Abstract

We report a Silicon nano-opto-mechanical device in which a nanomechanical doubly-clamped beam resonator is integrated to an optical microdisk cavity. Small flexural oscillations of the beam cause intensity modulations in the circulating optical field in the nearby microdisk cavity. By monitoring the corresponding fluctuations in the cavity transmission via a fiber-taper, one can detect these oscillations with a displacement sensitivity approaching 10 fm·Hz−1/2 at an input power level of 50 μW. Both the in-plane and out-of-plane fundamental flexural resonances of the beam can be read out by this approach — the latter being detectable due to broken planar symmetry in the system. Access to multiple mechanical modes of the same resonator may be useful in some applications and may enable interesting fundamental studies.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. L. Ekinci and M. L. Roukes, “Nanoelectromechanical systems,” Rev. Sci. Instrum. 76, 061101 (2005).
    [CrossRef]
  2. H. G. Craighead, “Nanoelectromechanical systems,” Science 290, 1532–1535 (2000).
    [CrossRef] [PubMed]
  3. J. Lawall and E. Kessler, “Michelson interferometry with 10 pm accuracy,” Rev. Sci. Instrum. 71, 2669–2676 (2000).
    [CrossRef]
  4. T. Kouh, D. Karabacak, D. H. Kim, and K. L. Ekinci, “Diffraction effects in optical interferometric displacement detection in nanoelectromechanical systems,” Appl. Phys. Lett. 86, 013106 (2005).
    [CrossRef]
  5. A. Xuereb, R. Schnabel, and K. Hammerer, “Dissipative optomechanics in a michelson-sagnac interferometer,” Phys. Rev. Lett. 107, 213604 (2011).
    [CrossRef] [PubMed]
  6. C. M. Hernandez, T. W. Murray, and S. Krishnaswamy, “Photoacoustic characterization of the mechanical properties of thin films,” Appl. Phys. Lett. 80, 691–693 (2002).
    [CrossRef]
  7. A. Sampathkumar, T. W. Murray, and K. L. Ekinci, “Photothermal operation of high frequency nanoelectromechanical systems,” Appl. Phys. Lett. 88, 223104 (2006).
    [CrossRef]
  8. O. Arcizet, P.-F. Cohadon, T. Briant, M. Pinard, and A. Heidmann, “Radiation-pressure cooling and optomechanical instability of a micromirror,” Nature 444, 71–74 (2006).
    [CrossRef] [PubMed]
  9. D. Kleckner and D. Bouwmeester, “Sub-kelvin optical cooling of a micromechanical resonator,” Nature 444, 75–78 (2006).
    [CrossRef] [PubMed]
  10. J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452, 72–75 (2008).
    [CrossRef] [PubMed]
  11. S. Groblacher, K. Hammerer, M. R. Vanner, and M. Aspelmeyer, “Observation of strong coupling between a micromechanical resonator and an optical cavity field,” Nature 460, 724–727 (2009).
    [CrossRef] [PubMed]
  12. I. Favero, S. Stapfner, D. Hunger, P. Paulitschke, J. Reichel, H. Lorenz, E. M. Weig, and K. Karrai, “Fluctuating nanomechanical system in a high finesse optical microcavity,” Opt. Express 17, 12813–12820 (2009).
    [CrossRef] [PubMed]
  13. D. W. Carr, S. Evoy, L. Sekaric, H. G. Craighead, and J. M. Parpia, “Measurement of mechanical resonance and losses in nanometer scale silicon wires,” Appl. Phys. Lett. 75, 920–922 (1999).
    [CrossRef]
  14. D. Karabacak, T. Kouh, and K. L. Ekinci, “Analysis of optical interferometric displacement detection in nanoelectromechanical systems,” J. Appl. Phys. 98, 124309 (2005).
    [CrossRef]
  15. I. D. Vlaminck, J. Roels, D. Taillaert, D. V. Thourhout, R. Baets, L. Lagae, and G. Borghs, “Detection of nanomechanical motion by evanescent light wave coupling,” Appl. Phys. Lett. 90, 233116 (2007).
    [CrossRef]
  16. M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456, 480–484 (2008).
    [CrossRef] [PubMed]
  17. J. Roels, I. De Vlaminck, L. Lagae, B. Maes, D. Van Thourhout, and R. Baets, “Tunable optical forces between nanophotonic waveguides,” Nature Nanotech. 4, 510–513 (2009).
    [CrossRef]
  18. O. Basarir, S. Bramhavar, G. Basilio-Sanchez, T. Morse, and K. L. Ekinci, “Sensitive micromechanical displacement detection by scattering evanescent optical waves,” Opt. Lett. 35, 1792–1794 (2010).
    [CrossRef] [PubMed]
  19. O. Basarir, S. Bramhavar, and K. L. Ekinci, “Near-field optical transducer for nanomechanical resonators,” Appl. Phys. Lett. 97, 253114 (2010).
    [CrossRef]
  20. T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: Back-action at the mesoscale,” Science 321, 1172–1176 (2008).
    [CrossRef] [PubMed]
  21. M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459, 550–555 (2009).
    [CrossRef] [PubMed]
  22. M. Li, W. H. P. Pernice, and H. X. Tang, “Reactive cavity optical force on microdisk-coupled nanomechanical beam waveguides,” Phys. Rev. Lett. 103, 223901 (2009).
    [CrossRef]
  23. Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103, 103601 (2009).
    [CrossRef] [PubMed]
  24. K. Srinivasan, H. Miao, M. T. Rakher, M. Davanco, and V. Aksyuk, “Optomechanical transduction of an integrated silicon cantilever probe using a microdisk resonator,” Nano Letters 11, 791–797 (2011).
    [CrossRef] [PubMed]
  25. G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Riviere, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nature Phys. 5, 909–914 (2009).
    [CrossRef]
  26. G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462, 633–636 (2009).
    [CrossRef] [PubMed]

