Abstract

The refractive indices and thermo-optic coefficients for varying concentrations of Er3+ doped polycrystalline yttria were measured at a variety of wavelengths and temperatures. A Lorenz oscillator model was employed to model the room temperature indices and thermo-optic coefficients were calculated based on temperature dependent index measurements from 0.45 to 1.064 microns. Some consequences relating to thermal lensing are discussed.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Petermann, L. Fornasiero, E. Mix, and V. Peters, “High melting sesquioxides: crystal growth, spectroscopy, and laser experiments,” Opt. Mater. 19(1), 67–71 (2002).
    [CrossRef]
  2. A. Shirakawa, K. Takaichi, H. Yagi, J. Bisson, J. Lu, M. Musha, K. Ueda, T. Yanagitani, T. Petrov, and A. A. Kaminskii, “Diode-pumped mode-locked Yb3+:Y2O3 ceramic laser,” Opt. Express 11(22), 2911–2916 (2003).
    [CrossRef] [PubMed]
  3. J. Lu, J. F. Bisson, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Yb3+:Sc2O3 ceramic laser,” Appl. Phys. Lett. 83(6), 1101–1103 (2003).
    [CrossRef]
  4. J. Lu, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Highly efficient 2% Nd:yttrium aluminum garnet ceramic laser,” Appl. Phys. Lett. 77(23), 3707–3709 (2000).
    [CrossRef]
  5. J. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, and A. A. Kaminskii, “Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics-a new generation of solid state laser and optical materials,” J. Alloy. Comp. 341(1-2), 220–225 (2002).
    [CrossRef]
  6. M. Born and E. Wolf, Principles of Optics,7th ed. (Cambridge University Press, 1999).
  7. I. Malitson, “A redetermination of some optical properties of calcium fluoride,” Appl. Opt. 2(11), 1103–1107 (1963).
    [CrossRef]
  8. A. Feldman, D. Horowitz, R. M. Waxler, and M. J. Dodge, “Optical Material Characterization,” NBS Technical Note 993 (U. S. GPO, 1978).
  9. R. Dekker and K. Worhoff, J. W. Stouwdam, and F. J. C. M, van Veggel and A. Driessen, “Absorption spectroscopy of complex rare earth ion doped hybrid materials over a broad wavelength range,” 7th International Conference on Photonics in Europe, 12-17 June 2005, Munich, Germany.
  10. J. M. Ziman, Principles of the Theory of Solids, (Cambridge University Press, 1964.)
  11. S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid state lasers: The case of Ytterbium doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
    [CrossRef]
  12. J. F. Nye, Physical Properties of Crystals (Clarendon Press, Oxford, 1957).
  13. W. Tropf, M. Thomas, and T. Harris, “Properties of Crystals and Glasses”, in Handbook of Optics, v. II 2nd ed., M. Bass, Ed. In Chief, E. Van Stryland, D. Williams, and W. Wolfe, Assoc. Eds. (McGraw-Hill, 1995)
  14. I. C. Albayrak, S. Basu, A. Sakulich, O. Yeheskel, and M. W. Barsoum, “Elastic and Mechanical Properties of polycrystalline transparent yttria determined by indentation techniques,” J. Am. Ceram. Soc. 93, 2028–2034 (2010).
  15. O. Yeheskel and O. Tevet, “Elastic Moduli of transparent yttria,” J. Am. Ceram. Soc. 82(1), 136–144 (1999).
    [CrossRef]
  16. W. J. Tropf and D. C. Harris, “Mechancal, thermal, and optical properties of yttria and lanthana doped yttria,” Proceedings of the SPIE, v1112, pp. 9-19 (1989).

2010

I. C. Albayrak, S. Basu, A. Sakulich, O. Yeheskel, and M. W. Barsoum, “Elastic and Mechanical Properties of polycrystalline transparent yttria determined by indentation techniques,” J. Am. Ceram. Soc. 93, 2028–2034 (2010).

