Abstract

We study the effect of nonlocal optical response on the optical properties of metallic nanowires, by numerically implementing the hydrodynamical Drude model for arbitrary nanowire geometries. We first demonstrate the accuracy of our frequency-domain finite-element implementation by benchmarking it in a wide frequency range against analytical results for the extinction cross section of a cylindrical plasmonic nanowire. Our main results concern more complex geometries, namely cylindrical and bow-tie nanowire dimers that can strongly enhance optical fields. For both types of dimers we find that nonlocal response can strongly affect both the field enhancement in between the dimers and their respective extinction cross sections. In particular, we give examples of blueshifted maximal field enhancements near hybridized plasmonic dimer resonances that are still large but nearly two times smaller than in the usual local-response description. For the same geometry at a fixed frequency, the field enhancement and cross section can also be significantly more enhanced in the nonlocal-response model.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. D. Boardman, Electromagnetic Surface Modes (Wiley, 1982).
  2. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  3. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
    [CrossRef]
  4. J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
    [CrossRef]
  5. S. Xiao, N. A. Mortensen, and A.-P. Jauho, “Nanostructure design for surface-enhanced Raman spectroscopy - prospects and limits,” J. Eur. Opt. Soc. Rap. Pub. 3, 08022 (2008).
    [CrossRef]
  6. H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks,” Nano Lett. 11, 471–475 (2011).
    [CrossRef]
  7. Y. Chen, M. Wubs, J. Mørk, and A. F. Koenderink, “Coherent single-photon absorption by single emitters coupled to 1D nanophotonic waveguides,” New J. Phys. 13, 103010 (2011).
    [CrossRef]
  8. C. Rockstuhl, M. G. Salt, and H. P. Herzig, “Analyzing the scattering properties of coupled metallic nanoparticles,” J. Opt. Soc. Am. A 21, 1761–1768 (2004).
    [CrossRef]
  9. O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gómez Rivas, “Optical scattering resonances of single and coupled dimer plasmonic nanoantennas,” Opt. Express 15, 17736–17746 (2007).
    [CrossRef] [PubMed]
  10. V. Giannini and J. A. Sánchez-Gil, “Calculations of light scattering from isolated and interacting metallic nanowires of arbitrary cross section by means of Greens theorem surface integral equations in parametric form,” J. Opt. Soc. Am. A 24, 2822–2830 (2007).
    [CrossRef]
  11. T. Shegai, S. Chen, V. D. Miljković, G. Zengin, P. Johansson, and M. Käll, “A bimetallic nanoantenna for directional colour routing,” Nat. Commun. 2:481 doi: (2011).
    [CrossRef] [PubMed]
  12. R. Fuchs and K. L. Kliewer, “Optical properties of an electron gas: further studies of a nonlocal description,” Phys. Rev. 185, 905–913 (1969).
    [CrossRef]
  13. B. B. Dasgupta and R. Fuchs, “Polarizability of a small sphere including nonlocal effects,” Phys. Rev. B 24, 554–561 (1981).
    [CrossRef]
  14. F. J. García de Abajo, “Nonlocal effects in the plasmons of strongly interacting nanoparticles, dimers, and waveguides,” J. Phys. Chem. C 112, 17983–17987 (2008).
    [CrossRef]
  15. J. M. McMahon, S. K. Gray, and G. C. Schatz, “Nonlocal optical response of metal nanostructures with arbitrary shape,” Phys. Rev. Lett. 103, 097403 (2009).
    [CrossRef] [PubMed]
  16. S. Raza, G. Toscano, A.-P. Jauho, M. Wubs, and N. A. Mortensen, “Unusual resonances in nanoplasmonic structures due to nonlocal response,” Phys. Rev. B 84, 121412(R) (2011).
    [CrossRef]
  17. C. David and F. J. García de Abajo, “Spatial nonlocality in the optical response of metal nanoparticles,” J. Phys. Chem. C 115, 19470–19475 (2011).
    [CrossRef]
  18. R. Ruppin, “Extinction properties of thin metallic nanowires,” Opt. Commun. 190, 205–209 (2001).
    [CrossRef]
  19. I. Villó-Pérez and N. R. Arista, “Hydrodynamical model for bulk and surface plasmons in cylindrical wires,” Surf. Sci. 603, 1–13 (2009).
    [CrossRef]
  20. A. Aubry, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Interaction between plasmonic nanoparticles revisited with transformation optics,” Phys. Rev. Lett. 105, 233901 (2010).
    [CrossRef]
  21. J. P. Kottmann and O. J. F. Martin, “Plasmon resonant coupling in metallic nanowires,” Opt. Express 8, 655–663 (2001).
    [CrossRef] [PubMed]
  22. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
    [CrossRef] [PubMed]
  23. D. W. Brandl, C. Oubre, and P. Nordlander, “Plasmon hybridization in nanoshell dimers,” J. Chem. Phys. 123, 024701 (2005).
    [CrossRef]
  24. T. J. Davis, D. E. Goméz, and K. C. Vernon, “Simple model for the hybridization of surface plasmon resonances in metallic nanoparticles,” Nano Lett. 10, 2618–2625 (2010).
    [CrossRef] [PubMed]
  25. A. L. Koh, A. I. Fernández-Domínguez, D. W. McComb, S. A. Maier, and J. K. W. Yang, “High-resolution mapping of electron-beam-excited plasmon modes in lithographically defined gold nanostructures,” Nano Lett. 11, 1323–1330 (2011).
    [CrossRef] [PubMed]
  26. R. Fuchs and F. Claro, “Multipolar response of small metallic spheres: nonlocal theory,” Phys. Rev. B 35, 3722–3727 (1987).
    [CrossRef]
  27. R. Rojas, F. Claro, and R. Fuchs, “Nonlocal response of a small coated sphere,” Phys. Rev. B 37, 6799–6808 (1988).
    [CrossRef]
  28. V. Yannopapas, “Non-local optical response of two-dimensional arrays of metallic nanoparticles,” J. Phys. Condens. Matt. 20, 325211 (2008).
    [CrossRef]
  29. J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum description of the plasmon resonances of a nanoparticle dimer,” Nano Lett. 9, 887–891 (2009).
    [CrossRef] [PubMed]
  30. J. Aizpura and A. Rivacoba, “Nonlocal effects in the plasmons of nanowires and nanocavities excited by fast electron beams,” Phys. Rev. B 78, 035404 (2008).
    [CrossRef]
  31. O. Nicoletti, M. Wubs, N. A. Mortensen, W. Sigle, P. A. van Aken, and P. A. Midgley, “Surface plasmon modes of a single silver nanorod: an electron energy loss study,” Opt. Express 19, 15371–15379 (2011).
    [CrossRef] [PubMed]
  32. E. S. Barnard, T. Coenen, E. J. R. Vesseur, A. Polman, and M. L. Brongersma, “Imaging the hidden modes of ultra-thin plasmonic strip antennas by cathodoluminescence,” Nano Lett. 11, 4265–4269 (2011).
    [CrossRef] [PubMed]
  33. A. L. Fetter, “Electrodynamics of a layered electron gas. I. Single layer,” Ann. Phys. (N.Y.) 81, 367–393 (1973).
    [CrossRef]
  34. Z. F. Öztürk, S. Xiao, M. Yan, M. Wubs, A.-P. Jauho, and N. A. Mortensen, “Field enhancement at metallic interfaces due to quantum confinement,” J. Nanophoton. 5, 051602 (2011).
    [CrossRef]
  35. M. S. Gockenbach, Understanding and Implementing the Finite Element Method (SIAM, 2006).
    [CrossRef]
  36. J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitensdorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics 2, 230–233 (2008).
    [CrossRef]
  37. R. Marty, G. Baffou, A. Arbouet, C. Girard, and R. Quidant, “Charge distribution induced inside complex plasmonic nanoparticles,” Opt. Express 18, 3035–3044 (2010).
    [CrossRef] [PubMed]
  38. W. Ding, R. Bachelot, S. Kostcheev, P. Royer, and R. E. de Lamaestre, “Surface plasmon resonances in silver bowtie nanoantennas with varied bow angles,” J. Appl. Phys. 108, 124314 (2010).
    [CrossRef]
  39. H. Wallén, H. Kettunen, and A. Sihvola, “Surface modes of negative-parameter interfaces and the importance of rounding sharp corners,” Metamaterials 2, 113–121 (2008).
    [CrossRef]
  40. X. Cui and D. Erni, “The influence of particle shapes on the optical response of nearly touching plasmonic nanoparticle dimers,” J. Comput. Theor. Nanosci. 7, 1610–1615 (2010).
    [CrossRef]
  41. J. Zuloaga and P. Nordlander, “On the energy shift between near-field and far-field peak intensities in localized plasmon systems,” Nano Lett. 11, 1280–1283 (2011).
    [CrossRef] [PubMed]