2011 (2)

A. Xuereb, R. Schnabel, and K. Hammerer, “Dissipative optomechanics in a michelson-sagnac interferometer,” Phys. Rev. Lett. 107, 213604 (2011).
[CrossRef] [PubMed]

K. Srinivasan, H. Miao, M. T. Rakher, M. Davanco, and V. Aksyuk, “Optomechanical transduction of an integrated silicon cantilever probe using a microdisk resonator,” Nano Letters 11, 791–797 (2011).
[CrossRef] [PubMed]

2010 (2)

2009 (8)

J. Roels, I. De Vlaminck, L. Lagae, B. Maes, D. Van Thourhout, and R. Baets, “Tunable optical forces between nanophotonic waveguides,” Nature Nanotech. 4, 510–513 (2009).
[CrossRef]

I. Favero, S. Stapfner, D. Hunger, P. Paulitschke, J. Reichel, H. Lorenz, E. M. Weig, and K. Karrai, “Fluctuating nanomechanical system in a high finesse optical microcavity,” Opt. Express 17, 12813–12820 (2009).
[CrossRef] [PubMed]

S. Groblacher, K. Hammerer, M. R. Vanner, and M. Aspelmeyer, “Observation of strong coupling between a micromechanical resonator and an optical cavity field,” Nature 460, 724–727 (2009).
[CrossRef] [PubMed]

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459, 550–555 (2009).
[CrossRef] [PubMed]

M. Li, W. H. P. Pernice, and H. X. Tang, “Reactive cavity optical force on microdisk-coupled nanomechanical beam waveguides,” Phys. Rev. Lett. 103, 223901 (2009).
[CrossRef]

Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103, 103601 (2009).
[CrossRef] [PubMed]

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Riviere, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nature Phys. 5, 909–914 (2009).
[CrossRef]

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462, 633–636 (2009).
[CrossRef] [PubMed]

2008 (3)

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: Back-action at the mesoscale,” Science 321, 1172–1176 (2008).
[CrossRef] [PubMed]

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452, 72–75 (2008).
[CrossRef] [PubMed]

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456, 480–484 (2008).
[CrossRef] [PubMed]

2007 (1)

I. D. Vlaminck, J. Roels, D. Taillaert, D. V. Thourhout, R. Baets, L. Lagae, and G. Borghs, “Detection of nanomechanical motion by evanescent light wave coupling,” Appl. Phys. Lett. 90, 233116 (2007).
[CrossRef]

2006 (3)

A. Sampathkumar, T. W. Murray, and K. L. Ekinci, “Photothermal operation of high frequency nanoelectromechanical systems,” Appl. Phys. Lett. 88, 223104 (2006).
[CrossRef]

O. Arcizet, P.-F. Cohadon, T. Briant, M. Pinard, and A. Heidmann, “Radiation-pressure cooling and optomechanical instability of a micromirror,” Nature 444, 71–74 (2006).
[CrossRef] [PubMed]

D. Kleckner and D. Bouwmeester, “Sub-kelvin optical cooling of a micromechanical resonator,” Nature 444, 75–78 (2006).
[CrossRef] [PubMed]

2005 (3)