2006

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid state lasers: The case of Ytterbium doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[CrossRef]

2003

A. Shirakawa, K. Takaichi, H. Yagi, J. Bisson, J. Lu, M. Musha, K. Ueda, T. Yanagitani, T. Petrov, and A. A. Kaminskii, “Diode-pumped mode-locked Yb3+:Y2O3 ceramic laser,” Opt. Express 11(22), 2911–2916 (2003).
[CrossRef] [PubMed]

J. Lu, J. F. Bisson, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Yb3+:Sc2O3 ceramic laser,” Appl. Phys. Lett. 83(6), 1101–1103 (2003).
[CrossRef]

2002

J. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, and A. A. Kaminskii, “Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics-a new generation of solid state laser and optical materials,” J. Alloy. Comp. 341(1-2), 220–225 (2002).
[CrossRef]

K. Petermann, L. Fornasiero, E. Mix, and V. Peters, “High melting sesquioxides: crystal growth, spectroscopy, and laser experiments,” Opt. Mater. 19(1), 67–71 (2002).
[CrossRef]

2000

J. Lu, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Highly efficient 2% Nd:yttrium aluminum garnet ceramic laser,” Appl. Phys. Lett. 77(23), 3707–3709 (2000).
[CrossRef]

1999

O. Yeheskel and O. Tevet, “Elastic Moduli of transparent yttria,” J. Am. Ceram. Soc. 82(1), 136–144 (1999).
[CrossRef]

1963

Akiyama, Y.

J. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, and A. A. Kaminskii, “Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics-a new generation of solid state laser and optical materials,” J. Alloy. Comp. 341(1-2), 220–225 (2002).
[CrossRef]

Albayrak, I. C.

I. C. Albayrak, S. Basu, A. Sakulich, O. Yeheskel, and M. W. Barsoum, “Elastic and Mechanical Properties of polycrystalline transparent yttria determined by indentation techniques,” J. Am. Ceram. Soc. 93, 2028–2034 (2010).

Balembois, F.

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid state lasers: The case of Ytterbium doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[CrossRef]

Barsoum, M. W.

I. C. Albayrak, S. Basu, A. Sakulich, O. Yeheskel, and M. W. Barsoum, “Elastic and Mechanical Properties of polycrystalline transparent yttria determined by indentation techniques,” J. Am. Ceram. Soc. 93, 2028–2034 (2010).

Basu, S.

I. C. Albayrak, S. Basu, A. Sakulich, O. Yeheskel, and M. W. Barsoum, “Elastic and Mechanical Properties of polycrystalline transparent yttria determined by indentation techniques,” J. Am. Ceram. Soc. 93, 2028–2034 (2010).

Bisson, J.

Bisson, J. F.

J. Lu, J. F. Bisson, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Yb3+:Sc2O3 ceramic laser,” Appl. Phys. Lett. 83(6), 1101–1103 (2003).
[CrossRef]

Chénais, S.

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid state lasers: The case of Ytterbium doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[CrossRef]

Druon, F.

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid state lasers: The case of Ytterbium doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[CrossRef]

Forget, S.

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid state lasers: The case of Ytterbium doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[CrossRef]

Fornasiero, L.

K. Petermann, L. Fornasiero, E. Mix, and V. Peters, “High melting sesquioxides: crystal growth, spectroscopy, and laser experiments,” Opt. Mater. 19(1), 67–71 (2002).
[CrossRef]

Georges, P.

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid state lasers: The case of Ytterbium doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[CrossRef]

Kaminskii, A. A.

J. Lu, J. F. Bisson, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Yb3+:Sc2O3 ceramic laser,” Appl. Phys. Lett. 83(6), 1101–1103 (2003).
[CrossRef]

A. Shirakawa, K. Takaichi, H. Yagi, J. Bisson, J. Lu, M. Musha, K. Ueda, T. Yanagitani, T. Petrov, and A. A. Kaminskii, “Diode-pumped mode-locked Yb3+:Y2O3 ceramic laser,” Opt. Express 11(22), 2911–2916 (2003).
[CrossRef] [PubMed]

J. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, and A. A. Kaminskii, “Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics-a new generation of solid state laser and optical materials,” J. Alloy. Comp. 341(1-2), 220–225 (2002).
[CrossRef]

J. Lu, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Highly efficient 2% Nd:yttrium aluminum garnet ceramic laser,” Appl. Phys. Lett. 77(23), 3707–3709 (2000).
[CrossRef]

Lu, J.