2011 (10)

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks,” Nano Lett. 11, 471–475 (2011).
[CrossRef]

Y. Chen, M. Wubs, J. Mørk, and A. F. Koenderink, “Coherent single-photon absorption by single emitters coupled to 1D nanophotonic waveguides,” New J. Phys. 13, 103010 (2011).
[CrossRef]

T. Shegai, S. Chen, V. D. Miljković, G. Zengin, P. Johansson, and M. Käll, “A bimetallic nanoantenna for directional colour routing,” Nat. Commun. 2:481 doi: (2011).
[CrossRef] [PubMed]

S. Raza, G. Toscano, A.-P. Jauho, M. Wubs, and N. A. Mortensen, “Unusual resonances in nanoplasmonic structures due to nonlocal response,” Phys. Rev. B 84, 121412(R) (2011).
[CrossRef]

C. David and F. J. García de Abajo, “Spatial nonlocality in the optical response of metal nanoparticles,” J. Phys. Chem. C 115, 19470–19475 (2011).
[CrossRef]

A. L. Koh, A. I. Fernández-Domínguez, D. W. McComb, S. A. Maier, and J. K. W. Yang, “High-resolution mapping of electron-beam-excited plasmon modes in lithographically defined gold nanostructures,” Nano Lett. 11, 1323–1330 (2011).
[CrossRef] [PubMed]

O. Nicoletti, M. Wubs, N. A. Mortensen, W. Sigle, P. A. van Aken, and P. A. Midgley, “Surface plasmon modes of a single silver nanorod: an electron energy loss study,” Opt. Express 19, 15371–15379 (2011).
[CrossRef] [PubMed]

E. S. Barnard, T. Coenen, E. J. R. Vesseur, A. Polman, and M. L. Brongersma, “Imaging the hidden modes of ultra-thin plasmonic strip antennas by cathodoluminescence,” Nano Lett. 11, 4265–4269 (2011).
[CrossRef] [PubMed]

Z. F. Öztürk, S. Xiao, M. Yan, M. Wubs, A.-P. Jauho, and N. A. Mortensen, “Field enhancement at metallic interfaces due to quantum confinement,” J. Nanophoton. 5, 051602 (2011).
[CrossRef]

J. Zuloaga and P. Nordlander, “On the energy shift between near-field and far-field peak intensities in localized plasmon systems,” Nano Lett. 11, 1280–1283 (2011).
[CrossRef] [PubMed]

2010 (6)

X. Cui and D. Erni, “The influence of particle shapes on the optical response of nearly touching plasmonic nanoparticle dimers,” J. Comput. Theor. Nanosci. 7, 1610–1615 (2010).
[CrossRef]

R. Marty, G. Baffou, A. Arbouet, C. Girard, and R. Quidant, “Charge distribution induced inside complex plasmonic nanoparticles,” Opt. Express 18, 3035–3044 (2010).
[CrossRef] [PubMed]

W. Ding, R. Bachelot, S. Kostcheev, P. Royer, and R. E. de Lamaestre, “Surface plasmon resonances in silver bowtie nanoantennas with varied bow angles,” J. Appl. Phys. 108, 124314 (2010).
[CrossRef]

T. J. Davis, D. E. Goméz, and K. C. Vernon, “Simple model for the hybridization of surface plasmon resonances in metallic nanoparticles,” Nano Lett. 10, 2618–2625 (2010).
[CrossRef] [PubMed]

