Abstract

A strain-balanced, Al0.78In0.22As/In0.72Ga0.28As/InP quantum cascade laser structure, designed for light emission at 4.7µm using the non-resonant extraction design approach, was grown by molecular beam epitaxy. Laser devices were processed in tapered buried heterostructure geometry and then mounted on AlN/SiC composite submounts using hard solder. A 10 mm long laser with 7.5µm-wide central section tapered up to 20µm at laser facets generated over 4.5W of single-ended CW/RT optical power at 283K. Maximum wallplug efficiency of 16.3% for this laser was reached at 4W level. Reliability of over 2,000h has been demonstrated for an air-cooled system delivering optical power of 3W in a collimated beam with overall system efficiency exceeding 10%.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Maulini, A. Lyakh, A. Tsekoun, C. Kumar, and N. Patel, “λ~7.1 μm quantum cascade lasers with 19% wall-plug efficiency at room temperature,” Opt. Express 19(18), 17203 (2011).
    [CrossRef]
  2. Y. Bai, N. Bandyopadhayay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
    [CrossRef]
  3. A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).
    [CrossRef]
  4. D. Botez, S. Kumar, J. C. Shin, L. J. Mawst, I. Vurgaftman, and J. R. Meyer, “Temperature dependence of key electro-optical characteristics for midinfrared emitting quantum cascade lasers,” Appl. Phys. Lett. 97(7), 071101 (2010).
    [CrossRef]
  5. W. Masselink, M. Semtsiv, S. Dressler, M. Ziegler, and M. Wienold, “Physics, growth, and performance of (In, Ga)As-AlP/InP quantum-cascade lasers emitting at λ<4μm,” Phys. Status Solidi B 244(8), 2906–2915 (2007).
    [CrossRef]
  6. A. Wittmann, Y. Bonetti, J. Faist, E. Gini, and M. Giovannini, “Intersubband linewidth in quantum cascade laser design,” Appl. Phys. Lett. 93(14), 141103 (2008).
    [CrossRef]
  7. A. Lyakh, R. Maulini, and A. Tsekoun, C. Kumar N. Patel, L. Diehl, C. Pflügl, Q. Wang and F. Capasso, U. S. Patent #8,014,430 (September 6, 2011).
  8. M. Troccoli, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Mid-infrared (λ≈7.4μm) quantum cascade laser amplifier for high power single-mode emission and improved beam quality,” Appl. Phys. Lett. 80(22), 4103 (2002).
    [CrossRef]
  9. S. Menzel, L. Diehl, C. Pflügl, A. Goyal, C. Wang, A. Sanchez, G. Turner, and F. Capasso, “Quantum cascade laser master-oscillator power-amplifier with 1.5 W output power at 300 K,” Opt. Express 19(17), 16229–16235 (2011).
    [CrossRef] [PubMed]
  10. L. Nähle, J. Semmel, W. Kaiser, S. Höfling, and A. Forchel, “Tapered quantum cascade lasers,” Appl. Phys. Lett. 91(18), 181122 (2007).
    [CrossRef]
  11. W. Zhang, L. Wang, L. Li, J. Liu, F.-Q. Liu, and Z. Wang, “Small-divergence singlemode emitting tapered distributed feedback quantum cascade lasers,” Electron. Lett. 46(7), 528 (2010).
    [CrossRef]
  12. A. Tsekoun, R. Go, M. Pushkarsky, M. Razeghi, and C. K. N. Patel, “Improved performance of quantum cascade lasers through a scalable, manufacturable epitaxial-side-down mounting process,” Proc. Natl. Acad. Sci. U.S.A. 103(13), 4831–4835 (2006).
    [CrossRef] [PubMed]
  13. C. K. N. Patel, A. Lyakh, A. Tsekoun, and R. Maulini, U.S. Patent #8,068,524 (November 29, 2011).
  14. N. Yu, L. Diehl, E. Cubukcu, C. Pflügl, D. Bour, S. Corzine, J. Zhu, G. Höfler, K. B. Crozier, and F. Capasso, “Near-field imaging of quantum cascade laser transverse modes,” Opt. Express 15(20), 13227–13235 (2007).
    [CrossRef] [PubMed]