T. Kouh, D. Karabacak, D. H. Kim, and K. L. Ekinci, “Diffraction effects in optical interferometric displacement detection in nanoelectromechanical systems,” Appl. Phys. Lett. 86, 013106 (2005).
[CrossRef]

K. L. Ekinci and M. L. Roukes, “Nanoelectromechanical systems,” Rev. Sci. Instrum. 76, 061101 (2005).
[CrossRef]

D. Karabacak, T. Kouh, and K. L. Ekinci, “Analysis of optical interferometric displacement detection in nanoelectromechanical systems,” J. Appl. Phys. 98, 124309 (2005).
[CrossRef]

2002 (1)

C. M. Hernandez, T. W. Murray, and S. Krishnaswamy, “Photoacoustic characterization of the mechanical properties of thin films,” Appl. Phys. Lett. 80, 691–693 (2002).
[CrossRef]

2000 (2)

H. G. Craighead, “Nanoelectromechanical systems,” Science 290, 1532–1535 (2000).
[CrossRef] [PubMed]

J. Lawall and E. Kessler, “Michelson interferometry with 10 pm accuracy,” Rev. Sci. Instrum. 71, 2669–2676 (2000).
[CrossRef]

1999 (1)

D. W. Carr, S. Evoy, L. Sekaric, H. G. Craighead, and J. M. Parpia, “Measurement of mechanical resonance and losses in nanometer scale silicon wires,” Appl. Phys. Lett. 75, 920–922 (1999).
[CrossRef]

Aksyuk, V.

K. Srinivasan, H. Miao, M. T. Rakher, M. Davanco, and V. Aksyuk, “Optomechanical transduction of an integrated silicon cantilever probe using a microdisk resonator,” Nano Letters 11, 791–797 (2011).
[CrossRef] [PubMed]

Anetsberger, G.

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Riviere, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nature Phys. 5, 909–914 (2009).
[CrossRef]

Arcizet, O.

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Riviere, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nature Phys. 5, 909–914 (2009).
[CrossRef]

O. Arcizet, P.-F. Cohadon, T. Briant, M. Pinard, and A. Heidmann, “Radiation-pressure cooling and optomechanical instability of a micromirror,” Nature 444, 71–74 (2006).
[CrossRef] [PubMed]

Aspelmeyer, M.

S. Groblacher, K. Hammerer, M. R. Vanner, and M. Aspelmeyer, “Observation of strong coupling between a micromechanical resonator and an optical cavity field,” Nature 460, 724–727 (2009).
[CrossRef] [PubMed]

Baehr-Jones, T.

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456, 480–484 (2008).
[CrossRef] [PubMed]

Baets, R.

J. Roels, I. De Vlaminck, L. Lagae, B. Maes, D. Van Thourhout, and R. Baets, “Tunable optical forces between nanophotonic waveguides,” Nature Nanotech. 4, 510–513 (2009).
[CrossRef]

I. D. Vlaminck, J. Roels, D. Taillaert, D. V. Thourhout, R. Baets, L. Lagae, and G. Borghs, “Detection of nanomechanical motion by evanescent light wave coupling,” Appl. Phys. Lett. 90, 233116 (2007).
[CrossRef]

Basarir, O.

Basilio-Sanchez, G.

Borghs, G.

I. D. Vlaminck, J. Roels, D. Taillaert, D. V. Thourhout, R. Baets, L. Lagae, and G. Borghs, “Detection of nanomechanical motion by evanescent light wave coupling,” Appl. Phys. Lett. 90, 233116 (2007).
[CrossRef]

Bouwmeester, D.

D. Kleckner and D. Bouwmeester, “Sub-kelvin optical cooling of a micromechanical resonator,” Nature 444, 75–78 (2006).
[CrossRef] [PubMed]

Bramhavar, S.

Briant, T.

O. Arcizet, P.-F. Cohadon, T. Briant, M. Pinard, and A. Heidmann, “Radiation-pressure cooling and optomechanical instability of a micromirror,” Nature 444, 71–74 (2006).
[CrossRef] [PubMed]

Camacho, R.

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459, 550–555 (2009).
[CrossRef] [PubMed]

Carr, D. W.

D. W. Carr, S. Evoy, L. Sekaric, H. G. Craighead, and J. M. Parpia, “Measurement of mechanical resonance and losses in nanometer scale silicon wires,” Appl. Phys. Lett. 75, 920–922 (1999).
[CrossRef]

Chan, J.

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459, 550–555 (2009).
[CrossRef] [PubMed]

Chen, L.