A. Aubry, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Interaction between plasmonic nanoparticles revisited with transformation optics,” Phys. Rev. Lett. 105, 233901 (2010).
[CrossRef]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[CrossRef]

2009 (3)

J. M. McMahon, S. K. Gray, and G. C. Schatz, “Nonlocal optical response of metal nanostructures with arbitrary shape,” Phys. Rev. Lett. 103, 097403 (2009).
[CrossRef] [PubMed]

I. Villó-Pérez and N. R. Arista, “Hydrodynamical model for bulk and surface plasmons in cylindrical wires,” Surf. Sci. 603, 1–13 (2009).
[CrossRef]

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum description of the plasmon resonances of a nanoparticle dimer,” Nano Lett. 9, 887–891 (2009).
[CrossRef] [PubMed]

2008 (6)

J. Aizpura and A. Rivacoba, “Nonlocal effects in the plasmons of nanowires and nanocavities excited by fast electron beams,” Phys. Rev. B 78, 035404 (2008).
[CrossRef]

H. Wallén, H. Kettunen, and A. Sihvola, “Surface modes of negative-parameter interfaces and the importance of rounding sharp corners,” Metamaterials 2, 113–121 (2008).
[CrossRef]

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitensdorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics 2, 230–233 (2008).
[CrossRef]

V. Yannopapas, “Non-local optical response of two-dimensional arrays of metallic nanoparticles,” J. Phys. Condens. Matt. 20, 325211 (2008).
[CrossRef]

F. J. García de Abajo, “Nonlocal effects in the plasmons of strongly interacting nanoparticles, dimers, and waveguides,” J. Phys. Chem. C 112, 17983–17987 (2008).
[CrossRef]

S. Xiao, N. A. Mortensen, and A.-P. Jauho, “Nanostructure design for surface-enhanced Raman spectroscopy - prospects and limits,” J. Eur. Opt. Soc. Rap. Pub. 3, 08022 (2008).
[CrossRef]

2007 (2)

2005 (2)

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
[CrossRef]

D. W. Brandl, C. Oubre, and P. Nordlander, “Plasmon hybridization in nanoshell dimers,” J. Chem. Phys. 123, 024701 (2005).
[CrossRef]

2004 (1)

2003 (1)

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[CrossRef] [PubMed]

2001 (2)

J. P. Kottmann and O. J. F. Martin, “Plasmon resonant coupling in metallic nanowires,” Opt. Express 8, 655–663 (2001).
[CrossRef] [PubMed]

R. Ruppin, “Extinction properties of thin metallic nanowires,” Opt. Commun. 190, 205–209 (2001).
[CrossRef]

1988 (1)

R. Rojas, F. Claro, and R. Fuchs, “Nonlocal response of a small coated sphere,” Phys. Rev. B 37, 6799–6808 (1988).
[CrossRef]

1987 (1)

R. Fuchs and F. Claro, “Multipolar response of small metallic spheres: nonlocal theory,” Phys. Rev. B 35, 3722–3727 (1987).
[CrossRef]

1981 (1)

B. B. Dasgupta and R. Fuchs, “Polarizability of a small sphere including nonlocal effects,” Phys. Rev. B 24, 554–561 (1981).
[CrossRef]

1973 (1)

A. L. Fetter, “Electrodynamics of a layered electron gas. I. Single layer,” Ann. Phys. (N.Y.) 81, 367–393 (1973).
[CrossRef]

1969 (1)

R. Fuchs and K. L. Kliewer, “Optical properties of an electron gas: further studies of a nonlocal description,” Phys. Rev. 185, 905–913 (1969).
[CrossRef]

Aizpura, J.

J. Aizpura and A. Rivacoba, “Nonlocal effects in the plasmons of nanowires and nanocavities excited by fast electron beams,” Phys. Rev. B 78, 035404 (2008).
[CrossRef]

Aizpurua, J.

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
[CrossRef]

Arbouet, A.

Arista, N. R.

I. Villó-Pérez and N. R. Arista, “Hydrodynamical model for bulk and surface plasmons in cylindrical wires,” Surf. Sci. 603, 1–13 (2009).
[CrossRef]

Aubry, A.

A. Aubry, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Interaction between plasmonic nanoparticles revisited with transformation optics,” Phys. Rev. Lett. 105, 233901 (2010).
[CrossRef]

Bachelot, R.

W. Ding, R. Bachelot, S. Kostcheev, P. Royer, and R. E. de Lamaestre, “Surface plasmon resonances in silver bowtie nanoantennas with varied bow angles,” J. Appl. Phys. 108, 124314 (2010).
[CrossRef]

Baffou, G.

Barnard, E. S.

E. S. Barnard, T. Coenen, E. J. R. Vesseur, A. Polman, and M. L. Brongersma, “Imaging the hidden modes of ultra-thin plasmonic strip antennas by cathodoluminescence,” Nano Lett. 11, 4265–4269 (2011).
[CrossRef] [PubMed]

Boardman, A. D.

A. D. Boardman, Electromagnetic Surface Modes (Wiley, 1982).

Boneberg, J.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitensdorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics 2, 230–233 (2008).
[CrossRef]

Bozhevolnyi, S. I.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[CrossRef]

Brandl, D. W.

D. W. Brandl, C. Oubre, and P. Nordlander, “Plasmon hybridization in nanoshell dimers,” J. Chem. Phys. 123, 024701 (2005).
[CrossRef]

Bratschitsch, R.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitensdorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics 2, 230–233 (2008).
[CrossRef]

Brongersma, M. L.

E. S. Barnard, T. Coenen, E. J. R. Vesseur, A. Polman, and M. L. Brongersma, “Imaging the hidden modes of ultra-thin plasmonic strip antennas by cathodoluminescence,” Nano Lett. 11, 4265–4269 (2011).
[CrossRef] [PubMed]

Bryant, G. W.

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
[CrossRef]

Chen, S.

T. Shegai, S. Chen, V. D. Miljković, G. Zengin, P. Johansson, and M. Käll, “A bimetallic nanoantenna for directional colour routing,” Nat. Commun. 2:481 doi: (2011).
[CrossRef] [PubMed]

Chen, Y.