2011 (3)

2010 (2)

D. Botez, S. Kumar, J. C. Shin, L. J. Mawst, I. Vurgaftman, and J. R. Meyer, “Temperature dependence of key electro-optical characteristics for midinfrared emitting quantum cascade lasers,” Appl. Phys. Lett. 97(7), 071101 (2010).
[CrossRef]

W. Zhang, L. Wang, L. Li, J. Liu, F.-Q. Liu, and Z. Wang, “Small-divergence singlemode emitting tapered distributed feedback quantum cascade lasers,” Electron. Lett. 46(7), 528 (2010).
[CrossRef]

2009 (1)

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).
[CrossRef]

2008 (1)

A. Wittmann, Y. Bonetti, J. Faist, E. Gini, and M. Giovannini, “Intersubband linewidth in quantum cascade laser design,” Appl. Phys. Lett. 93(14), 141103 (2008).
[CrossRef]

2007 (3)

L. Nähle, J. Semmel, W. Kaiser, S. Höfling, and A. Forchel, “Tapered quantum cascade lasers,” Appl. Phys. Lett. 91(18), 181122 (2007).
[CrossRef]

W. Masselink, M. Semtsiv, S. Dressler, M. Ziegler, and M. Wienold, “Physics, growth, and performance of (In, Ga)As-AlP/InP quantum-cascade lasers emitting at λ<4μm,” Phys. Status Solidi B 244(8), 2906–2915 (2007).
[CrossRef]

N. Yu, L. Diehl, E. Cubukcu, C. Pflügl, D. Bour, S. Corzine, J. Zhu, G. Höfler, K. B. Crozier, and F. Capasso, “Near-field imaging of quantum cascade laser transverse modes,” Opt. Express 15(20), 13227–13235 (2007).
[CrossRef] [PubMed]

2006 (1)

A. Tsekoun, R. Go, M. Pushkarsky, M. Razeghi, and C. K. N. Patel, “Improved performance of quantum cascade lasers through a scalable, manufacturable epitaxial-side-down mounting process,” Proc. Natl. Acad. Sci. U.S.A. 103(13), 4831–4835 (2006).
[CrossRef] [PubMed]

2002 (1)

M. Troccoli, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Mid-infrared (λ≈7.4μm) quantum cascade laser amplifier for high power single-mode emission and improved beam quality,” Appl. Phys. Lett. 80(22), 4103 (2002).
[CrossRef]

Bai, Y.

Y. Bai, N. Bandyopadhayay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[CrossRef]

Bandyopadhayay, N.

Y. Bai, N. Bandyopadhayay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[CrossRef]

Bonetti, Y.

A. Wittmann, Y. Bonetti, J. Faist, E. Gini, and M. Giovannini, “Intersubband linewidth in quantum cascade laser design,” Appl. Phys. Lett. 93(14), 141103 (2008).
[CrossRef]

Botez, D.

D. Botez, S. Kumar, J. C. Shin, L. J. Mawst, I. Vurgaftman, and J. R. Meyer, “Temperature dependence of key electro-optical characteristics for midinfrared emitting quantum cascade lasers,” Appl. Phys. Lett. 97(7), 071101 (2010).
[CrossRef]

Bour, D.

Capasso, F.

