1)

OSA Trends in Optics and Photonics (1)

A. Dergachev, P. F. Moulton, and T. E. Drake, “High-power, high-energy Ho:YLF laser pumped by Tm:fiber laser ” in Advanced Solid-State Photonics (ASSP),” OSA Trends in Optics and Photonics 98, 608–612 (2005) (Optical Society of America).

Proc. SPIE (1)

M. W. Haakestad, G. Arisholm, E. Lippert, S. Nicolas, G. Rustad, and K. Stenersen, “High-pulse-energy 8 µm laser source based on optical parametric amplification in ZnGeP2,” Proc. SPIE 6998, 699812, 699812-7 (2008).
[CrossRef]

Rev. Sci. Instrum. (1)

G. S. Edwards, R. H. Austin, F. E. Carroll, M. L. Copeland, M. E. Couprie, W. E. Gabella, R. F. Haglund, B. A. Hooper, M. S. Hutson, E. D. Jansen, K. M. Joos, D. P. Kiehart, I. Lindau, J. Miao, H. S. Pratisto, J. H. Shen, Y. Tokutake, A. F. G. van der Meer, and A. Xie, “Free-electron-laser-based biophysical and biome-dical instrumentation,” Rev. Sci. Instrum. 74(7), 3207–3245 (2003).
[CrossRef]

Other (1)

M. S. Hutson and G. S. Edwards, “Advances in the physical understanding of laser surgery at 6.45 microns,” 26th International Free Electron Laser Conference and 11th FEL User Workshop, pp. 648–653 (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic drawing of the cascaded PPKTP OPMOPA stage and the ZGP RISTRA OPO.

Fig. 2
Fig. 2

Output energy of the 2.128 µm MOPA as a function of pump energy. Inset: output intensity profile of the MOPA.

Fig. 3
Fig. 3

Pulse energy of the signal and idler wavelength for collinear (a) and noncollinear (b) phase-matching with the intensity profile at maximum incident pump energy.

Fig. 4
Fig. 4

The scaled pulse shape of the pump and the generated pulses from the ZGP RISTRA OPO with noncollinear phase matching at 3.17 µm and 6.45 µm.

Fig. 5
Fig. 5

Phase-matching curves for both type with the measured points and the calculated noncollinear phase-matching curves.

Fig. 6
Fig. 6

Calculated parametric gain for the ZGP RISTRA OPO idler wavelength, (a) and the pump intensity at the ZGP OPO threshold as a function of the resonant signal wavelength, (b). In (a) slight gain decrease due to noncollinear phase-matching is evident.

Fig. 7
Fig. 7

The measured signal spectra ZGP RISTRA OPO tuned by counter-clockwise rotation of the cavity. The collinear phase-matching signal wavelength is 3.22 µm. For the clockwise rotation the signal spectra were identical. The corresponding range of idler wavelengths spans from 6.27 µm to 8.12 µm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ω p = ω s + ω i
k i 2 = k p 2 + k s 2 2 k p k s cos( α p )

Metrics