Y. Chen, M. Wubs, J. Mørk, and A. F. Koenderink, “Coherent single-photon absorption by single emitters coupled to 1D nanophotonic waveguides,” New J. Phys. 13, 103010 (2011).
[CrossRef]

Claro, F.

R. Rojas, F. Claro, and R. Fuchs, “Nonlocal response of a small coated sphere,” Phys. Rev. B 37, 6799–6808 (1988).
[CrossRef]

R. Fuchs and F. Claro, “Multipolar response of small metallic spheres: nonlocal theory,” Phys. Rev. B 35, 3722–3727 (1987).
[CrossRef]

Coenen, T.

E. S. Barnard, T. Coenen, E. J. R. Vesseur, A. Polman, and M. L. Brongersma, “Imaging the hidden modes of ultra-thin plasmonic strip antennas by cathodoluminescence,” Nano Lett. 11, 4265–4269 (2011).
[CrossRef] [PubMed]

Cong, F.

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks,” Nano Lett. 11, 471–475 (2011).
[CrossRef]

Cui, X.

X. Cui and D. Erni, “The influence of particle shapes on the optical response of nearly touching plasmonic nanoparticle dimers,” J. Comput. Theor. Nanosci. 7, 1610–1615 (2010).
[CrossRef]

Dasgupta, B. B.

B. B. Dasgupta and R. Fuchs, “Polarizability of a small sphere including nonlocal effects,” Phys. Rev. B 24, 554–561 (1981).
[CrossRef]

David, C.

C. David and F. J. García de Abajo, “Spatial nonlocality in the optical response of metal nanoparticles,” J. Phys. Chem. C 115, 19470–19475 (2011).
[CrossRef]

Davis, T. J.

T. J. Davis, D. E. Goméz, and K. C. Vernon, “Simple model for the hybridization of surface plasmon resonances in metallic nanoparticles,” Nano Lett. 10, 2618–2625 (2010).
[CrossRef] [PubMed]

de Lamaestre, R. E.

W. Ding, R. Bachelot, S. Kostcheev, P. Royer, and R. E. de Lamaestre, “Surface plasmon resonances in silver bowtie nanoantennas with varied bow angles,” J. Appl. Phys. 108, 124314 (2010).
[CrossRef]

Ding, W.

W. Ding, R. Bachelot, S. Kostcheev, P. Royer, and R. E. de Lamaestre, “Surface plasmon resonances in silver bowtie nanoantennas with varied bow angles,” J. Appl. Phys. 108, 124314 (2010).
[CrossRef]

Erni, D.

X. Cui and D. Erni, “The influence of particle shapes on the optical response of nearly touching plasmonic nanoparticle dimers,” J. Comput. Theor. Nanosci. 7, 1610–1615 (2010).
[CrossRef]

Fernández-Domínguez, A. I.

A. L. Koh, A. I. Fernández-Domínguez, D. W. McComb, S. A. Maier, and J. K. W. Yang, “High-resolution mapping of electron-beam-excited plasmon modes in lithographically defined gold nanostructures,” Nano Lett. 11, 1323–1330 (2011).
[CrossRef] [PubMed]

Fetter, A. L.

A. L. Fetter, “Electrodynamics of a layered electron gas. I. Single layer,” Ann. Phys. (N.Y.) 81, 367–393 (1973).
[CrossRef]

Fuchs, R.

R. Rojas, F. Claro, and R. Fuchs, “Nonlocal response of a small coated sphere,” Phys. Rev. B 37, 6799–6808 (1988).
[CrossRef]

R. Fuchs and F. Claro, “Multipolar response of small metallic spheres: nonlocal theory,” Phys. Rev. B 35, 3722–3727 (1987).
[CrossRef]

B. B. Dasgupta and R. Fuchs, “Polarizability of a small sphere including nonlocal effects,” Phys. Rev. B 24, 554–561 (1981).
[CrossRef]

R. Fuchs and K. L. Kliewer, “Optical properties of an electron gas: further studies of a nonlocal description,” Phys. Rev. 185, 905–913 (1969).
[CrossRef]

García de Abajo, F. J.

C. David and F. J. García de Abajo, “Spatial nonlocality in the optical response of metal nanoparticles,” J. Phys. Chem. C 115, 19470–19475 (2011).
[CrossRef]

F. J. García de Abajo, “Nonlocal effects in the plasmons of strongly interacting nanoparticles, dimers, and waveguides,” J. Phys. Chem. C 112, 17983–17987 (2008).
[CrossRef]

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
[CrossRef]

Giannini, V.

Girard, C.

Gockenbach, M. S.

M. S. Gockenbach, Understanding and Implementing the Finite Element Method (SIAM, 2006).
[CrossRef]

Goméz, D. E.

T. J. Davis, D. E. Goméz, and K. C. Vernon, “Simple model for the hybridization of surface plasmon resonances in metallic nanoparticles,” Nano Lett. 10, 2618–2625 (2010).
[CrossRef] [PubMed]

Gómez Rivas, J.

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[CrossRef]

Gray, S. K.

J. M. McMahon, S. K. Gray, and G. C. Schatz, “Nonlocal optical response of metal nanostructures with arbitrary shape,” Phys. Rev. Lett. 103, 097403 (2009).
[CrossRef] [PubMed]

Halas, N. J.

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks,” Nano Lett. 11, 471–475 (2011).
[CrossRef]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[CrossRef] [PubMed]

Halm, A.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitensdorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics 2, 230–233 (2008).
[CrossRef]

Herzig, H. P.

Jauho, A.-P.

S. Raza, G. Toscano, A.-P. Jauho, M. Wubs, and N. A. Mortensen, “Unusual resonances in nanoplasmonic structures due to nonlocal response,” Phys. Rev. B 84, 121412(R) (2011).
[CrossRef]

Z. F. Öztürk, S. Xiao, M. Yan, M. Wubs, A.-P. Jauho, and N. A. Mortensen, “Field enhancement at metallic interfaces due to quantum confinement,” J. Nanophoton. 5, 051602 (2011).
[CrossRef]

S. Xiao, N. A. Mortensen, and A.-P. Jauho, “Nanostructure design for surface-enhanced Raman spectroscopy - prospects and limits,” J. Eur. Opt. Soc. Rap. Pub. 3, 08022 (2008).
[CrossRef]

Johansson, P.