S. Menzel, L. Diehl, C. Pflügl, A. Goyal, C. Wang, A. Sanchez, G. Turner, and F. Capasso, “Quantum cascade laser master-oscillator power-amplifier with 1.5 W output power at 300 K,” Opt. Express 19(17), 16229–16235 (2011).
[CrossRef] [PubMed]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).
[CrossRef]

N. Yu, L. Diehl, E. Cubukcu, C. Pflügl, D. Bour, S. Corzine, J. Zhu, G. Höfler, K. B. Crozier, and F. Capasso, “Near-field imaging of quantum cascade laser transverse modes,” Opt. Express 15(20), 13227–13235 (2007).
[CrossRef] [PubMed]

M. Troccoli, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Mid-infrared (λ≈7.4μm) quantum cascade laser amplifier for high power single-mode emission and improved beam quality,” Appl. Phys. Lett. 80(22), 4103 (2002).
[CrossRef]

Cho, A. Y.

M. Troccoli, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Mid-infrared (λ≈7.4μm) quantum cascade laser amplifier for high power single-mode emission and improved beam quality,” Appl. Phys. Lett. 80(22), 4103 (2002).
[CrossRef]

Corzine, S.

Crozier, K. B.

Cubukcu, E.

Diehl, L.

Dressler, S.

W. Masselink, M. Semtsiv, S. Dressler, M. Ziegler, and M. Wienold, “Physics, growth, and performance of (In, Ga)As-AlP/InP quantum-cascade lasers emitting at λ<4μm,” Phys. Status Solidi B 244(8), 2906–2915 (2007).
[CrossRef]

Faist, J.

A. Wittmann, Y. Bonetti, J. Faist, E. Gini, and M. Giovannini, “Intersubband linewidth in quantum cascade laser design,” Appl. Phys. Lett. 93(14), 141103 (2008).
[CrossRef]

Forchel, A.

L. Nähle, J. Semmel, W. Kaiser, S. Höfling, and A. Forchel, “Tapered quantum cascade lasers,” Appl. Phys. Lett. 91(18), 181122 (2007).
[CrossRef]

Gini, E.

A. Wittmann, Y. Bonetti, J. Faist, E. Gini, and M. Giovannini, “Intersubband linewidth in quantum cascade laser design,” Appl. Phys. Lett. 93(14), 141103 (2008).
[CrossRef]

Giovannini, M.

A. Wittmann, Y. Bonetti, J. Faist, E. Gini, and M. Giovannini, “Intersubband linewidth in quantum cascade laser design,” Appl. Phys. Lett. 93(14), 141103 (2008).
[CrossRef]

Gmachl, C.

M. Troccoli, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Mid-infrared (λ≈7.4μm) quantum cascade laser amplifier for high power single-mode emission and improved beam quality,” Appl. Phys. Lett. 80(22), 4103 (2002).
[CrossRef]

Go, R.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).
[CrossRef]

A. Tsekoun, R. Go, M. Pushkarsky, M. Razeghi, and C. K. N. Patel, “Improved performance of quantum cascade lasers through a scalable, manufacturable epitaxial-side-down mounting process,” Proc. Natl. Acad. Sci. U.S.A. 103(13), 4831–4835 (2006).
[CrossRef] [PubMed]

Goyal, A.

Höfler, G.

Höfling, S.

L. Nähle, J. Semmel, W. Kaiser, S. Höfling, and A. Forchel, “Tapered quantum cascade lasers,” Appl. Phys. Lett. 91(18), 181122 (2007).
[CrossRef]

Kaiser, W.

L. Nähle, J. Semmel, W. Kaiser, S. Höfling, and A. Forchel, “Tapered quantum cascade lasers,” Appl. Phys. Lett. 91(18), 181122 (2007).
[CrossRef]

Kumar, C.

Kumar, S.

D. Botez, S. Kumar, J. C. Shin, L. J. Mawst, I. Vurgaftman, and J. R. Meyer, “Temperature dependence of key electro-optical characteristics for midinfrared emitting quantum cascade lasers,” Appl. Phys. Lett. 97(7), 071101 (2010).
[CrossRef]

Li, L.

W. Zhang, L. Wang, L. Li, J. Liu, F.-Q. Liu, and Z. Wang, “Small-divergence singlemode emitting tapered distributed feedback quantum cascade lasers,” Electron. Lett. 46(7), 528 (2010).
[CrossRef]

Liu, F.-Q.