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462, 633–636 (2009).
[CrossRef] [PubMed]

Cohadon, P.-F.

O. Arcizet, P.-F. Cohadon, T. Briant, M. Pinard, and A. Heidmann, “Radiation-pressure cooling and optomechanical instability of a micromirror,” Nature 444, 71–74 (2006).
[CrossRef] [PubMed]

Craighead, H. G.

H. G. Craighead, “Nanoelectromechanical systems,” Science 290, 1532–1535 (2000).
[CrossRef] [PubMed]

D. W. Carr, S. Evoy, L. Sekaric, H. G. Craighead, and J. M. Parpia, “Measurement of mechanical resonance and losses in nanometer scale silicon wires,” Appl. Phys. Lett. 75, 920–922 (1999).
[CrossRef]

Davanco, M.

K. Srinivasan, H. Miao, M. T. Rakher, M. Davanco, and V. Aksyuk, “Optomechanical transduction of an integrated silicon cantilever probe using a microdisk resonator,” Nano Letters 11, 791–797 (2011).
[CrossRef] [PubMed]

De Vlaminck, I.

J. Roels, I. De Vlaminck, L. Lagae, B. Maes, D. Van Thourhout, and R. Baets, “Tunable optical forces between nanophotonic waveguides,” Nature Nanotech. 4, 510–513 (2009).
[CrossRef]

Eichenfield, M.

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459, 550–555 (2009).
[CrossRef] [PubMed]

Ekinci, K. L.

O. Basarir, S. Bramhavar, and K. L. Ekinci, “Near-field optical transducer for nanomechanical resonators,” Appl. Phys. Lett. 97, 253114 (2010).
[CrossRef]

O. Basarir, S. Bramhavar, G. Basilio-Sanchez, T. Morse, and K. L. Ekinci, “Sensitive micromechanical displacement detection by scattering evanescent optical waves,” Opt. Lett. 35, 1792–1794 (2010).
[CrossRef] [PubMed]

A. Sampathkumar, T. W. Murray, and K. L. Ekinci, “Photothermal operation of high frequency nanoelectromechanical systems,” Appl. Phys. Lett. 88, 223104 (2006).
[CrossRef]

D. Karabacak, T. Kouh, and K. L. Ekinci, “Analysis of optical interferometric displacement detection in nanoelectromechanical systems,” J. Appl. Phys. 98, 124309 (2005).
[CrossRef]

K. L. Ekinci and M. L. Roukes, “Nanoelectromechanical systems,” Rev. Sci. Instrum. 76, 061101 (2005).
[CrossRef]

T. Kouh, D. Karabacak, D. H. Kim, and K. L. Ekinci, “Diffraction effects in optical interferometric displacement detection in nanoelectromechanical systems,” Appl. Phys. Lett. 86, 013106 (2005).
[CrossRef]

Evoy, S.

D. W. Carr, S. Evoy, L. Sekaric, H. G. Craighead, and J. M. Parpia, “Measurement of mechanical resonance and losses in nanometer scale silicon wires,” Appl. Phys. Lett. 75, 920–922 (1999).
[CrossRef]

Favero, I.

Girvin, S. M.

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452, 72–75 (2008).
[CrossRef] [PubMed]

Gondarenko, A.

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462, 633–636 (2009).
[CrossRef] [PubMed]

Groblacher, S.

S. Groblacher, K. Hammerer, M. R. Vanner, and M. Aspelmeyer, “Observation of strong coupling between a micromechanical resonator and an optical cavity field,” Nature 460, 724–727 (2009).
[CrossRef] [PubMed]

Hammerer, K.

A. Xuereb, R. Schnabel, and K. Hammerer, “Dissipative optomechanics in a michelson-sagnac interferometer,” Phys. Rev. Lett. 107, 213604 (2011).
[CrossRef] [PubMed]

S. Groblacher, K. Hammerer, M. R. Vanner, and M. Aspelmeyer, “Observation of strong coupling between a micromechanical resonator and an optical cavity field,” Nature 460, 724–727 (2009).
[CrossRef] [PubMed]

Harris, J. G. E.

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452, 72–75 (2008).
[CrossRef] [PubMed]

Heidmann, A.

O. Arcizet, P.-F. Cohadon, T. Briant, M. Pinard, and A. Heidmann, “Radiation-pressure cooling and optomechanical instability of a micromirror,” Nature 444, 71–74 (2006).
[CrossRef] [PubMed]

Hernandez, C. M.