T. Shegai, S. Chen, V. D. Miljković, G. Zengin, P. Johansson, and M. Käll, “A bimetallic nanoantenna for directional colour routing,” Nat. Commun. 2:481 doi: (2011).
[CrossRef] [PubMed]

Kahl, M.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitensdorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics 2, 230–233 (2008).
[CrossRef]

Käll, M.

T. Shegai, S. Chen, V. D. Miljković, G. Zengin, P. Johansson, and M. Käll, “A bimetallic nanoantenna for directional colour routing,” Nat. Commun. 2:481 doi: (2011).
[CrossRef] [PubMed]

Kelley, B. K.

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
[CrossRef]

Kettunen, H.

H. Wallén, H. Kettunen, and A. Sihvola, “Surface modes of negative-parameter interfaces and the importance of rounding sharp corners,” Metamaterials 2, 113–121 (2008).
[CrossRef]

Kliewer, K. L.

R. Fuchs and K. L. Kliewer, “Optical properties of an electron gas: further studies of a nonlocal description,” Phys. Rev. 185, 905–913 (1969).
[CrossRef]

Koenderink, A. F.

Y. Chen, M. Wubs, J. Mørk, and A. F. Koenderink, “Coherent single-photon absorption by single emitters coupled to 1D nanophotonic waveguides,” New J. Phys. 13, 103010 (2011).
[CrossRef]

Koh, A. L.

A. L. Koh, A. I. Fernández-Domínguez, D. W. McComb, S. A. Maier, and J. K. W. Yang, “High-resolution mapping of electron-beam-excited plasmon modes in lithographically defined gold nanostructures,” Nano Lett. 11, 1323–1330 (2011).
[CrossRef] [PubMed]

Kostcheev, S.

W. Ding, R. Bachelot, S. Kostcheev, P. Royer, and R. E. de Lamaestre, “Surface plasmon resonances in silver bowtie nanoantennas with varied bow angles,” J. Appl. Phys. 108, 124314 (2010).
[CrossRef]

Kottmann, J. P.

Lei, D. Y.

A. Aubry, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Interaction between plasmonic nanoparticles revisited with transformation optics,” Phys. Rev. Lett. 105, 233901 (2010).
[CrossRef]

Leiderer, P.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitensdorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics 2, 230–233 (2008).
[CrossRef]

Leitensdorfer, A.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitensdorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics 2, 230–233 (2008).
[CrossRef]

Li, Z.

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks,” Nano Lett. 11, 471–475 (2011).
[CrossRef]

Liu, N.

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks,” Nano Lett. 11, 471–475 (2011).
[CrossRef]

Maier, S. A.

A. L. Koh, A. I. Fernández-Domínguez, D. W. McComb, S. A. Maier, and J. K. W. Yang, “High-resolution mapping of electron-beam-excited plasmon modes in lithographically defined gold nanostructures,” Nano Lett. 11, 1323–1330 (2011).
[CrossRef] [PubMed]

A. Aubry, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Interaction between plasmonic nanoparticles revisited with transformation optics,” Phys. Rev. Lett. 105, 233901 (2010).
[CrossRef]

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Mallouk, T.

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
[CrossRef]

Martin, O. J. F.

Marty, R.

McComb, D. W.

A. L. Koh, A. I. Fernández-Domínguez, D. W. McComb, S. A. Maier, and J. K. W. Yang, “High-resolution mapping of electron-beam-excited plasmon modes in lithographically defined gold nanostructures,” Nano Lett. 11, 1323–1330 (2011).
[CrossRef] [PubMed]

McMahon, J. M.

J. M. McMahon, S. K. Gray, and G. C. Schatz, “Nonlocal optical response of metal nanostructures with arbitrary shape,” Phys. Rev. Lett. 103, 097403 (2009).
[CrossRef] [PubMed]

Merlein, J.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitensdorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics 2, 230–233 (2008).
[CrossRef]

Midgley, P. A.

Miljkovic, V. D.

T. Shegai, S. Chen, V. D. Miljković, G. Zengin, P. Johansson, and M. Käll, “A bimetallic nanoantenna for directional colour routing,” Nat. Commun. 2:481 doi: (2011).
[CrossRef] [PubMed]

Mørk, J.

Y. Chen, M. Wubs, J. Mørk, and A. F. Koenderink, “Coherent single-photon absorption by single emitters coupled to 1D nanophotonic waveguides,” New J. Phys. 13, 103010 (2011).
[CrossRef]

Mortensen, N. A.

O. Nicoletti, M. Wubs, N. A. Mortensen, W. Sigle, P. A. van Aken, and P. A. Midgley, “Surface plasmon modes of a single silver nanorod: an electron energy loss study,” Opt. Express 19, 15371–15379 (2011).
[CrossRef] [PubMed]

S. Raza, G. Toscano, A.-P. Jauho, M. Wubs, and N. A. Mortensen, “Unusual resonances in nanoplasmonic structures due to nonlocal response,” Phys. Rev. B 84, 121412(R) (2011).
[CrossRef]

Z. F. Öztürk, S. Xiao, M. Yan, M. Wubs, A.-P. Jauho, and N. A. Mortensen, “Field enhancement at metallic interfaces due to quantum confinement,” J. Nanophoton. 5, 051602 (2011).
[CrossRef]

S. Xiao, N. A. Mortensen, and A.-P. Jauho, “Nanostructure design for surface-enhanced Raman spectroscopy - prospects and limits,” J. Eur. Opt. Soc. Rap. Pub. 3, 08022 (2008).
[CrossRef]

Muskens, O. L.

Nicoletti, O.

Nordlander, P.