W. Zhang, L. Wang, L. Li, J. Liu, F.-Q. Liu, and Z. Wang, “Small-divergence singlemode emitting tapered distributed feedback quantum cascade lasers,” Electron. Lett. 46(7), 528 (2010).
[CrossRef]

Liu, J.

W. Zhang, L. Wang, L. Li, J. Liu, F.-Q. Liu, and Z. Wang, “Small-divergence singlemode emitting tapered distributed feedback quantum cascade lasers,” Electron. Lett. 46(7), 528 (2010).
[CrossRef]

Lyakh, A.

R. Maulini, A. Lyakh, A. Tsekoun, C. Kumar, and N. Patel, “λ~7.1 μm quantum cascade lasers with 19% wall-plug efficiency at room temperature,” Opt. Express 19(18), 17203 (2011).
[CrossRef]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).
[CrossRef]

Masselink, W.

W. Masselink, M. Semtsiv, S. Dressler, M. Ziegler, and M. Wienold, “Physics, growth, and performance of (In, Ga)As-AlP/InP quantum-cascade lasers emitting at λ<4μm,” Phys. Status Solidi B 244(8), 2906–2915 (2007).
[CrossRef]

Maulini, R.

R. Maulini, A. Lyakh, A. Tsekoun, C. Kumar, and N. Patel, “λ~7.1 μm quantum cascade lasers with 19% wall-plug efficiency at room temperature,” Opt. Express 19(18), 17203 (2011).
[CrossRef]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).
[CrossRef]

Mawst, L. J.

D. Botez, S. Kumar, J. C. Shin, L. J. Mawst, I. Vurgaftman, and J. R. Meyer, “Temperature dependence of key electro-optical characteristics for midinfrared emitting quantum cascade lasers,” Appl. Phys. Lett. 97(7), 071101 (2010).
[CrossRef]

Menzel, S.

Meyer, J. R.

D. Botez, S. Kumar, J. C. Shin, L. J. Mawst, I. Vurgaftman, and J. R. Meyer, “Temperature dependence of key electro-optical characteristics for midinfrared emitting quantum cascade lasers,” Appl. Phys. Lett. 97(7), 071101 (2010).
[CrossRef]

Nähle, L.

L. Nähle, J. Semmel, W. Kaiser, S. Höfling, and A. Forchel, “Tapered quantum cascade lasers,” Appl. Phys. Lett. 91(18), 181122 (2007).
[CrossRef]

Patel, C. K. N.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).
[CrossRef]

A. Tsekoun, R. Go, M. Pushkarsky, M. Razeghi, and C. K. N. Patel, “Improved performance of quantum cascade lasers through a scalable, manufacturable epitaxial-side-down mounting process,” Proc. Natl. Acad. Sci. U.S.A. 103(13), 4831–4835 (2006).
[CrossRef] [PubMed]

Patel, N.

Pflügl, C.

Pushkarsky, M.

A. Tsekoun, R. Go, M. Pushkarsky, M. Razeghi, and C. K. N. Patel, “Improved performance of quantum cascade lasers through a scalable, manufacturable epitaxial-side-down mounting process,” Proc. Natl. Acad. Sci. U.S.A. 103(13), 4831–4835 (2006).
[CrossRef] [PubMed]

Razeghi, M.

Y. Bai, N. Bandyopadhayay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[CrossRef]

A. Tsekoun, R. Go, M. Pushkarsky, M. Razeghi, and C. K. N. Patel, “Improved performance of quantum cascade lasers through a scalable, manufacturable epitaxial-side-down mounting process,” Proc. Natl. Acad. Sci. U.S.A. 103(13), 4831–4835 (2006).
[CrossRef] [PubMed]

Sanchez, A.

Semmel, J.

L. Nähle, J. Semmel, W. Kaiser, S. Höfling, and A. Forchel, “Tapered quantum cascade lasers,” Appl. Phys. Lett. 91(18), 181122 (2007).
[CrossRef]

Semtsiv, M.