C. M. Hernandez, T. W. Murray, and S. Krishnaswamy, “Photoacoustic characterization of the mechanical properties of thin films,” Appl. Phys. Lett. 80, 691–693 (2002).
[CrossRef]

Hochberg, M.

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456, 480–484 (2008).
[CrossRef] [PubMed]

Hunger, D.

Jayich, A. M.

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452, 72–75 (2008).
[CrossRef] [PubMed]

Jiang, X.

Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103, 103601 (2009).
[CrossRef] [PubMed]

Karabacak, D.

T. Kouh, D. Karabacak, D. H. Kim, and K. L. Ekinci, “Diffraction effects in optical interferometric displacement detection in nanoelectromechanical systems,” Appl. Phys. Lett. 86, 013106 (2005).
[CrossRef]

D. Karabacak, T. Kouh, and K. L. Ekinci, “Analysis of optical interferometric displacement detection in nanoelectromechanical systems,” J. Appl. Phys. 98, 124309 (2005).
[CrossRef]

Karrai, K.

Kessler, E.

J. Lawall and E. Kessler, “Michelson interferometry with 10 pm accuracy,” Rev. Sci. Instrum. 71, 2669–2676 (2000).
[CrossRef]

Kim, D. H.

T. Kouh, D. Karabacak, D. H. Kim, and K. L. Ekinci, “Diffraction effects in optical interferometric displacement detection in nanoelectromechanical systems,” Appl. Phys. Lett. 86, 013106 (2005).
[CrossRef]

Kippenberg, T. J.

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Riviere, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nature Phys. 5, 909–914 (2009).
[CrossRef]

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: Back-action at the mesoscale,” Science 321, 1172–1176 (2008).
[CrossRef] [PubMed]

Kleckner, D.

D. Kleckner and D. Bouwmeester, “Sub-kelvin optical cooling of a micromechanical resonator,” Nature 444, 75–78 (2006).
[CrossRef] [PubMed]

Kotthaus, J. P.

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Riviere, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nature Phys. 5, 909–914 (2009).
[CrossRef]

Kouh, T.

D. Karabacak, T. Kouh, and K. L. Ekinci, “Analysis of optical interferometric displacement detection in nanoelectromechanical systems,” J. Appl. Phys. 98, 124309 (2005).
[CrossRef]

T. Kouh, D. Karabacak, D. H. Kim, and K. L. Ekinci, “Diffraction effects in optical interferometric displacement detection in nanoelectromechanical systems,” Appl. Phys. Lett. 86, 013106 (2005).
[CrossRef]

Krishnaswamy, S.

C. M. Hernandez, T. W. Murray, and S. Krishnaswamy, “Photoacoustic characterization of the mechanical properties of thin films,” Appl. Phys. Lett. 80, 691–693 (2002).
[CrossRef]

Lagae, L.

J. Roels, I. De Vlaminck, L. Lagae, B. Maes, D. Van Thourhout, and R. Baets, “Tunable optical forces between nanophotonic waveguides,” Nature Nanotech. 4, 510–513 (2009).
[CrossRef]

I. D. Vlaminck, J. Roels, D. Taillaert, D. V. Thourhout, R. Baets, L. Lagae, and G. Borghs, “Detection of nanomechanical motion by evanescent light wave coupling,” Appl. Phys. Lett. 90, 233116 (2007).
[CrossRef]

Lawall, J.

J. Lawall and E. Kessler, “Michelson interferometry with 10 pm accuracy,” Rev. Sci. Instrum. 71, 2669–2676 (2000).
[CrossRef]

Li, M.

M. Li, W. H. P. Pernice, and H. X. Tang, “Reactive cavity optical force on microdisk-coupled nanomechanical beam waveguides,” Phys. Rev. Lett. 103, 223901 (2009).
[CrossRef]

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456, 480–484 (2008).
[CrossRef] [PubMed]

Lin, Q.

Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103, 103601 (2009).
[CrossRef] [PubMed]

Lipson, M.

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462, 633–636 (2009).
[CrossRef] [PubMed]

Lorenz, H.

Maes, B.

J. Roels, I. De Vlaminck, L. Lagae, B. Maes, D. Van Thourhout, and R. Baets, “Tunable optical forces between nanophotonic waveguides,” Nature Nanotech. 4, 510–513 (2009).
[CrossRef]

Marquardt, F.

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452, 72–75 (2008).
[CrossRef] [PubMed]

Miao, H.

K. Srinivasan, H. Miao, M. T. Rakher, M. Davanco, and V. Aksyuk, “Optomechanical transduction of an integrated silicon cantilever probe using a microdisk resonator,” Nano Letters 11, 791–797 (2011).
[CrossRef] [PubMed]

Morse, T.