J. Zuloaga and P. Nordlander, “On the energy shift between near-field and far-field peak intensities in localized plasmon systems,” Nano Lett. 11, 1280–1283 (2011).
[CrossRef] [PubMed]

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks,” Nano Lett. 11, 471–475 (2011).
[CrossRef]

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum description of the plasmon resonances of a nanoparticle dimer,” Nano Lett. 9, 887–891 (2009).
[CrossRef] [PubMed]

D. W. Brandl, C. Oubre, and P. Nordlander, “Plasmon hybridization in nanoshell dimers,” J. Chem. Phys. 123, 024701 (2005).
[CrossRef]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[CrossRef] [PubMed]

Oubre, C.

D. W. Brandl, C. Oubre, and P. Nordlander, “Plasmon hybridization in nanoshell dimers,” J. Chem. Phys. 123, 024701 (2005).
[CrossRef]

Öztürk, Z. F.

Z. F. Öztürk, S. Xiao, M. Yan, M. Wubs, A.-P. Jauho, and N. A. Mortensen, “Field enhancement at metallic interfaces due to quantum confinement,” J. Nanophoton. 5, 051602 (2011).
[CrossRef]

Pendry, J. B.

A. Aubry, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Interaction between plasmonic nanoparticles revisited with transformation optics,” Phys. Rev. Lett. 105, 233901 (2010).
[CrossRef]

Polman, A.

E. S. Barnard, T. Coenen, E. J. R. Vesseur, A. Polman, and M. L. Brongersma, “Imaging the hidden modes of ultra-thin plasmonic strip antennas by cathodoluminescence,” Nano Lett. 11, 4265–4269 (2011).
[CrossRef] [PubMed]

Prodan, E.

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum description of the plasmon resonances of a nanoparticle dimer,” Nano Lett. 9, 887–891 (2009).
[CrossRef] [PubMed]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[CrossRef] [PubMed]

Quidant, R.

Radloff, C.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[CrossRef] [PubMed]

Raza, S.

S. Raza, G. Toscano, A.-P. Jauho, M. Wubs, and N. A. Mortensen, “Unusual resonances in nanoplasmonic structures due to nonlocal response,” Phys. Rev. B 84, 121412(R) (2011).
[CrossRef]

Richter, L. J.

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
[CrossRef]

Rivacoba, A.

J. Aizpura and A. Rivacoba, “Nonlocal effects in the plasmons of nanowires and nanocavities excited by fast electron beams,” Phys. Rev. B 78, 035404 (2008).
[CrossRef]

Rockstuhl, C.

Rojas, R.

R. Rojas, F. Claro, and R. Fuchs, “Nonlocal response of a small coated sphere,” Phys. Rev. B 37, 6799–6808 (1988).
[CrossRef]

Royer, P.

W. Ding, R. Bachelot, S. Kostcheev, P. Royer, and R. E. de Lamaestre, “Surface plasmon resonances in silver bowtie nanoantennas with varied bow angles,” J. Appl. Phys. 108, 124314 (2010).
[CrossRef]

Ruppin, R.

R. Ruppin, “Extinction properties of thin metallic nanowires,” Opt. Commun. 190, 205–209 (2001).
[CrossRef]

Salt, M. G.

Sánchez-Gil, J. A.

Schatz, G. C.

J. M. McMahon, S. K. Gray, and G. C. Schatz, “Nonlocal optical response of metal nanostructures with arbitrary shape,” Phys. Rev. Lett. 103, 097403 (2009).
[CrossRef] [PubMed]

Sell, A.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitensdorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics 2, 230–233 (2008).
[CrossRef]

Shegai, T.

T. Shegai, S. Chen, V. D. Miljković, G. Zengin, P. Johansson, and M. Käll, “A bimetallic nanoantenna for directional colour routing,” Nat. Commun. 2:481 doi: (2011).
[CrossRef] [PubMed]

Sigle, W.

Sihvola, A.

H. Wallén, H. Kettunen, and A. Sihvola, “Surface modes of negative-parameter interfaces and the importance of rounding sharp corners,” Metamaterials 2, 113–121 (2008).
[CrossRef]

Tian, X.

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks,” Nano Lett. 11, 471–475 (2011).
[CrossRef]

Toscano, G.

S. Raza, G. Toscano, A.-P. Jauho, M. Wubs, and N. A. Mortensen, “Unusual resonances in nanoplasmonic structures due to nonlocal response,” Phys. Rev. B 84, 121412(R) (2011).
[CrossRef]

van Aken, P. A.

Vernon, K. C.

T. J. Davis, D. E. Goméz, and K. C. Vernon, “Simple model for the hybridization of surface plasmon resonances in metallic nanoparticles,” Nano Lett. 10, 2618–2625 (2010).
[CrossRef] [PubMed]

Vesseur, E. J. R.

E. S. Barnard, T. Coenen, E. J. R. Vesseur, A. Polman, and M. L. Brongersma, “Imaging the hidden modes of ultra-thin plasmonic strip antennas by cathodoluminescence,” Nano Lett. 11, 4265–4269 (2011).
[CrossRef] [PubMed]

Villó-Pérez, I.

I. Villó-Pérez and N. R. Arista, “Hydrodynamical model for bulk and surface plasmons in cylindrical wires,” Surf. Sci. 603, 1–13 (2009).
[CrossRef]

Wallén, H.

H. Wallén, H. Kettunen, and A. Sihvola, “Surface modes of negative-parameter interfaces and the importance of rounding sharp corners,” Metamaterials 2, 113–121 (2008).
[CrossRef]

Wang, Z.

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks,” Nano Lett. 11, 471–475 (2011).
[CrossRef]

Wei, H.

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks,” Nano Lett. 11, 471–475 (2011).
[CrossRef]

Wubs, M.