A. Shirakawa, K. Takaichi, H. Yagi, J. Bisson, J. Lu, M. Musha, K. Ueda, T. Yanagitani, T. Petrov, and A. A. Kaminskii, “Diode-pumped mode-locked Yb3+:Y2O3 ceramic laser,” Opt. Express 11(22), 2911–2916 (2003).
[CrossRef] [PubMed]

J. Lu, J. F. Bisson, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Yb3+:Sc2O3 ceramic laser,” Appl. Phys. Lett. 83(6), 1101–1103 (2003).
[CrossRef]

J. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, and A. A. Kaminskii, “Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics-a new generation of solid state laser and optical materials,” J. Alloy. Comp. 341(1-2), 220–225 (2002).
[CrossRef]

J. Lu, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Highly efficient 2% Nd:yttrium aluminum garnet ceramic laser,” Appl. Phys. Lett. 77(23), 3707–3709 (2000).
[CrossRef]

Malitson, I.

Mix, E.

K. Petermann, L. Fornasiero, E. Mix, and V. Peters, “High melting sesquioxides: crystal growth, spectroscopy, and laser experiments,” Opt. Mater. 19(1), 67–71 (2002).
[CrossRef]

Musha, M.

J. Lu, J. F. Bisson, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Yb3+:Sc2O3 ceramic laser,” Appl. Phys. Lett. 83(6), 1101–1103 (2003).
[CrossRef]

A. Shirakawa, K. Takaichi, H. Yagi, J. Bisson, J. Lu, M. Musha, K. Ueda, T. Yanagitani, T. Petrov, and A. A. Kaminskii, “Diode-pumped mode-locked Yb3+:Y2O3 ceramic laser,” Opt. Express 11(22), 2911–2916 (2003).
[CrossRef] [PubMed]

Petermann, K.

K. Petermann, L. Fornasiero, E. Mix, and V. Peters, “High melting sesquioxides: crystal growth, spectroscopy, and laser experiments,” Opt. Mater. 19(1), 67–71 (2002).
[CrossRef]

Peters, V.

K. Petermann, L. Fornasiero, E. Mix, and V. Peters, “High melting sesquioxides: crystal growth, spectroscopy, and laser experiments,” Opt. Mater. 19(1), 67–71 (2002).
[CrossRef]

Petrov, T.

Prabhu, M.

J. Lu, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Highly efficient 2% Nd:yttrium aluminum garnet ceramic laser,” Appl. Phys. Lett. 77(23), 3707–3709 (2000).
[CrossRef]

Sakulich, A.

I. C. Albayrak, S. Basu, A. Sakulich, O. Yeheskel, and M. W. Barsoum, “Elastic and Mechanical Properties of polycrystalline transparent yttria determined by indentation techniques,” J. Am. Ceram. Soc. 93, 2028–2034 (2010).

Shirakawa, A.

J. Lu, J. F. Bisson, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Yb3+:Sc2O3 ceramic laser,” Appl. Phys. Lett. 83(6), 1101–1103 (2003).
[CrossRef]

A. Shirakawa, K. Takaichi, H. Yagi, J. Bisson, J. Lu, M. Musha, K. Ueda, T. Yanagitani, T. Petrov, and A. A. Kaminskii, “Diode-pumped mode-locked Yb3+:Y2O3 ceramic laser,” Opt. Express 11(22), 2911–2916 (2003).
[CrossRef] [PubMed]

Takaichi, K.

A. Shirakawa, K. Takaichi, H. Yagi, J. Bisson, J. Lu, M. Musha, K. Ueda, T. Yanagitani, T. Petrov, and A. A. Kaminskii, “Diode-pumped mode-locked Yb3+:Y2O3 ceramic laser,” Opt. Express 11(22), 2911–2916 (2003).
[CrossRef] [PubMed]

J. Lu, J. F. Bisson, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Yb3+:Sc2O3 ceramic laser,” Appl. Phys. Lett. 83(6), 1101–1103 (2003).
[CrossRef]

Tevet, O.

O. Yeheskel and O. Tevet, “Elastic Moduli of transparent yttria,” J. Am. Ceram. Soc. 82(1), 136–144 (1999).
[CrossRef]

Ueda, K.