Murray, T. W.

A. Sampathkumar, T. W. Murray, and K. L. Ekinci, “Photothermal operation of high frequency nanoelectromechanical systems,” Appl. Phys. Lett. 88, 223104 (2006).
[CrossRef]

C. M. Hernandez, T. W. Murray, and S. Krishnaswamy, “Photoacoustic characterization of the mechanical properties of thin films,” Appl. Phys. Lett. 80, 691–693 (2002).
[CrossRef]

Painter, O.

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459, 550–555 (2009).
[CrossRef] [PubMed]

Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103, 103601 (2009).
[CrossRef] [PubMed]

Parpia, J. M.

D. W. Carr, S. Evoy, L. Sekaric, H. G. Craighead, and J. M. Parpia, “Measurement of mechanical resonance and losses in nanometer scale silicon wires,” Appl. Phys. Lett. 75, 920–922 (1999).
[CrossRef]

Paulitschke, P.

Pernice, W. H. P.

M. Li, W. H. P. Pernice, and H. X. Tang, “Reactive cavity optical force on microdisk-coupled nanomechanical beam waveguides,” Phys. Rev. Lett. 103, 223901 (2009).
[CrossRef]

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456, 480–484 (2008).
[CrossRef] [PubMed]

Pinard, M.

O. Arcizet, P.-F. Cohadon, T. Briant, M. Pinard, and A. Heidmann, “Radiation-pressure cooling and optomechanical instability of a micromirror,” Nature 444, 71–74 (2006).
[CrossRef] [PubMed]

Rakher, M. T.

K. Srinivasan, H. Miao, M. T. Rakher, M. Davanco, and V. Aksyuk, “Optomechanical transduction of an integrated silicon cantilever probe using a microdisk resonator,” Nano Letters 11, 791–797 (2011).
[CrossRef] [PubMed]

Reichel, J.

Riviere, R.

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Riviere, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nature Phys. 5, 909–914 (2009).
[CrossRef]

Roels, J.

J. Roels, I. De Vlaminck, L. Lagae, B. Maes, D. Van Thourhout, and R. Baets, “Tunable optical forces between nanophotonic waveguides,” Nature Nanotech. 4, 510–513 (2009).
[CrossRef]

I. D. Vlaminck, J. Roels, D. Taillaert, D. V. Thourhout, R. Baets, L. Lagae, and G. Borghs, “Detection of nanomechanical motion by evanescent light wave coupling,” Appl. Phys. Lett. 90, 233116 (2007).
[CrossRef]

Rosenberg, J.

Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103, 103601 (2009).
[CrossRef] [PubMed]

Roukes, M. L.

K. L. Ekinci and M. L. Roukes, “Nanoelectromechanical systems,” Rev. Sci. Instrum. 76, 061101 (2005).
[CrossRef]

Sampathkumar, A.

A. Sampathkumar, T. W. Murray, and K. L. Ekinci, “Photothermal operation of high frequency nanoelectromechanical systems,” Appl. Phys. Lett. 88, 223104 (2006).
[CrossRef]

Schliesser, A.

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Riviere, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nature Phys. 5, 909–914 (2009).
[CrossRef]

Schnabel, R.

A. Xuereb, R. Schnabel, and K. Hammerer, “Dissipative optomechanics in a michelson-sagnac interferometer,” Phys. Rev. Lett. 107, 213604 (2011).
[CrossRef] [PubMed]

Sekaric, L.

D. W. Carr, S. Evoy, L. Sekaric, H. G. Craighead, and J. M. Parpia, “Measurement of mechanical resonance and losses in nanometer scale silicon wires,” Appl. Phys. Lett. 75, 920–922 (1999).
[CrossRef]

Srinivasan, K.

K. Srinivasan, H. Miao, M. T. Rakher, M. Davanco, and V. Aksyuk, “Optomechanical transduction of an integrated silicon cantilever probe using a microdisk resonator,” Nano Letters 11, 791–797 (2011).
[CrossRef] [PubMed]

Stapfner, S.

Taillaert, D.

I. D. Vlaminck, J. Roels, D. Taillaert, D. V. Thourhout, R. Baets, L. Lagae, and G. Borghs, “Detection of nanomechanical motion by evanescent light wave coupling,” Appl. Phys. Lett. 90, 233116 (2007).
[CrossRef]

Tang, H. X.