Y. Chen, M. Wubs, J. Mørk, and A. F. Koenderink, “Coherent single-photon absorption by single emitters coupled to 1D nanophotonic waveguides,” New J. Phys. 13, 103010 (2011).
[CrossRef]

S. Raza, G. Toscano, A.-P. Jauho, M. Wubs, and N. A. Mortensen, “Unusual resonances in nanoplasmonic structures due to nonlocal response,” Phys. Rev. B 84, 121412(R) (2011).
[CrossRef]

Z. F. Öztürk, S. Xiao, M. Yan, M. Wubs, A.-P. Jauho, and N. A. Mortensen, “Field enhancement at metallic interfaces due to quantum confinement,” J. Nanophoton. 5, 051602 (2011).
[CrossRef]

O. Nicoletti, M. Wubs, N. A. Mortensen, W. Sigle, P. A. van Aken, and P. A. Midgley, “Surface plasmon modes of a single silver nanorod: an electron energy loss study,” Opt. Express 19, 15371–15379 (2011).
[CrossRef] [PubMed]

Xiao, S.

Z. F. Öztürk, S. Xiao, M. Yan, M. Wubs, A.-P. Jauho, and N. A. Mortensen, “Field enhancement at metallic interfaces due to quantum confinement,” J. Nanophoton. 5, 051602 (2011).
[CrossRef]

S. Xiao, N. A. Mortensen, and A.-P. Jauho, “Nanostructure design for surface-enhanced Raman spectroscopy - prospects and limits,” J. Eur. Opt. Soc. Rap. Pub. 3, 08022 (2008).
[CrossRef]

Xu, H.

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks,” Nano Lett. 11, 471–475 (2011).
[CrossRef]

Yan, M.

Z. F. Öztürk, S. Xiao, M. Yan, M. Wubs, A.-P. Jauho, and N. A. Mortensen, “Field enhancement at metallic interfaces due to quantum confinement,” J. Nanophoton. 5, 051602 (2011).
[CrossRef]

Yang, J. K. W.

A. L. Koh, A. I. Fernández-Domínguez, D. W. McComb, S. A. Maier, and J. K. W. Yang, “High-resolution mapping of electron-beam-excited plasmon modes in lithographically defined gold nanostructures,” Nano Lett. 11, 1323–1330 (2011).
[CrossRef] [PubMed]

Yannopapas, V.

V. Yannopapas, “Non-local optical response of two-dimensional arrays of metallic nanoparticles,” J. Phys. Condens. Matt. 20, 325211 (2008).
[CrossRef]

Zengin, G.

T. Shegai, S. Chen, V. D. Miljković, G. Zengin, P. Johansson, and M. Käll, “A bimetallic nanoantenna for directional colour routing,” Nat. Commun. 2:481 doi: (2011).
[CrossRef] [PubMed]

Zhang, S.

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks,” Nano Lett. 11, 471–475 (2011).
[CrossRef]

Zuloaga, J.

J. Zuloaga and P. Nordlander, “On the energy shift between near-field and far-field peak intensities in localized plasmon systems,” Nano Lett. 11, 1280–1283 (2011).
[CrossRef] [PubMed]

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum description of the plasmon resonances of a nanoparticle dimer,” Nano Lett. 9, 887–891 (2009).
[CrossRef] [PubMed]

Zuschlag, A.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitensdorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics 2, 230–233 (2008).
[CrossRef]

Ann. Phys. (N.Y.) (1)

A. L. Fetter, “Electrodynamics of a layered electron gas. I. Single layer,” Ann. Phys. (N.Y.) 81, 367–393 (1973).
[CrossRef]

J. Appl. Phys. (1)

W. Ding, R. Bachelot, S. Kostcheev, P. Royer, and R. E. de Lamaestre, “Surface plasmon resonances in silver bowtie nanoantennas with varied bow angles,” J. Appl. Phys. 108, 124314 (2010).
[CrossRef]

J. Chem. Phys. (1)

D. W. Brandl, C. Oubre, and P. Nordlander, “Plasmon hybridization in nanoshell dimers,” J. Chem. Phys. 123, 024701 (2005).
[CrossRef]

J. Comput. Theor. Nanosci. (1)

X. Cui and D. Erni, “The influence of particle shapes on the optical response of nearly touching plasmonic nanoparticle dimers,” J. Comput. Theor. Nanosci. 7, 1610–1615 (2010).
[CrossRef]

J. Eur. Opt. Soc. Rap. Pub. (1)

S. Xiao, N. A. Mortensen, and A.-P. Jauho, “Nanostructure design for surface-enhanced Raman spectroscopy - prospects and limits,” J. Eur. Opt. Soc. Rap. Pub. 3, 08022 (2008).
[CrossRef]

J. Nanophoton. (1)

Z. F. Öztürk, S. Xiao, M. Yan, M. Wubs, A.-P. Jauho, and N. A. Mortensen, “Field enhancement at metallic interfaces due to quantum confinement,” J. Nanophoton. 5, 051602 (2011).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Phys. Chem. C (2)

F. J. García de Abajo, “Nonlocal effects in the plasmons of strongly interacting nanoparticles, dimers, and waveguides,” J. Phys. Chem. C 112, 17983–17987 (2008).
[CrossRef]

C. David and F. J. García de Abajo, “Spatial nonlocality in the optical response of metal nanoparticles,” J. Phys. Chem. C 115, 19470–19475 (2011).
[CrossRef]

J. Phys. Condens. Matt. (1)

V. Yannopapas, “Non-local optical response of two-dimensional arrays of metallic nanoparticles,” J. Phys. Condens. Matt. 20, 325211 (2008).
[CrossRef]

Metamaterials (1)

H. Wallén, H. Kettunen, and A. Sihvola, “Surface modes of negative-parameter interfaces and the importance of rounding sharp corners,” Metamaterials 2, 113–121 (2008).
[CrossRef]

Nano Lett. (6)

J. Zuloaga and P. Nordlander, “On the energy shift between near-field and far-field peak intensities in localized plasmon systems,” Nano Lett. 11, 1280–1283 (2011).
[CrossRef] [PubMed]

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum description of the plasmon resonances of a nanoparticle dimer,” Nano Lett. 9, 887–891 (2009).
[CrossRef] [PubMed]

E. S. Barnard, T. Coenen, E. J. R. Vesseur, A. Polman, and M. L. Brongersma, “Imaging the hidden modes of ultra-thin plasmonic strip antennas by cathodoluminescence,” Nano Lett. 11, 4265–4269 (2011).
[CrossRef] [PubMed]