A. Shirakawa, K. Takaichi, H. Yagi, J. Bisson, J. Lu, M. Musha, K. Ueda, T. Yanagitani, T. Petrov, and A. A. Kaminskii, “Diode-pumped mode-locked Yb3+:Y2O3 ceramic laser,” Opt. Express 11(22), 2911–2916 (2003).
[CrossRef] [PubMed]

J. Lu, J. F. Bisson, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Yb3+:Sc2O3 ceramic laser,” Appl. Phys. Lett. 83(6), 1101–1103 (2003).
[CrossRef]

J. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, and A. A. Kaminskii, “Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics-a new generation of solid state laser and optical materials,” J. Alloy. Comp. 341(1-2), 220–225 (2002).
[CrossRef]

J. Lu, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Highly efficient 2% Nd:yttrium aluminum garnet ceramic laser,” Appl. Phys. Lett. 77(23), 3707–3709 (2000).
[CrossRef]

Uematsu, T.

J. Lu, J. F. Bisson, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Yb3+:Sc2O3 ceramic laser,” Appl. Phys. Lett. 83(6), 1101–1103 (2003).
[CrossRef]

Xu, J.

J. Lu, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Highly efficient 2% Nd:yttrium aluminum garnet ceramic laser,” Appl. Phys. Lett. 77(23), 3707–3709 (2000).
[CrossRef]

Yagi, H.

A. Shirakawa, K. Takaichi, H. Yagi, J. Bisson, J. Lu, M. Musha, K. Ueda, T. Yanagitani, T. Petrov, and A. A. Kaminskii, “Diode-pumped mode-locked Yb3+:Y2O3 ceramic laser,” Opt. Express 11(22), 2911–2916 (2003).
[CrossRef] [PubMed]

J. Lu, J. F. Bisson, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Yb3+:Sc2O3 ceramic laser,” Appl. Phys. Lett. 83(6), 1101–1103 (2003).
[CrossRef]

J. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, and A. A. Kaminskii, “Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics-a new generation of solid state laser and optical materials,” J. Alloy. Comp. 341(1-2), 220–225 (2002).
[CrossRef]

J. Lu, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Highly efficient 2% Nd:yttrium aluminum garnet ceramic laser,” Appl. Phys. Lett. 77(23), 3707–3709 (2000).
[CrossRef]

Yanagitani, T.

A. Shirakawa, K. Takaichi, H. Yagi, J. Bisson, J. Lu, M. Musha, K. Ueda, T. Yanagitani, T. Petrov, and A. A. Kaminskii, “Diode-pumped mode-locked Yb3+:Y2O3 ceramic laser,” Opt. Express 11(22), 2911–2916 (2003).
[CrossRef] [PubMed]

J. Lu, J. F. Bisson, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Yb3+:Sc2O3 ceramic laser,” Appl. Phys. Lett. 83(6), 1101–1103 (2003).
[CrossRef]

J. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, and A. A. Kaminskii, “Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics-a new generation of solid state laser and optical materials,” J. Alloy. Comp. 341(1-2), 220–225 (2002).
[CrossRef]

J. Lu, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Highly efficient 2% Nd:yttrium aluminum garnet ceramic laser,” Appl. Phys. Lett. 77(23), 3707–3709 (2000).
[CrossRef]

Yeheskel, O.

I. C. Albayrak, S. Basu, A. Sakulich, O. Yeheskel, and M. W. Barsoum, “Elastic and Mechanical Properties of polycrystalline transparent yttria determined by indentation techniques,” J. Am. Ceram. Soc. 93, 2028–2034 (2010).

O. Yeheskel and O. Tevet, “Elastic Moduli of transparent yttria,” J. Am. Ceram. Soc. 82(1), 136–144 (1999).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

J. Lu, J. F. Bisson, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Yb3+:Sc2O3 ceramic laser,” Appl. Phys. Lett. 83(6), 1101–1103 (2003).
[CrossRef]

J. Lu, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Highly efficient 2% Nd:yttrium aluminum garnet ceramic laser,” Appl. Phys. Lett. 77(23), 3707–3709 (2000).
[CrossRef]

J. Alloy. Comp.

J. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, and A. A. Kaminskii, “Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics-a new generation of solid state laser and optical materials,” J. Alloy. Comp. 341(1-2), 220–225 (2002).
[CrossRef]

J. Am. Ceram. Soc.

I. C. Albayrak, S. Basu, A. Sakulich, O. Yeheskel, and M. W. Barsoum, “Elastic and Mechanical Properties of polycrystalline transparent yttria determined by indentation techniques,” J. Am. Ceram. Soc. 93, 2028–2034 (2010).

