Abstract

In this paper, we report an active Q-switching of an erbium-doped fiber laser with special modulation functions and novel laser geometry. We experimentally demonstrate that using such a smart Q-switch approach, Q-switch ripple-free pulses with Gaussian-like shape and 17.3 ns width can be easily obtained. The idea behind the smart Q-switch is to suppress one of two laser waves contra-propagating along the fiber cavity, which arises after Q-cell opening, and to eliminate the minor sub-pulses.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Cascante-Vindas, A. Díez, J. L. Cruz, and M. V. Andrés, “Supercontinuum Q-switched Yb fiber laser using an intracavity microstructured fiber,” Opt. Lett. 34(23), 3628–3630 (2009).
    [CrossRef] [PubMed]
  2. W. Shi, M. A. Leigh, J. Zong, Z. Yao, D. T. Nguyen, A. Chavez-Pirson, and N. Peyghambarian, “High-power all-fiber-based narrow-linewidth single-mode fiber laser pulses in the C-band and frequency conversion to THz generation,” IEEE J. Sel. Top. Quantum Electron. 15(2), 377–384 (2009).
    [CrossRef]
  3. C. Cuadrado-Laborde, P. Pérez-Millán, M. V. Andrés, A. Díez, J. L. Cruz, and Y. O. Barmenkov, “Transform-limited pulses generated by an actively Q-switched distributed fiber laser,” Opt. Lett. 33(22), 2590–2592 (2008).
    [CrossRef] [PubMed]
  4. S. Adachi and Y. Koyamada, “Analysis and design of Q-switched erbium-doped fiber lasers and their application to OTDR,” J. Lightwave Technol. 20(8), 1506–1511 (2002).
    [CrossRef]
  5. R. J. De Young and N. P. Barnes, “Profiling atmospheric water vapor using a fiber laser lidar system,” Appl. Opt. 49(4), 562–567 (2010).
    [CrossRef] [PubMed]
  6. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. B 27(11), B63–B92 (2010).
    [CrossRef]
  7. S. A. Kolpakov, Y. O. Barmenkov, A. D. Guzman-Chavez, A. V. Kir’yanov, J. L. Cruz, A. Díez, and M. V. Andrés, “Distributed Model for Actively Q-Switched Erbium-Doped Fiber Lasers,” IEEE J. Quantum Electron. 47(7), 928–934 (2011).
    [CrossRef]
  8. Y. Wang and C.-Q. Xu, “Switching-induced perturbation and influence on actively Q-switched fiber lasers,” IEEE J. Quantum Electron. 40(11), 1583–1596 (2004).
    [CrossRef]
  9. A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999), Chap. 2.
  10. M. J. F. Digonnet, ed., Rare-earth-doped fiber lasers and amplifiers, 2nd ed. (Marcel Dekker, 2001, p. 568).
  11. V. Gapontsev, V. Fomin, A. Ount, and I. Samartsev, “100 kW ytterbium fiber laser,” Proc. SPIE 3613, 49–54 (1999).
    [CrossRef]
  12. R. Xin and J. D. Zuegel, “Amplifying nanosecond optical pulses at 1053 nm with an all-fiber regenerative amplifier,” Opt. Lett. 36(14), 2605–2607 (2011).
    [CrossRef] [PubMed]

2011 (2)

S. A. Kolpakov, Y. O. Barmenkov, A. D. Guzman-Chavez, A. V. Kir’yanov, J. L. Cruz, A. Díez, and M. V. Andrés, “Distributed Model for Actively Q-Switched Erbium-Doped Fiber Lasers,” IEEE J. Quantum Electron. 47(7), 928–934 (2011).
[CrossRef]

R. Xin and J. D. Zuegel, “Amplifying nanosecond optical pulses at 1053 nm with an all-fiber regenerative amplifier,” Opt. Lett. 36(14), 2605–2607 (2011).
[CrossRef] [PubMed]

2010 (2)

2009 (2)

J. Cascante-Vindas, A. Díez, J. L. Cruz, and M. V. Andrés, “Supercontinuum Q-switched Yb fiber laser using an intracavity microstructured fiber,” Opt. Lett. 34(23), 3628–3630 (2009).
[CrossRef] [PubMed]

W. Shi, M. A. Leigh, J. Zong, Z. Yao, D. T. Nguyen, A. Chavez-Pirson, and N. Peyghambarian, “High-power all-fiber-based narrow-linewidth single-mode fiber laser pulses in the C-band and frequency conversion to THz generation,” IEEE J. Sel. Top. Quantum Electron. 15(2), 377–384 (2009).
[CrossRef]

2008 (1)

2004 (1)

Y. Wang and C.-Q. Xu, “Switching-induced perturbation and influence on actively Q-switched fiber lasers,” IEEE J. Quantum Electron. 40(11), 1583–1596 (2004).
[CrossRef]

2002 (1)

1999 (1)

V. Gapontsev, V. Fomin, A. Ount, and I. Samartsev, “100 kW ytterbium fiber laser,” Proc. SPIE 3613, 49–54 (1999).
[CrossRef]

Adachi, S.