W. Masselink, M. Semtsiv, S. Dressler, M. Ziegler, and M. Wienold, “Physics, growth, and performance of (In, Ga)As-AlP/InP quantum-cascade lasers emitting at λ<4μm,” Phys. Status Solidi B 244(8), 2906–2915 (2007).
[CrossRef]

Shin, J. C.

D. Botez, S. Kumar, J. C. Shin, L. J. Mawst, I. Vurgaftman, and J. R. Meyer, “Temperature dependence of key electro-optical characteristics for midinfrared emitting quantum cascade lasers,” Appl. Phys. Lett. 97(7), 071101 (2010).
[CrossRef]

Sivco, D. L.

M. Troccoli, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Mid-infrared (λ≈7.4μm) quantum cascade laser amplifier for high power single-mode emission and improved beam quality,” Appl. Phys. Lett. 80(22), 4103 (2002).
[CrossRef]

Slivken, S.

Y. Bai, N. Bandyopadhayay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[CrossRef]

Troccoli, M.

M. Troccoli, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Mid-infrared (λ≈7.4μm) quantum cascade laser amplifier for high power single-mode emission and improved beam quality,” Appl. Phys. Lett. 80(22), 4103 (2002).
[CrossRef]

Tsao, S.

Y. Bai, N. Bandyopadhayay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[CrossRef]

Tsekoun, A.

R. Maulini, A. Lyakh, A. Tsekoun, C. Kumar, and N. Patel, “λ~7.1 μm quantum cascade lasers with 19% wall-plug efficiency at room temperature,” Opt. Express 19(18), 17203 (2011).
[CrossRef]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).
[CrossRef]

A. Tsekoun, R. Go, M. Pushkarsky, M. Razeghi, and C. K. N. Patel, “Improved performance of quantum cascade lasers through a scalable, manufacturable epitaxial-side-down mounting process,” Proc. Natl. Acad. Sci. U.S.A. 103(13), 4831–4835 (2006).
[CrossRef] [PubMed]

Turner, G.

Vurgaftman, I.

D. Botez, S. Kumar, J. C. Shin, L. J. Mawst, I. Vurgaftman, and J. R. Meyer, “Temperature dependence of key electro-optical characteristics for midinfrared emitting quantum cascade lasers,” Appl. Phys. Lett. 97(7), 071101 (2010).
[CrossRef]

Wang, C.

Wang, L.

W. Zhang, L. Wang, L. Li, J. Liu, F.-Q. Liu, and Z. Wang, “Small-divergence singlemode emitting tapered distributed feedback quantum cascade lasers,” Electron. Lett. 46(7), 528 (2010).
[CrossRef]

Wang, Q. J.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).
[CrossRef]

Wang, Z.

W. Zhang, L. Wang, L. Li, J. Liu, F.-Q. Liu, and Z. Wang, “Small-divergence singlemode emitting tapered distributed feedback quantum cascade lasers,” Electron. Lett. 46(7), 528 (2010).
[CrossRef]

Wienold, M.

W. Masselink, M. Semtsiv, S. Dressler, M. Ziegler, and M. Wienold, “Physics, growth, and performance of (In, Ga)As-AlP/InP quantum-cascade lasers emitting at λ<4μm,” Phys. Status Solidi B 244(8), 2906–2915 (2007).
[CrossRef]

Wittmann, A.

A. Wittmann, Y. Bonetti, J. Faist, E. Gini, and M. Giovannini, “Intersubband linewidth in quantum cascade laser design,” Appl. Phys. Lett. 93(14), 141103 (2008).
[CrossRef]

Yu, N.

Zhang, W.

W. Zhang, L. Wang, L. Li, J. Liu, F.-Q. Liu, and Z. Wang, “Small-divergence singlemode emitting tapered distributed feedback quantum cascade lasers,” Electron. Lett. 46(7), 528 (2010).
[CrossRef]

Zhu, J.