O. Yeheskel and O. Tevet, “Elastic Moduli of transparent yttria,” J. Am. Ceram. Soc. 82(1), 136–144 (1999).
[CrossRef]

Opt. Express

Opt. Mater.

K. Petermann, L. Fornasiero, E. Mix, and V. Peters, “High melting sesquioxides: crystal growth, spectroscopy, and laser experiments,” Opt. Mater. 19(1), 67–71 (2002).
[CrossRef]

Prog. Quantum Electron.

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid state lasers: The case of Ytterbium doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[CrossRef]

Other

J. F. Nye, Physical Properties of Crystals (Clarendon Press, Oxford, 1957).

W. Tropf, M. Thomas, and T. Harris, “Properties of Crystals and Glasses”, in Handbook of Optics, v. II 2nd ed., M. Bass, Ed. In Chief, E. Van Stryland, D. Williams, and W. Wolfe, Assoc. Eds. (McGraw-Hill, 1995)

A. Feldman, D. Horowitz, R. M. Waxler, and M. J. Dodge, “Optical Material Characterization,” NBS Technical Note 993 (U. S. GPO, 1978).

R. Dekker and K. Worhoff, J. W. Stouwdam, and F. J. C. M, van Veggel and A. Driessen, “Absorption spectroscopy of complex rare earth ion doped hybrid materials over a broad wavelength range,” 7th International Conference on Photonics in Europe, 12-17 June 2005, Munich, Germany.

J. M. Ziman, Principles of the Theory of Solids, (Cambridge University Press, 1964.)

M. Born and E. Wolf, Principles of Optics,7th ed. (Cambridge University Press, 1999).

W. J. Tropf and D. C. Harris, “Mechancal, thermal, and optical properties of yttria and lanthana doped yttria,” Proceedings of the SPIE, v1112, pp. 9-19 (1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Refractive Indices of Er:Yttria

Fig. 2a
Fig. 2a

Refractive Index vs. Er concentration, 0.56 μ −0.7 μ

Fig. 2b
Fig. 2b

Refractive Index vs. Er concentration, 0.75 μ −1.15 μ

Fig. 2c
Fig. 2c

Refractive Index vs. Er concentration, 1.2 μ −3.2 μ

Fig. 2d
Fig. 2d

Refractive Index vs. Er concentration, 3.4 μ −5.2 μ

Fig. 3a
Fig. 3a

Refractive Index vs. Temperature 0.45-1.064 μ Undoped Yttria

Fig. 3b
Fig. 3b

Refractive Index vs. Temperature 5% Er:Yttria

Fig. 3c
Fig. 3c

Refractive Index vs. Temperature 10% Er:Yttria

Fig. 3d
Fig. 3d

Refractive Index vs. Temperature 20% Er:Yttria

Tables (2)

Tables Icon

Table 1 Prism Apex angles and Lorentz parameters for Er3+ doped ceramic Yttria

Tables Icon

Table 2 Temperature dependence of the refractive index, X10−5 (Co)−1

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δn= n ε Δε+ n α Δα= 1 2 ( cos( ε+α 2 ) sin( α 2 ) Δε sin( ε 2 ) sin 2 ( α 2 ) Δα)
n 2 1= A λ 2 λ 2 B + C λ 2 ( λ 2 D) ( λ 2 D) 2 +E λ 2 F λ 2
dn dT meas = dn d T σ = ( n 2 +2)( n 2 1) 6n [ 1 α e α e T 3 α T ( 1+ ρ α e α e ρ ) ]
( n T ) ε = ( n T ) meas + α T ( n 2 +2 )( n 2 1) ) 2n ( 1+ ρ α e α e ρ )
χ= ( n T ) ε + n o 3 α T ( C r ' + C θ ' )+( n o 1)(1+ν) α T ± n o 3 α T ( C r ' C θ ' )

Metrics