Andrés, M. V.

Barmenkov, Y. O.

S. A. Kolpakov, Y. O. Barmenkov, A. D. Guzman-Chavez, A. V. Kir’yanov, J. L. Cruz, A. Díez, and M. V. Andrés, “Distributed Model for Actively Q-Switched Erbium-Doped Fiber Lasers,” IEEE J. Quantum Electron. 47(7), 928–934 (2011).
[CrossRef]

C. Cuadrado-Laborde, P. Pérez-Millán, M. V. Andrés, A. Díez, J. L. Cruz, and Y. O. Barmenkov, “Transform-limited pulses generated by an actively Q-switched distributed fiber laser,” Opt. Lett. 33(22), 2590–2592 (2008).
[CrossRef] [PubMed]

Barnes, N. P.

Cascante-Vindas, J.

Chavez-Pirson, A.

W. Shi, M. A. Leigh, J. Zong, Z. Yao, D. T. Nguyen, A. Chavez-Pirson, and N. Peyghambarian, “High-power all-fiber-based narrow-linewidth single-mode fiber laser pulses in the C-band and frequency conversion to THz generation,” IEEE J. Sel. Top. Quantum Electron. 15(2), 377–384 (2009).
[CrossRef]

Clarkson, W. A.

Cruz, J. L.

Cuadrado-Laborde, C.

De Young, R. J.

Díez, A.

Fomin, V.

V. Gapontsev, V. Fomin, A. Ount, and I. Samartsev, “100 kW ytterbium fiber laser,” Proc. SPIE 3613, 49–54 (1999).
[CrossRef]

Gapontsev, V.

V. Gapontsev, V. Fomin, A. Ount, and I. Samartsev, “100 kW ytterbium fiber laser,” Proc. SPIE 3613, 49–54 (1999).
[CrossRef]

Guzman-Chavez, A. D.

S. A. Kolpakov, Y. O. Barmenkov, A. D. Guzman-Chavez, A. V. Kir’yanov, J. L. Cruz, A. Díez, and M. V. Andrés, “Distributed Model for Actively Q-Switched Erbium-Doped Fiber Lasers,” IEEE J. Quantum Electron. 47(7), 928–934 (2011).
[CrossRef]

Kir’yanov, A. V.

S. A. Kolpakov, Y. O. Barmenkov, A. D. Guzman-Chavez, A. V. Kir’yanov, J. L. Cruz, A. Díez, and M. V. Andrés, “Distributed Model for Actively Q-Switched Erbium-Doped Fiber Lasers,” IEEE J. Quantum Electron. 47(7), 928–934 (2011).
[CrossRef]

Kolpakov, S. A.

S. A. Kolpakov, Y. O. Barmenkov, A. D. Guzman-Chavez, A. V. Kir’yanov, J. L. Cruz, A. Díez, and M. V. Andrés, “Distributed Model for Actively Q-Switched Erbium-Doped Fiber Lasers,” IEEE J. Quantum Electron. 47(7), 928–934 (2011).
[CrossRef]

Koyamada, Y.

Leigh, M. A.

W. Shi, M. A. Leigh, J. Zong, Z. Yao, D. T. Nguyen, A. Chavez-Pirson, and N. Peyghambarian, “High-power all-fiber-based narrow-linewidth single-mode fiber laser pulses in the C-band and frequency conversion to THz generation,” IEEE J. Sel. Top. Quantum Electron. 15(2), 377–384 (2009).
[CrossRef]

Nguyen, D. T.

W. Shi, M. A. Leigh, J. Zong, Z. Yao, D. T. Nguyen, A. Chavez-Pirson, and N. Peyghambarian, “High-power all-fiber-based narrow-linewidth single-mode fiber laser pulses in the C-band and frequency conversion to THz generation,” IEEE J. Sel. Top. Quantum Electron. 15(2), 377–384 (2009).
[CrossRef]

Nilsson, J.

Ount, A.

V. Gapontsev, V. Fomin, A. Ount, and I. Samartsev, “100 kW ytterbium fiber laser,” Proc. SPIE 3613, 49–54 (1999).
[CrossRef]

Pérez-Millán, P.

Peyghambarian, N.

W. Shi, M. A. Leigh, J. Zong, Z. Yao, D. T. Nguyen, A. Chavez-Pirson, and N. Peyghambarian, “High-power all-fiber-based narrow-linewidth single-mode fiber laser pulses in the C-band and frequency conversion to THz generation,” IEEE J. Sel. Top. Quantum Electron. 15(2), 377–384 (2009).
[CrossRef]

Richardson, D. J.