Ziegler, M.

W. Masselink, M. Semtsiv, S. Dressler, M. Ziegler, and M. Wienold, “Physics, growth, and performance of (In, Ga)As-AlP/InP quantum-cascade lasers emitting at λ<4μm,” Phys. Status Solidi B 244(8), 2906–2915 (2007).
[CrossRef]

Appl. Phys. Lett. (6)

Y. Bai, N. Bandyopadhayay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[CrossRef]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).
[CrossRef]

D. Botez, S. Kumar, J. C. Shin, L. J. Mawst, I. Vurgaftman, and J. R. Meyer, “Temperature dependence of key electro-optical characteristics for midinfrared emitting quantum cascade lasers,” Appl. Phys. Lett. 97(7), 071101 (2010).
[CrossRef]

A. Wittmann, Y. Bonetti, J. Faist, E. Gini, and M. Giovannini, “Intersubband linewidth in quantum cascade laser design,” Appl. Phys. Lett. 93(14), 141103 (2008).
[CrossRef]

M. Troccoli, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Mid-infrared (λ≈7.4μm) quantum cascade laser amplifier for high power single-mode emission and improved beam quality,” Appl. Phys. Lett. 80(22), 4103 (2002).
[CrossRef]

L. Nähle, J. Semmel, W. Kaiser, S. Höfling, and A. Forchel, “Tapered quantum cascade lasers,” Appl. Phys. Lett. 91(18), 181122 (2007).
[CrossRef]

Electron. Lett. (1)

W. Zhang, L. Wang, L. Li, J. Liu, F.-Q. Liu, and Z. Wang, “Small-divergence singlemode emitting tapered distributed feedback quantum cascade lasers,” Electron. Lett. 46(7), 528 (2010).
[CrossRef]

Opt. Express (3)

Phys. Status Solidi B (1)

W. Masselink, M. Semtsiv, S. Dressler, M. Ziegler, and M. Wienold, “Physics, growth, and performance of (In, Ga)As-AlP/InP quantum-cascade lasers emitting at λ<4μm,” Phys. Status Solidi B 244(8), 2906–2915 (2007).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (1)

A. Tsekoun, R. Go, M. Pushkarsky, M. Razeghi, and C. K. N. Patel, “Improved performance of quantum cascade lasers through a scalable, manufacturable epitaxial-side-down mounting process,” Proc. Natl. Acad. Sci. U.S.A. 103(13), 4831–4835 (2006).
[CrossRef] [PubMed]

Other (2)

C. K. N. Patel, A. Lyakh, A. Tsekoun, and R. Maulini, U.S. Patent #8,068,524 (November 29, 2011).

A. Lyakh, R. Maulini, and A. Tsekoun, C. Kumar N. Patel, L. Diehl, C. Pflügl, Q. Wang and F. Capasso, U. S. Patent #8,014,430 (September 6, 2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Active region band diagram of the new design based on Al0.78In0.22As/In0.72Ga0.28As.

Fig. 2
Fig. 2

Schematic of a tapered waveguide QCL.

Fig. 3
Fig. 3

CW LIV of a hermetically packaged 10 mm long laser with 7.5µm-wide central section tapered up to 20 µm at laser facets mounted on AlN/SiC submounts. The laser temperature was set to 283K.

Fig. 4
Fig. 4

Beam of the hermetically packaged 10 mm long laser with 7.5µm-wide central section tapered up to 20 µm at laser facets mounted on AlN/SiC submounts. The laser current was set to 0.75A (see Fig. 3 for LIV). The laser temperature was set to 283K.

Fig. 5
Fig. 5

Reliability data with periodic hourly laser turn ons/offs to subject the QCL to a large thermal stress.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

γ 43 Ec 2 · Δ 2 · Λ 2 ·Σ ( ψ 4 2 ( Z k ) ψ 3 2 ( Z k ) ) 2

Metrics