M. Li, W. H. P. Pernice, and H. X. Tang, “Reactive cavity optical force on microdisk-coupled nanomechanical beam waveguides,” Phys. Rev. Lett. 103, 223901 (2009).
[CrossRef]

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456, 480–484 (2008).
[CrossRef] [PubMed]

Thompson, J. D.

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452, 72–75 (2008).
[CrossRef] [PubMed]

Thourhout, D. V.

I. D. Vlaminck, J. Roels, D. Taillaert, D. V. Thourhout, R. Baets, L. Lagae, and G. Borghs, “Detection of nanomechanical motion by evanescent light wave coupling,” Appl. Phys. Lett. 90, 233116 (2007).
[CrossRef]

Unterreithmeier, Q. P.

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Riviere, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nature Phys. 5, 909–914 (2009).
[CrossRef]

Vahala, K. J.

Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103, 103601 (2009).
[CrossRef] [PubMed]

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459, 550–555 (2009).
[CrossRef] [PubMed]

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: Back-action at the mesoscale,” Science 321, 1172–1176 (2008).
[CrossRef] [PubMed]

Van Thourhout, D.

J. Roels, I. De Vlaminck, L. Lagae, B. Maes, D. Van Thourhout, and R. Baets, “Tunable optical forces between nanophotonic waveguides,” Nature Nanotech. 4, 510–513 (2009).
[CrossRef]

Vanner, M. R.

S. Groblacher, K. Hammerer, M. R. Vanner, and M. Aspelmeyer, “Observation of strong coupling between a micromechanical resonator and an optical cavity field,” Nature 460, 724–727 (2009).
[CrossRef] [PubMed]

Vlaminck, I. D.

I. D. Vlaminck, J. Roels, D. Taillaert, D. V. Thourhout, R. Baets, L. Lagae, and G. Borghs, “Detection of nanomechanical motion by evanescent light wave coupling,” Appl. Phys. Lett. 90, 233116 (2007).
[CrossRef]

Weig, E. M.

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Riviere, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nature Phys. 5, 909–914 (2009).
[CrossRef]

I. Favero, S. Stapfner, D. Hunger, P. Paulitschke, J. Reichel, H. Lorenz, E. M. Weig, and K. Karrai, “Fluctuating nanomechanical system in a high finesse optical microcavity,” Opt. Express 17, 12813–12820 (2009).
[CrossRef] [PubMed]

Wiederhecker, G. S.

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462, 633–636 (2009).
[CrossRef] [PubMed]

Xiong, C.

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456, 480–484 (2008).
[CrossRef] [PubMed]

Xuereb, A.

A. Xuereb, R. Schnabel, and K. Hammerer, “Dissipative optomechanics in a michelson-sagnac interferometer,” Phys. Rev. Lett. 107, 213604 (2011).
[CrossRef] [PubMed]

Zwickl, B. M.

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452, 72–75 (2008).
[CrossRef] [PubMed]

Appl. Phys. Lett. (6)

T. Kouh, D. Karabacak, D. H. Kim, and K. L. Ekinci, “Diffraction effects in optical interferometric displacement detection in nanoelectromechanical systems,” Appl. Phys. Lett. 86, 013106 (2005).
[CrossRef]

C. M. Hernandez, T. W. Murray, and S. Krishnaswamy, “Photoacoustic characterization of the mechanical properties of thin films,” Appl. Phys. Lett. 80, 691–693 (2002).
[CrossRef]

A. Sampathkumar, T. W. Murray, and K. L. Ekinci, “Photothermal operation of high frequency nanoelectromechanical systems,” Appl. Phys. Lett. 88, 223104 (2006).
[CrossRef]

O. Basarir, S. Bramhavar, and K. L. Ekinci, “Near-field optical transducer for nanomechanical resonators,” Appl. Phys. Lett. 97, 253114 (2010).
[CrossRef]

I. D. Vlaminck, J. Roels, D. Taillaert, D. V. Thourhout, R. Baets, L. Lagae, and G. Borghs, “Detection of nanomechanical motion by evanescent light wave coupling,” Appl. Phys. Lett. 90, 233116 (2007).
[CrossRef]

D. W. Carr, S. Evoy, L. Sekaric, H. G. Craighead, and J. M. Parpia, “Measurement of mechanical resonance and losses in nanometer scale silicon wires,” Appl. Phys. Lett. 75, 920–922 (1999).
[CrossRef]

J. Appl. Phys. (1)

D. Karabacak, T. Kouh, and K. L. Ekinci, “Analysis of optical interferometric displacement detection in nanoelectromechanical systems,” J. Appl. Phys. 98, 124309 (2005).
[CrossRef]