Samartsev, I.

V. Gapontsev, V. Fomin, A. Ount, and I. Samartsev, “100 kW ytterbium fiber laser,” Proc. SPIE 3613, 49–54 (1999).
[CrossRef]

Shi, W.

W. Shi, M. A. Leigh, J. Zong, Z. Yao, D. T. Nguyen, A. Chavez-Pirson, and N. Peyghambarian, “High-power all-fiber-based narrow-linewidth single-mode fiber laser pulses in the C-band and frequency conversion to THz generation,” IEEE J. Sel. Top. Quantum Electron. 15(2), 377–384 (2009).
[CrossRef]

Wang, Y.

Y. Wang and C.-Q. Xu, “Switching-induced perturbation and influence on actively Q-switched fiber lasers,” IEEE J. Quantum Electron. 40(11), 1583–1596 (2004).
[CrossRef]

Xin, R.

Xu, C.-Q.

Y. Wang and C.-Q. Xu, “Switching-induced perturbation and influence on actively Q-switched fiber lasers,” IEEE J. Quantum Electron. 40(11), 1583–1596 (2004).
[CrossRef]

Yao, Z.

W. Shi, M. A. Leigh, J. Zong, Z. Yao, D. T. Nguyen, A. Chavez-Pirson, and N. Peyghambarian, “High-power all-fiber-based narrow-linewidth single-mode fiber laser pulses in the C-band and frequency conversion to THz generation,” IEEE J. Sel. Top. Quantum Electron. 15(2), 377–384 (2009).
[CrossRef]

Zong, J.

W. Shi, M. A. Leigh, J. Zong, Z. Yao, D. T. Nguyen, A. Chavez-Pirson, and N. Peyghambarian, “High-power all-fiber-based narrow-linewidth single-mode fiber laser pulses in the C-band and frequency conversion to THz generation,” IEEE J. Sel. Top. Quantum Electron. 15(2), 377–384 (2009).
[CrossRef]

Zuegel, J. D.

Appl. Opt. (1)

IEEE J. Quantum Electron. (2)

S. A. Kolpakov, Y. O. Barmenkov, A. D. Guzman-Chavez, A. V. Kir’yanov, J. L. Cruz, A. Díez, and M. V. Andrés, “Distributed Model for Actively Q-Switched Erbium-Doped Fiber Lasers,” IEEE J. Quantum Electron. 47(7), 928–934 (2011).
[CrossRef]

Y. Wang and C.-Q. Xu, “Switching-induced perturbation and influence on actively Q-switched fiber lasers,” IEEE J. Quantum Electron. 40(11), 1583–1596 (2004).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

W. Shi, M. A. Leigh, J. Zong, Z. Yao, D. T. Nguyen, A. Chavez-Pirson, and N. Peyghambarian, “High-power all-fiber-based narrow-linewidth single-mode fiber laser pulses in the C-band and frequency conversion to THz generation,” IEEE J. Sel. Top. Quantum Electron. 15(2), 377–384 (2009).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Opt. Lett. (3)

Proc. SPIE (1)

V. Gapontsev, V. Fomin, A. Ount, and I. Samartsev, “100 kW ytterbium fiber laser,” Proc. SPIE 3613, 49–54 (1999).
[CrossRef]

Other (2)

A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999), Chap. 2.

M. J. F. Digonnet, ed., Rare-earth-doped fiber lasers and amplifiers, 2nd ed. (Marcel Dekker, 2001, p. 568).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of QS-FL. Crosses indicate the fiber splices.

Fig. 2
Fig. 2

AOM switching process. The upper graph shows the signal applied to the AOM driver.

Fig. 3
Fig. 3

Experimental QS-pulses normalized to peak power of sub-pulse 2b. The insets show the shapes of the signal applied to the AOM driver. All pulses were measured from the right laser output (Output 2, see Fig. 1). The values of peak power of some sub-pulses are indicated.

Fig. 4
Fig. 4

Diagram showing how the wave-1 travels through the cavity. Due to the delay introduced by the AOM, the pulses’ maxima (see Fig. 3(a)) are slightly delayed with respect to the moments indicated in the diagram.

Fig. 5
Fig. 5

Gaussian-like shape of the QS pulse emitted when the AOM is opened in two short steps. Curve 1 (solid line) corresponds to the experimental pulse and curve 2 (dashed line) to the best fit. The residual sum R2 = 0.989.

Fig. 6
Fig. 6

Peak pulse power (curve 1) and pulse width (curve 2) as a function of repetition rate of two-step Q-switch driven by the signal shown in the inset to Fig. 3(c).

Metrics