T. J. Davis, D. E. Goméz, and K. C. Vernon, “Simple model for the hybridization of surface plasmon resonances in metallic nanoparticles,” Nano Lett. 10, 2618–2625 (2010).
[CrossRef] [PubMed]

A. L. Koh, A. I. Fernández-Domínguez, D. W. McComb, S. A. Maier, and J. K. W. Yang, “High-resolution mapping of electron-beam-excited plasmon modes in lithographically defined gold nanostructures,” Nano Lett. 11, 1323–1330 (2011).
[CrossRef] [PubMed]

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks,” Nano Lett. 11, 471–475 (2011).
[CrossRef]

Nat. Commun. (1)

T. Shegai, S. Chen, V. D. Miljković, G. Zengin, P. Johansson, and M. Käll, “A bimetallic nanoantenna for directional colour routing,” Nat. Commun. 2:481 doi: (2011).
[CrossRef] [PubMed]

Nat. Photonics (2)

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[CrossRef]

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitensdorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics 2, 230–233 (2008).
[CrossRef]

New J. Phys. (1)

Y. Chen, M. Wubs, J. Mørk, and A. F. Koenderink, “Coherent single-photon absorption by single emitters coupled to 1D nanophotonic waveguides,” New J. Phys. 13, 103010 (2011).
[CrossRef]

Opt. Commun. (1)

R. Ruppin, “Extinction properties of thin metallic nanowires,” Opt. Commun. 190, 205–209 (2001).
[CrossRef]

Opt. Express (4)

Phys. Rev. (1)

R. Fuchs and K. L. Kliewer, “Optical properties of an electron gas: further studies of a nonlocal description,” Phys. Rev. 185, 905–913 (1969).
[CrossRef]

Phys. Rev. B (6)

B. B. Dasgupta and R. Fuchs, “Polarizability of a small sphere including nonlocal effects,” Phys. Rev. B 24, 554–561 (1981).
[CrossRef]

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
[CrossRef]

R. Fuchs and F. Claro, “Multipolar response of small metallic spheres: nonlocal theory,” Phys. Rev. B 35, 3722–3727 (1987).
[CrossRef]

R. Rojas, F. Claro, and R. Fuchs, “Nonlocal response of a small coated sphere,” Phys. Rev. B 37, 6799–6808 (1988).
[CrossRef]

S. Raza, G. Toscano, A.-P. Jauho, M. Wubs, and N. A. Mortensen, “Unusual resonances in nanoplasmonic structures due to nonlocal response,” Phys. Rev. B 84, 121412(R) (2011).
[CrossRef]

J. Aizpura and A. Rivacoba, “Nonlocal effects in the plasmons of nanowires and nanocavities excited by fast electron beams,” Phys. Rev. B 78, 035404 (2008).
[CrossRef]

Phys. Rev. Lett. (2)

A. Aubry, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Interaction between plasmonic nanoparticles revisited with transformation optics,” Phys. Rev. Lett. 105, 233901 (2010).
[CrossRef]

J. M. McMahon, S. K. Gray, and G. C. Schatz, “Nonlocal optical response of metal nanostructures with arbitrary shape,” Phys. Rev. Lett. 103, 097403 (2009).
[CrossRef] [PubMed]

Science (1)

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[CrossRef] [PubMed]

Surf. Sci. (1)

I. Villó-Pérez and N. R. Arista, “Hydrodynamical model for bulk and surface plasmons in cylindrical wires,” Surf. Sci. 603, 1–13 (2009).
[CrossRef]

Other (3)

A. D. Boardman, Electromagnetic Surface Modes (Wiley, 1982).

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

M. S. Gockenbach, Understanding and Implementing the Finite Element Method (SIAM, 2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Extinction-cross section σext (logarithmic scale) versus frequency for cylindrical nanorods for two radii: (a) radius a = 2nm, (b) a = 25nm. σext is normalized to the diameter of the rod. Both panels show comparisons of numerical simulations of Eq. (1) to analytical results both for local response (β = 0) and for nonlocal response ( β = 3 / 5 v F ). All numerical curves overlap the corresponding analytical curves.

Fig. 2
Fig. 2

Extinction-cross section versus frequency for a dimer of two cylindrical nanorods of radius a = 25 nm separated by a distance d, excited by a TM-polarized plane wave with wave vector perpendicular to the line connecting the centers of the cylinders, as illustrated in the inset with a/d not to scale. σext is normalized to the diameter of the single wire. The left panels labeled (a) depict σext, while the (b) panels on the right show the average field enhancement 〈γ〉 as defined in the main text. The upper panels (a1) and (b1) correspond to d = 1nm, where the SPR appears at 3.28eV and 3.40eV for the local and nonlocal case, respectively. The middle panels (a2) and (b2) concern d = 2 nm where the SPR appears at 3.63eV in the local case and at 3.69eV in the nonlocal one. The lower panels (a3) and (b3) correspond to d = 3nm.

Fig. 3
Fig. 3

Extinction-cross section versus frequency for a dimer of two equilateral triangles nanowires of side L = 45 nm separated by a distance d, excited by perpendicularly incident TM-polarized light. The inset shows a sketch with d/L not to scale. As in Fig. 2, the left and right panels show extinction cross sections σext and average field enhancements 〈γ〉, respectively. Upper, middle, and lower panels again correspond to d = 1,2 and 3nm.

Fig. 4
Fig. 4

Relative error δ of the numerically calculated extinction cross section σ ext num for a single cylinder of radius a = 2nm at the nonlocal-response resonant frequency ωsp = 6.38 eV, and for a single cylinder of radius a = 25nm at the frequency 5.91 eV, as a function of the number of mesh elements. Modeled with parameters of Au as given in Sec. 2.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

× × E ( r , ω ) = ɛ other ( r , ω ) ω 2 c 2 E ( r , ω ) + i ω μ 0 J ( r , ω ) ,
β 2 ω ( ω + i / τ Drude ) [ J ( r , ω ) ] + J ( r , ω ) = σ ( r , ω ) E ( r , ω ) .
γ = d r γ ( r ) d r = 1 E 0 2 d d r | E ( r ) | 2 .

Metrics