Nano Letters (1)

K. Srinivasan, H. Miao, M. T. Rakher, M. Davanco, and V. Aksyuk, “Optomechanical transduction of an integrated silicon cantilever probe using a microdisk resonator,” Nano Letters 11, 791–797 (2011).
[CrossRef] [PubMed]

Nature (7)

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462, 633–636 (2009).
[CrossRef] [PubMed]

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459, 550–555 (2009).
[CrossRef] [PubMed]

O. Arcizet, P.-F. Cohadon, T. Briant, M. Pinard, and A. Heidmann, “Radiation-pressure cooling and optomechanical instability of a micromirror,” Nature 444, 71–74 (2006).
[CrossRef] [PubMed]

D. Kleckner and D. Bouwmeester, “Sub-kelvin optical cooling of a micromechanical resonator,” Nature 444, 75–78 (2006).
[CrossRef] [PubMed]

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452, 72–75 (2008).
[CrossRef] [PubMed]

S. Groblacher, K. Hammerer, M. R. Vanner, and M. Aspelmeyer, “Observation of strong coupling between a micromechanical resonator and an optical cavity field,” Nature 460, 724–727 (2009).
[CrossRef] [PubMed]

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456, 480–484 (2008).
[CrossRef] [PubMed]

Nature Nanotech. (1)

J. Roels, I. De Vlaminck, L. Lagae, B. Maes, D. Van Thourhout, and R. Baets, “Tunable optical forces between nanophotonic waveguides,” Nature Nanotech. 4, 510–513 (2009).
[CrossRef]

Nature Phys. (1)

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Riviere, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nature Phys. 5, 909–914 (2009).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. Lett. (3)

M. Li, W. H. P. Pernice, and H. X. Tang, “Reactive cavity optical force on microdisk-coupled nanomechanical beam waveguides,” Phys. Rev. Lett. 103, 223901 (2009).
[CrossRef]

Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103, 103601 (2009).
[CrossRef] [PubMed]

A. Xuereb, R. Schnabel, and K. Hammerer, “Dissipative optomechanics in a michelson-sagnac interferometer,” Phys. Rev. Lett. 107, 213604 (2011).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (2)

K. L. Ekinci and M. L. Roukes, “Nanoelectromechanical systems,” Rev. Sci. Instrum. 76, 061101 (2005).
[CrossRef]

J. Lawall and E. Kessler, “Michelson interferometry with 10 pm accuracy,” Rev. Sci. Instrum. 71, 2669–2676 (2000).
[CrossRef]

Science (2)

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: Back-action at the mesoscale,” Science 321, 1172–1176 (2008).
[CrossRef] [PubMed]

H. G. Craighead, “Nanoelectromechanical systems,” Science 290, 1532–1535 (2000).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Schematic of the experimental setup superimposed on the SEM image of a doubly-clamped beam resonator coupled to a microdisk. The linear dimensions of the beam are l × w × t = 15 μm × 250 nm × 230 nm and the disk diameter is 20 μm. Light from a diode laser is directed into the fiber-taper waveguide and then sent sent onto a high-speed photodetector (PD). A fiber polarization controller (FPC) is used in order to selectively excite optical modes and a spectrum analyzer (SA) is used for noise measurements. (b) Cross-sectional view of the device through the center of the beam in the x1x3 plane. The optical mode is localized near the microdisk perimeter as shown in the simulation. Note the small offset x 3 e in the x3 direction. (c) Normalized optical transmission T optimized for TM polarization of a 40-μm-diameter microdisk coupled to a (l × w × t = 12 μm × 250 nm × 230 nm) doubly clamped beam. (d) Zoomed-in spectrum of a TM mode with a quality factor of Qo ≈ 35,000.

Fig. 2
Fig. 2

(a) Thermal noise peaks of a doubly-clamped beam resonator (l × w × t = 12 μm × 250 nm × 230 nm) measured in vacuum with a probe power of Pin ≈ 50 μW. The low frequency peak is the out-of-plane mode and the high frequency peak is the in-plane mode. (b) Integrated optical noise powers of the in-plane (diamonds) and out-of-plane (circles) mode as a function of the probe wavelength.

Fig. 3
Fig. 3

(a) g1/2π and (b) g3/2π as a function of x 1 e for beams having different lengths. (c) Calculated x 3 e as a function of beam length l. Each data point is obtained from an average over four devices with the same l but different x 1 e values.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P out ( t ) P in [ T + | T ω | ω = ω d g i δ x i ( t ) ] .

Metrics